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A Numerical Study of
Nonaxisymmetric Stokesian
Flow in a Circular Tube

A numerical study of the nonaxisymmetric Stokesian flow of a Newtonian fluid in a rigid

circular tube of fixed radius has been performed. The analysis presented here is an inte-
gral part of the problem of modeling the flow of blood near the ostia of the intercostal arte-
ries of rabbits in order to study a possible factor in the initiation of atherosclerosis. The
method of lines is used to reduce the mathematical problem to one of solving a system of
first-order ordinary differential equations along lines parallel to the tube axis. Solutions
are obtained analytically using matrix eigenvalue techniques for the first two Fourier
components of the flow and the accuracy of the numerical method is verified by suitable
comparison with the results of independent computations.

Introduction

From a fluid-dynamic point of view, the blood vessels of the human
circulatory system comprise a complex network of flexible round tubes
through which there is a three-dimensional, pulsatile, and usually
laminar flow of a non-Newtonian fluid (Mueller [1]). A basic problem
in hemodynamics is therefore the study of laminar flows in round
tubes.

The present work is concerned with the analysis of a simple
mathematical model of this problem; it examines the steady, zero-
Reynolds number and nonaxisymmetric flow of a Newtonian fluid
inside a rigid circular tube of constant radius. The Newtonian fluid
approximation for blood is considered reasonable in all but the
smallest of blood vessels (Lighthill [2]). In these, the particulate nature
of blood asserts itself, thereby complicating the rheology. Although
the steady flow approximation ignores effects due uniquely to pul-
satility, such as wave patterns, temporal instabilities, and the dynamic
effects of flexible walls, it does give a measure of the steady component
of the real flow. The circular geometry model is simple yet more re-
alistic than the more common two-dimensional channel analogies.
Although the Reynolds number of blood flow in humans can go as high
as 10,000 in the aorta, the Stokesian flow approximation is a logical
first one for the modeling of the “slower” flows in and near the smaller

1 Current address: Department of Aeronautics and Astronautics, Stanford
University, Stanford, Calif. 94305, ) .
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blood vessels, especially since the low Reynolds number there may
invalidate the use of boundary-layer methods.

Two examples of specific applications of the foregoing problem are
Lew and Fung’s low-Reynolds number entry length problem [3] and
Sobey’s mathematical model of the flow near the ostia of the inter-
costal arteries of rabbits [4].

Lew and Fung analyzed axisymmetric flows in the entry regions
of small blood vessels for Reynolds numbers too low for boundary-
layer analysis to be valid [3, 5]. They derived an analytical solution
to the problem of finding the velocity distribution inside a circular
cylinder of fixed radius due to an arbitrary axisymmetric velocity
distribution at the entrance. The present work thus represents a
generalization of Lew and Fung’s zero-Reynolds number problem to
nonaxisymmetric flows.

Sobey was interested in examining the fluid-dynamic shear stresses
near the ostia of the intercostal arteries of rabbits. The fluid-dynamic
forces on arterial walls affect the structure and function of these
surfaces and it has been assumed that they are a factor in the initiation
of atherosclerosis, a disease characterized by the accumulation of
plaques of fat on the arterial walls (Fry [6]). These plaques show a
predilection for forming near geometric irregularities such as
branches, where large shear gradients undoubtedly exist. In vivo

.measurements near vessel walls have poor resolution (Nerem, et al.

[7]), thereby necessitating the use of physical and mathematical
models. Since the intercostal arteries are much smaller and sustain
a much lower flow rate than the aorta, from which they branch out,
Sobey chose to model the situation as that of a steady laminar flat
plate boundary-layer flow past the opening of a small tube at right
angles to the plate sucking in a small portion of the outer flow. He
further simplified the problem by invoking the Stokesian flow ap-
proximation inside the side tube and in the boundary-layer flow very
near the mouth of the tube, thereby decoupling the problems of de-
termining the solutions near and far from the hole and also linearizing
the former. He first solved the two-dimensional analogy by a combi-
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Fig. 1 Flow configuration and coordinate system

nation of analytical and numerical methods, and, for the three-di-
mensional problem, he found one analytical solution valid far away
from the hole and another one, requiring knowledge of the velocity
distribution on the hole itself, valid in the vicinity of the hole. How-
ever, determining the velocities on the hole requires a solution for the
flow inside the tube and a matching of the stresses on the hole. It is
thereby seen how the nonaxisymmetric version of Lew and Fung’s
zero-Reynolds number pipe entry flow problem is a part of Sobey’s
intercostal mouth model. The analysis of Stokesian flow in a rigid
circular tube of fixed radius, in this context, is the subject of what
follows.

The Boundary-Value Problem

The problem at hand is that of determining the velocity and pres-
sure distributions of the Stokesian flow in the region consisting of a
circular tube of constant radius at right angles to a semi-infinite space
with a uniform linear shear flow on the boundary of the latter far away
from the mouth of the tube and a prescribed flow rate down the tube.
This situation is depicted graphically in Fig. 1.

The foregoing is a linear boundary-value problem governed by the
equation of continuity, Stokes’ equations of motion and the boundary
conditions shown in Fig. 1; in cylindrical coordinates the nondimen-
sional equations are

92 u l1lov ow

to b= (1)
or r rof oz
Ou,lou 10w ow 2 u_m_
or2  ror r2a0%2 222 r200 r? or
o 1w 1w oh 2ou_v 1w
or2  ror r200% 0z2 r226 r? rof
?2 1o o2 1 0% o)
Fw, low, 0% 12% op_ @
or? ror 222 rof? oz
u(1,0,2) =v(1,0,2) =w(1,0,2) =0 2=0 (5)
u(r,0,2) =v(r,0,2)=0, z—= (6)
w(r,0,2) =Wp(l-r?), 2>« 7
ulr,6,0)=U(r,0), v(r,8,0)=V(, 0, w(rb,0)=W(e,0)
6]

where lengths have been scaled by R, the tube radius, velocities by
a reference value W, and pressure by uW,/R, where p is the viscosity
coefficient. :

To avoid the large computational “volumes” required for a fully
discrete three-dimensional numerical solution, the §-dependence is
separated out of the problem by expressing the dependent variables
as Fourier series in cos 8 or sin 8, as suggested by Pedley and Moore
[8, 9]; limiting ourselves to flow symmetric about the plane y = 0, as
for Sobey’s problem, V and p are written as
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u(r,0 z) = i uj(r, z) cos jo
j=0

v(r,0,2) = ¥ v;(r, 2) sin j0
j=0

w(r,0,2) = ,éo w;(r, 2) cos j0 (9a)
p(r,0,z) = jgo p;(r,z) cos jé

Ur, 0) = éo Uj(r) cos j0

Vir,0) = éo V;(r) sin j6

W(r,0) = ,20 W;(r) cos jo (9b)

Substituting these expressions into equations (1)-(8) and collecting
coefficients of cos jf and sin jf yields

oy owj _

u;j - Jjuj
+ AL g

(109)
or r r oz
.....__quj l%_:@ auj_ﬁ_%_apf_o 11
or2  r or r2 222 r2  r2 or
O 1ov; v 0% b U JBi_o (49
or2 ror r?2 222 r* 2 r
200, . 12 O2w; dp; .
aw}.*.l.%_w_;,._w_/._ﬂ:o (18)
arz r or r2 2z 0z
ui(l,2) =vj(1,2) =wj{l,2) =0 220 (14)
uj(r,z) =vi(r,z) =0 z > (15)
forj=0,1,2,....
wor,z2) =Wnu(l=r?%) z—>o
wilr,z2) =0 z—>® j=#0 (16)
ui(r,0) = U;(r), v;j(r,0) = Vi(r), w;(r,0)=W;r) 17)

Solutions will be considered for the cases j = 0 and j = 1. These will
henceforth be denoted as the jO and j1 problems, respectively. It
should be noted that the jO component of the flow is its axisymmetric
part and is entirely due to the nonzero volume-flux through the tube
(found by integrating the axisymmetric velocity component w across
the tube). On the other hand, the j1 component is purely a result of
the shear flow along the plate far from the hole.

The aforementioned solution will be complete if the initial velocity
profiles satisfy

Uiry=Vi(r)=W;(rn=0 j>1

If this is not the case, the solutions for j > 1 can be calculated in a
straightforward manner with the technique discussed below for the
solution of the j1 problem.

Consider the solution of the j0 and j1 problems in the tube only,
what Sobey has called the lower basement. The boundary condition
at z = 0 (equation (8)) involves the specification of nearly arbitrary
but “reasonable” velocity distributions there for r < 1. The jO and j1
lower basement boundary-value problems are therefore given by

Oug , Up , Qwg _

0 (18)
or r oz
2 o2 I}
Qo  10ug U0, O%g_0Po_, (19)
or2 rar r? 222 or
02 10 92w fe)
Wo , 2 9o , OWo %P0 _ (20)
or2 r or 022 2z
uo(r, 0) = Up(r), wolr, 0) = Wo(r) (21)
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uo(l, z) = we(l,2) =0 (22)
ug(r,2) =0, wolr,z2)=wWu(l—-r? z—>o (23)
and
Is] + O
our witvy dw 2
or r 0z
d%2u; 10wy d%uy opy
i S o) L =0 25
or: r or r2( 1+ o) 2z2  or 25)
bzvl 1 Oul a2l)1 Pi
- == tuv)+ + 0 26
oar2  r or 2( 1t o) dz2 26)
02 10 02 fe)
w 1owy _wi 2% dpi_ o @n
or2 r or r?z 222 oz
ui(r,0) = Ui(r), vi(r,0) = Vi(r), wi(r,0) = Wi(r) (28)
ui(l,z) =vi(1,2) =wi(1,2) =0 (29)
ur(r,z) =vilr,2) =wi(r,z2) =0 z—>o (30)

with the direction of the z-axis having been reversed for conve-
nience. )

It is noted that far downstream in the tube, for z — =, the foregoing
equations yield the following conditions on the pressure:
il‘)‘g =—4W,,, p1=0

dz

Some of the aforementioned differential equations take on special
forms on the axis of the tube, i.e, at r = 0. One method of evaluating
these equations on the axis is that of expanding them in Taylor series
for small r and constant z and then collecting coefficients of like
powers of r as suggested by Pedley [8]. The details of these expansions
and the resulting equations for j = 0 and j = 1 may be found in
Strigberger [10].

As mentioned in the Introduction, Lew and Fung solved the jO
problem analytically. A specific aim of the present work is therefore
the solution of the j1 problem.

(31)

The Method of Lines

The method of lines consists of approximating a set of partial dif-
ferential equations by a system of ordinary differential equations. This
is achieved by keeping one coordinate continuous and approximating
the derivatives in all other directions by finite differences. The ap-
proximate solutions to the partial differential equations are thus
obtained along lines parallel to the axis of the continuous coordi-
nate.

For the partial differential equations of the lower basement prob-
lem, if the derivatives in the r-direction are replaced by finite dif-
ferences, there results a system of ordinary differential equations
which are first order, linear, and homogeneous and have constant
coefficients. The solution to such a system can be found analytically
using matrix eigenvalue methods (Boyce and dePrima [11]). However,
it may not be possible to exactly satisfy all of the velocity boundary
conditions at z = 0 and z = «. Fortunately, the amount by which the
calculated boundary conditions deviate from the exact ones is very
small if the finite-difference representations themselves are reason-
ably accurate for the solution which the given boundary conditions
imply.

Before the method of lines was applied to the j1 component of the
lower basement, it was tested on a jO problem for which an analytical
solution was known, Lew and Fung’s case. This is an exacting test due
to the difficulty in modeling the z = 0 conditions, Uy = 0, Wo =1, 0n
a finite number of lines. The results obtained were reasonably accurate
and since the j1 solution will be compared to the results of a finite-
difference solution, we proceed directly to the j1 case.

The first step in applying the method is to divide the domain into
M axial strips of width Ar, thereby producing M + 1lines at r; = {Ar,
i=0,1,2,...,M —1, M. Next, all r-derivatives in equations (24)—(27)
are replaced by finite differences of second-order accuracy with

Journal of Applied Mechanics

constant Ar. (Note that the subscript j = 1 is dropped from the de-
pendent variables.) The variables
Co_duy dy
u; = 5 v; = =
are introduced. The following conditions at r = 0 are to be satis-
fied:

(32).

v(0, 2) = —u(0, 2)
w(0,2) =p(0,2) =0
2%  0%u d% dp _

(33)
orz 2z o or

The resulting ordinary differential equations are (( = 1, 2, ...,
M-1):

r-Momentum:

di; ( 1 05 ) ( 2 9 )
iy |y - = -
dz (A2 rAr (Ar)?2 ()2

fu (—1—+ﬂ)+u.( i)
LH (Ar)2  r;Ar U2

+pi (;)+ ; (_9&)_0 (34)
Pi-1 Ar Dit1 Ar

e R e R e
Vam?l T ] T 2 ane

) o Rl (e A e R e
@ T e T @ang T e

+ (——2—)+ (%)—O at r=0 (3b)
P1 Ar 24 Ar

dit
dz

#-Momentum:

oal o2
r,-2 (Ar)2 riAr

bl

(Ar)?2 2

T P
i+1 (Ar)2 riAr pi )

z-Momentum:

dp; . (——0.5) . (1) . (0.5) ] (1)
— 4t |— | Fu |- F i | O [

dz Ar r; Ar T
+ w; ( L +———0‘5)+w-(——2 +i)
A TN VRS Bl (NS TR
1 0.5
+ . —_—— | =0 37
wl“( (Ar)? riAr) @
Continuity:
dw; 0.5 1) (0.5) (1)
— oy - Fu || Fug [ o |~ =0 38)
dz w 1( Ar) e (ri tirt Ar v ri (
du; dv; |
gz—l-'lli=0; Z_Di=0 (39)

In addition, it is necessary to account for p(1, z) = pm(2z). Any one
of the momentum equations can be applied at r = 1 to this effect; using
the r or #-momentum equations puts pp(z) in terms of the other
variables at » = 1, while employing the z-momentum equation yields
an additional ordinary differential equation,

LSNP S PO Sl
dz (Ar)? (Ar)2  Ar
+ War~—1 (—'— + “2—) =0 (40)
(Ar)2  Ar

The previous system can be expressed in matrix form as
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METHOD OF LINES
°  CHORIN'S METHOD

-06

-08

-1.0-08-

Fig. 2 Comparison between present method of lines results and those ob-
tained using Chorin’s [13] method

dT‘l‘:L’ + [Alle} =0 (41)
where
{6@)} = lg, U1, g, - -, UM—1; Uy V2. .. UM-1;
Uo, U1, Uy -+« s UM—1; V1,02 .-, DM—1}
W1, Wa, . .., WM—1; D1, P2 - - s PM—1, PM}, (42)

{A] is the system matrix; pps is excluded if the 2 -momentum equation
is not employed at r = 1. The total number of ordinary differential
equations in the system isthus N =2+ 6(M —-1)=6M ~4or N =
2+ 6(M — 1) + 1 = 6M — 3, depending upon whether or not the
z-momentum equation is applied at r = 1.

When all the eigenvalues of [A] are distinct, the general solution
of equation (41) is given by

N
$i(z) = ¥ rijejeN? (43)

Jj=1
where the \; are the eigenvalues, the r;; are the components of the
“modal” matrix [R], whose columns are the eigenvectors of [A], and
the ¢;’s are determined from the boundary conditions. ¢; is set equal
to zero whenever the real part of A; is zero or negative to insure that
all of the variables will vanish asymptotically far downstream.

Before considering the determination of the rest of the c;’s, it should
be noted that an interesting feature of the method of lines is that the
general solution of the differential equations is found independently
of any consideration of the boundary conditions. This means that once
the eigensolution of {A] is found, it can be used over and over again
with any set of reasonable velocity boundary conditions. This prop-
erty, along with the fact that the size of [A] is roughly only the square
root of that of the type of matrix dealt with in two-dimensional fi-
nite-difference schemes makes the method of lines very fast compu-
tationally.

The nontrivial ¢;’s are determined from the specification of ug, uy,
v Up—1,D1, Vg, . .., Up—1, W1, Wy, . .., Wa—1 or their derivatives at
z = (. There are therefore No = 1 + 3(M — 1) = 3M — 2 linear alge-
braic equations in the ¢;’s. If the number of eigenvalues with positive
real parts is less than N., it is possible to satisfy all of the velocity
conditions at z = 0 only in a least squares or other approximate
sense. .

462 / VOL. 48, SEPTEMBER 1981
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Fig. 3 u velocity profiles for j1 problem versus distance z down the tube
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Fig. 4 v velocity profiles for j1 problem versus distance z down the tube

Results
The previous method for the j1 problem was applied to an example
with the following entrance plane velocity (equation (28)):

Ui(r) = =1+ 3r2 = 2r3 = =V1(r)
Wir)=0

This velocity is in the x -direction and satisfies the continuity equation
atbothr =0andr =1,

The computational processes were split into two parts. The first
part consisted of generating the system matrix [A] and calculating
its eigenvalues and eigenvectors. The latter was done by the Eispac
subroutine package using its option for real general matrices [12]. This
eigensolution was then used to calculate the nontrivial ¢;’s of equation
(41) and to evaluate the velocities on the “lines” at any desired value
of z. All computations were carried out on an IBM 370/158 com-
puter. o

M was set equal to 10(Ar = 0.1). All three of the boundary condi-
tions for p(1, 2) discussed earlier were tried; the resulting velocities
in all three cases differed by no more than 0.005, so only one of these
results is presented here, that for the scheme using the #-momentum
equation at r = 1. The eigensolution yielded a number of eigenvalues
with positive real parts one less than the number of boundary con-
ditions, so that it was necessary to resort to an approximate satis-
faction of the boundary conditions using least squares at z = 0. The

- maximum error which resulted at z = 0 was only 0.0013,
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Fig. 5 w velocity profiles for j1 problem versus distance z down the tube

As a test of the method of lines solution, the foregoing example was
also solved using a finite-difference approach, Chorin’s [13] time-
dependent method with artificial transient compressibility. Some
results of both methods are presented in Fig. 2 and the agreement is
seen to be excellent. The C.P.U. time required for the method of lines
solution was approximately 37 sec for the eigensolution and 11 sec for
the velocity calculation.

Velocity profiles for the three components u, v, and w are shown
in Figs. 3-5 as they develop with increasing distance z down the tube.
It is noted that the perturbations caused by the flow at z = 0 die out
in a distance of the order of the tube radius, as was the case for the jO
example of Lew and Fung.

The solution for u and w is also used in Fig. 6 where the velocity
vectors in the plane y = 0 are presented, thereby showing the vertical
eddy structure of the flow. It should be noted that this picture is valid
in any radial plane except § = n/2 and 6 = 3%/2 since

u(r,8,2) = ui(r,z) cos f
w(r,0,2) = wy(r,z) cos 8

forj =1.

Conclusions

The Stokesian approximation for the steady incompressible low-
Reynolds number flow of a Newtonian fluid in a rigid circular tube
of fixed radius has greatly simplified the analysis of this problem. The
deletion of the inertial terms and resultant linearization of the
problem has led to the separation of the 8-dependence by Fourier
analysis, thereby transforming the original three-dimensional problem
into a set of independent two-dimensional ones. Given the rectangular
domain of these problems, the absence of z-dependent coefficients
of the unknowns and their derivatives in the governing differential
equations and the homogeneity of the velocity boundary conditions
at the wall, it has proven feasible to solve these problems in a semi-
discrete fashion by the method of lines. Each set of partial differential
equations has been approximated by a system of linear first-order
homogeneous ordinary differential equations with constant coeffi-
cients which could be solved by matrix eigenvalue methods. Although
it has become apparent that it is not always possible to satisfy the
boundary conditions at the top and bottom exactly, any such error
was found to be small for reasonable cases.

The method of lines was tested on Lew and Fung’s problem of
axisymmetric Stokesian flow in a semi-infinite tube. This was a dif-
ficult test because the nearly flat entry profile implied large curvatures
and curvature gradients in the velocity distributions near the wall near
the entrance. This would cause difficulties for any numerical method
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Fig. 6 Velocity vectors in plane y = 0 for /1 solution; x and z are positive
to the right and downward, respectively

using low-order approximations and a small number of grid points,
lines, finite elements, etc.

Although the range of M used was limited, slight improvements
resulted from small increases in M. Unfortunately, the real-general-
matrix option of the Eispac subroutine used to find the eigensolution
broke down when trying the axisymmetric problem with M = 15. The
matrix, [A], although quite sparse, has a slightly complicated band
structure, so that what is really needed for its eigensolution when M
is large is a fairly general sparse matrix eigensolver.

A solution of an example of a nonaxisymmetric flow component by
the method of lines was compared with the solution of the same
problem by Chorin’s time-dependent method of artificial compress-
ibility. The two solutions compared very well.

For the present problem, the method of lines has three attractive
features not found in iterative two-dimensional finite-difference
methods. First, it does not require the decision of where to truncate
the tube. Second, the eigensolution of the matrix [A] can be found
more rapidly than the steady-state solution of the two-dimensional
finite-difference equations, owing to the fact that the order of [A] is
approximately only the square root of the size of the matrix repre-
senting the two-dimensional scheme. Third, for a fixed finite-differ-
ence scheme and number of lines but for any set of velocities at the
ends, the eigensolution needs to be found but once; the velocities
corresponding to any particular set of end conditions can be found
from this eigensolution in about half a minute (on an IBM 370/158),
typically, if the order of [A] is less than 60.
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On June 21, 1981; the author of this paper was killed in a tragic ice avalanche on Mount Rainier, Washington, U.S.A. At
the time of his death, he was 27 and had just finished his first year of teaching at the University of Michigan. Jonathan was
a remarkable man of many talents and exceptional warmth. We grieve this loss to his family, the loss to the mechanics
community, and that the promising beginning of a scientific career was abruptly brought to an end.
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A Numerical Solution for Gas-
Particle Flows at High Reynolds
Numbers

Predicting the fluid mechanical characteristics of a gas-solid two-phase flow is critical
for the successful design and operation of coal gasification systems, coal fired turbines,
rocket nozzles, and other energy conversion systems. This work presents a general grid-
free numerical solution which extends a numerical solution of the Navier-Stokes equa-
tions developed by Chorin to a solution suitable for unsteady or steady dilute gas-solid
particle flows. The method ts applicable to open or closed domains of arbitrary geometry.
The capability of the method is illustrated by analyzing the flow of gas and particles
about a cylinder. Good agreement is found between the numerical method and experi-

ment.

1 Introduction

Aircraft turbines, catalytic cracking units, pulverized coal energy
conversion systems, geothermal and MHD power are all fluid me-
chanical systems that suffer solid particle erosion. The financial loss
associated with this type of erosion has led to many investigations of
particular detailed problems [1-4].

In most industrial two-phase systems where erosion occurs, the
distribution of erosive wear around the surface of the body must be
determined. This requires a solution giving the particle velocity and
position history; with this information an erosion model may be ap-
plied to determine the erosion distribution about the body. Generally,
the collective motion of the particles is a desired solution as well as
the gas motion; thus the two-phases are treated as separate me-
chanically interacting mediums.

The vast majority of problems involve two-dimensional subsonic
flow. In this case the governing equations for the particle and gas
phase are similar in appearance to the well-known Navier-Stokes
equations of fluid mechanics. Although several calculational schemes
have been developed for a general one-dimensional flow [6~7], much
less research has been conducted for two-dimensional flow. The only
general two-dimensional model is the “tank-and-tube” cellular ap-
proach developed by Crowe [8]. In this method the flow field is sub-
divided into a series of “tanks” connected to adjacent tanks by
“tubes.” Finite-difference equations are derived and solved with the
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appropriate boundary conditions using Gauss-Seidel successive

substitution. This technique has been successfully applied to iso-
thermal flow fields in cyclone separators [9] and electrostatic pre-
cipitators [10].

However, because of the high Reynolds number found in most in-
dustrial flows, the influence of viscosity is confined to narrow regions
close to the surface of bodies. These small regions, which are initially
invisible to a finite difference grid, grow larger—particularly if under
the influence of an adverse pressure gradient. Qualitatively, the effects
of these small regions of boundary-layer backflow are quite pro-
nounced; the flow can become separated from the body by a region
of reversed or recirculating flow. Finite-difference schemes produce
unreliable results in this situation since the computer cannot store
enough grid points falling within the boundary layer to predict
boundary-layer growth and subsequent separation satisfactorily.
Furthermore, it is often observed that in a boundary-layer large
truncation errors lead to the formation of an artificial numerical
viscosity [11].

A numerical scheme developed by Chorin [12] for gas flow only
circumvents these difficulties. The scheme is grid free in that the
vorticity within the fluid is partitioned into vortex “blobs” which are
moved according to two components. One component is a random
displacement of the vortex blob position; in this way the effect of
viscous diffusion is modeled. The other component is a deterministic
displacement found by moving the blobs according to their mutual
interaction effects. This interaction is determined in a way similar
to that in which the motion of point vortices interacting in an inviscid
fluid is determined, according to the governing equations of classical
hydrodynamics.

In this work Chorin’s vortex technique is extended to a two-phase
mixture. Apart from the capacity of the vortex method to simulate
the physics of viscous fluids and the process of vorticity injection, the
scheme overcomes a major difficulty in modeling the particle phase
boundary conditions. Particles striking a surface boundary can either
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adhere to the surface, leading to particle attrition, or form a bed that
slides along the surface, or rebound from the wall. In the vortex
method the particles are coagulated into packets which are then fol-
lowed throughout the flow field. This Lagrangian description of
particle trajectories allows precise mathematical consistency with the
appropriate physical boundary condition; in an Eulerian formulation
the appropriate conditions at a physical boundary are extremely
complicated.

In this work the particles are assumed to adhere to the surface upon
first impact. This is consistent with typical industrial processes where
the particles act as an erosive material, cutting and embedding into
the surface. It should be mentioned that this work can be easily ex-
tended to include rebound phenomena; it is only necessary to specify
rebound angles and velocity coefficients of restitution for an averaged
collection of particles.

The unsteady equations of motion are solved outside the body with
the “no-slip” boundary conditions for the gas and particle phase.

For the gas and particles

velocity of the boundary,

u (at the boundary) = { 1)

Q if boundary at rest.

In the final section of this work the scheme is applied to a two-phase
flow around a cylinder. This problem has been investigated by Glauert
[13], Tilly [14], and Pettit [15] under the simplifying assumption of
inviscid gas flow. Since many investigations have used potential theory
to determine the gas flow, this work will compare the inviscid ap-
proximation and the viscous solution given by the vortex method. We
can then assess the magnitude of error introduced in the particle phase
solution as a result of the inviscid approximation.

It is hoped that this work will serve as another contribution to the
study of two-phase, gas-solid flow about a cylinder, and more saliently,
introduce a technique useful in solving two-phase flow problems.

The Two-Phase Model

The constitutive equations are well known [16] for flows in which
the fluid phase is an incompressible Newtonian fluid and the particle
phase is a dilute suspension (i.e., the particle volume fraction is order
1073 or less) made up of uniform solid particles.

The dimensionless equations of continuity and motion, written in
terms of vorticity transport, are as follows:

Gas Vorticity Transport

V-u=0, 2)
DE_1 s
Dt Rer, @®)

Particle Equation of Motion
da
Z+v =0, 4
" (aup) 4)

Du, _ glu—up)
D: A
where £ is a scalar representing the fluid phase vorticity, £ = curl u;

(5)

« is the particle volume fraction, and A and g are defined as fol-

lows:
2 pp (0)2(UL) |u—u,ldCp .
A === -], Rep) = —————. 6
9p\L/\v §(Rep) v 24 (©

By fitting experimental data [17] for the drag coefficients of spherical
particles, the following formulas are obtained:

Cp = 24(1 + 0.15 Re}®")/Re, 0 = Rep = 200,
Cp = 21.9416 Re;*™8 + 0.324 200 < Re, = 2500,

Cp=04  Re, > 2500.

These will be used in the following numerical solution. The drag
coefficients of irregularly shaped particles may also be obtained by
using the diameter, d, of an equivalent sphere as suggested by Bagnold
[18], where d equals 75 percent of the mean sieve diameter.

Physically, X (referred to as the momentum equilibration number)
is the nondimensional distance required for a particle to reduce its
initial slip velocity by e L. Equations (3) and (5) indicate for gas-solids
experiments on different scales to be dynamically similar we require
) to be constant and the Reynolds number to be constant between
experiments.

Other forces that act on the particles such as the lift force, Brownian
motion force, pressure force, Magnus force, Basset force, and virtual
mass effects may be neglected [19].

Principal Method of Seolution

Equations (2)-(5) are solved by integrating forward in time. At the
time step m we assume the vorticity is known for the gas flow field and
the particle flow field. We want to determine the gas vorticity and
particle distribution at the time step (m + 1). This is done as follows.
First, consider a flow field without boundaries present; the vorticity
is partitioned into a sum of blobs

N
E=2 & (7)
j=1

£ e @5 (RY), 8

where the gas vortex blobs, £; each have small support, i.e., the
function vanishes uniformly outside a small but finite region (or blob)
around a point ;j, in the two-dimensional domain R2

Now in the case of the fluid the vortex field is advanced using
Chorin’s [12] scheme, as described in the following section.

In the case of the particles we must first discuss the characterization
of the particle continuum as a set of discrete noninteracting packets
and then describe the technique by which these packets are advanced
tothe m + 1 time step.

Partitioning the particles into packets of small support is in physical
agreement with the spatial averaging found in an Eulerian description.
Also, we are only interested in mean values of the dependent variables,
since these are the only ones sampled experimentally. Furthermore
the gas-flow solution is statistical in nature, so we cannot know the
exact path of any specific particle. We can only determine the mean

Nomenclature
L = characteristic length of system £ = vorticity A = momentum equilibration number, 7 U/L
R = c¢ylinder radius £ = vorticity strength 9 2
. . = densit: _ 2Pp0
d = particle diameter p = gas density ) ortU/R, T = 5 =
u = gas velocity, u = (1, v) pp = particle material density K
& v, ’ pp = particle phase density (mass particles/

up, = particle velocity, up = (up, vp)

a(g) = single layer source potential func- 4 = particle radius

tion
« = particle volume fraction, « = p, /pp Parametric Groups
¢ = potential function Re =

A = Laplacian operator, A = V2 2UR/v
u = gas viscosity

v = gas kinematic viscosity d/v
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unit volume mixture)

flow Raynolds number, UL/v or

Rep = particle Reynolds number, |u — up]-

Subscripts

D = flow due to potential source distribu-
tion
0 = conditions at the wall
p = particle phase
& = flow due to vortex field
o = free-stream conditions
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motion of a collection of particles. Thus the information carried by
the packets determines the mean motion of the particles contained
within the packet.

Now we write the particle momentum equation (5) in discretized
form yielding

Dupi - glu— Upi) ©)
Dt A
We propose to solve this equation by following the motion of particle
packets.
The motion of the particle packets is then described by
dxyp(ip) Sy
B = u,Gp) ip=1,...,Np, (10
dt
dyp (i .
y—‘;ﬁ”—)wpup) ip=1,...,Np, a1

where Ny, is arbitrary and up (ip), vy (ip) are found by using a scheme
presented in the section entitled “Numerical Details.”

Chorin’s Vortex Scheme
This section presents an outline of Chorin’s [12] vortex method as

it pertains to the problem under investigation. Since the flow is in-
compressible and two-dimensional, there exists a stream function ¥;
physically ¥ is a measure of the two-dimensional fluid flow rate and
is related to the velocity as follows:

ov 24

u=-——, v=

oy ox
We first consider the flow of an inviscid fluid (i.e., Re = «). Equation
(3) becomes

(12)

D§
Dt

with the vorticity partitioned into blobs as described in (7), ¥; then
has the form

=0, A¥=-¢f (13)

N
V=3 ¥ with AV;=-.
j=1

When the distance between some arBitrary point and the jth vortex
blob is large (i.e., |r — ;| large), y; will have a form

. E= ff&fdxdy-

The foregoing equation is the expression for a point vortex stream
function. In the neighborhood of a point vortex the fluid’s tangential
velocity varies inversely with the radius. However, the velocity field
created by the vortex blobs is made bounded as opposed to the infinite
velocity at the center of a point vortex. This is done by constructing
a basic blob of the form

\I/-~=v £ loglr

1
é-—logr rz o
T
Yo(r) = , (14)
1r
——— r<oi
27 o1

where r = |r| and o1 is a cutoff length which will be discussed shortly.
Since the blobs are small it is assumed that their total vorticity §; is
small and hence their interaction effect with neighboring blobs is
small.

Now the stream function is written as
(15)

N _ N _
V=3 W% ~v), £=3 §E),
j=1 j=1

where each basic blob satisfies
= AW — ;).
The motion of the vortex blobs is then described by
dx;
- = Z E]

)N)
dt }?51

(r—r,) i=1,...
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dy;
=X F;

i=1,...,N
d J#i

(r ~r)
the components of the radius vector r are (x;, y;).
These equations can be approximated by

xffU =P 4 Rumli?, (16)

Yyl =y 4 kynl/2, (17

where k is the time step.
Now consider the case when Re # «. The diffusion equation for

the fluid is

% L Af

3 Re
with initial data £(0) = &(x, y, ¢ = 0). A solution to this equation using
a random walk is obtained as follows. Assume for the moment that
£ is a known function in space and time, then distribute over the x,
y-plane points of masses &; with locationsr; = (x;,y:),i =1,...,N,
N large. This is done so that the mass density approximates the initial
condition £(0). Then the points are moved by the following equa-
tions:

X = x4,

y?+1 = y;l + N2,
where 71 and 7y are Gaussianly distributed random variables with zero
mean and variance 2k/Re, k being the time step.

The vorticity density generated by their mutual interaction and
random walk is given by

(18)

x'.1+1 =x?+ kunl/2 4 71,
YU = yP 4 komd/2 4,
which approximates the solution to (3), (12), and (13).
This analysis has neglected the effect of boundaries. We must
satisfy the no-slip condition and create a potential flow that will ex-
actly cancel the normal component of flow. The normal component
is developed in the next section. To satisfy the no-slip condition
(tangential component) the vorticity necessary to create a velocity
exactly cancelling the flow velocity in the tangential direction must
be determined. Integrating the vorticity in the boundary layer will
yield the desired result. The total vorticity in a boundary layer of
thickness ¢ and length h is

E= f :Z f (V X u)dydx

h/2

(19) ’

f (——) dydx = —U(0, 8)h, (20)
h/ 2

where the integral has been approximated using the midpoint rule,
and U(0, 6) is the free-stream speed. This total vorticity is assigned
to the blob which has a constant velocity field inside a cutoff length
o1 that exactly annihilates the tangential velocity and gives the ap-
proximate value of o1 as 01 = h/27 from (12), (14), and (20).

Numerical Details

We must find a potential flow up, such that up - n = —ug - nfor each
point on the boundary of an obstacle. In this way up + ug will satisfy
the normal boundary condition. We require a solution to

Ay =0 (21)
subject to the boundary condition
u*n=—u-n on dD. (22)
Laplace’s equation can be satisfied by a flow of the form
u=Ve, (23)
where ¢ is given by
400 == f.ala)log Rlg)da (24)
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Fig. 1 Vector and notational relationship between domain, vortex blobs, and
particle packets

fj Vortex blob

here, ¢ = (x4, ¥¢) is a point on the boundary and
R(q) = [(x — x9)2 + (y = yg)?] V2

This construction results from linear superpositioning of logarithmic
potential functions (i.e., sources). It is readily shown [20] that if 2D
has continuous curvature and «(q’) is bounded and integrable, ¢(r)
is continuous for all finite points r including passage through 2D. If
a{q’) is continuous on dD which itself has continuous curvature, then
if £ denotes the exterior to the domain D

(25)

O¢: _ 9¢p
— ——— =—alq), 26
[ on on |g (@) (26)
Ay 1 I}
[—5 + ﬂ] -~ a(q')[—aog R(q'»]dq'. (27)
on on ¢ wJabD on
This follows from the Green’s function solution to the corresponding
Dirichlet problem.

Now adding equation (26) and (27) we can solve for the single layer
source function a(g) in the integral equation
1 s
a@~= { alg) = [logR(g)ldg' = ~2u;-n.  (28)
T JaD on
For a full discussion of the applications of the theory of integral
equations to Dirichlet’s problem see Muskhelishvili [21].
We approximate (28) by a system of linear equations. A source of
strength a(q) = 1 at Q; induces at Q;, i # j, a velocity field with
componhents

1 (X, - X))

ULGj) = — , 29
1(i)) o R (29)
.. 1 (Y; - Y)
Uslij) = —————, 30
2(tj) or R (30)
=(X; - X2+ (Y; - V)2 (31)
Now a(q) is approximated by the M component vector & = (a(Q1),

., @(Qp)), which must in turn satisfy the matrix equation, A @ =
b, where b has components that are the values of —ug +n computed at
the points @;. The components of the matrix A are given by

1.
=—i=1,...
2h

The velocity due to the distribution of sources is found by summing
up the contribution of each component:

aij = Urlip)ng + Us(ifdna G # ), ay ,N. (32)

M
up(r) = ;1 up (i), (33)
where
L @8 i qyzm,
. 2w r¥(@;)
up(i) = N (34)
o a(@)n(@) it r(Q) <,

where r(Q;) = [r(Q;)|, and n is a unit normal vector (see Fig. 1 for

notation).
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Summing equation (33) with (34) we obtain the velocity at some
arbitrary point P(xp(ip), yp(ip)) where a particle packet may be lo-
cated. Writing

ip) = 5= 2 1a(@) 2 L 5 aal@)Xi + uglp) + U,
(35)
b(ip) =-21—le la(Qi)(y—”if;’(—)Q—iL) 3 2alQ) Y + i) + V,
(36)
where
PUQ) = (G ip) — X0 + (plip) ~ X2,
Zyisforr(Q:) z 5h
Zois for r(Q;) < ih

i indicates points on oD
U is the gas free-stream velocity in x-direction (U = 1)
V is the gas free-stream velocity in y-direction (V = 0).

We now have at hand the means to find u,(ip) and vp(ip) and
hence advance the particle packets. First, we rewrite (9) in terms of
the ip particle packet velocity components

Du, (i -
=5 lp)ilp) N X (u(@p) — uplip)), - @7
Duy (i —
__U_p(tﬂ = % (W(p) — vp(ip)) (38)

where u(ip) and v(iy) are given by (35) and (36). Equations (37) and
(38) are integrated using a Runge-Kutta fifth-order integration
scheme with variable step size to preserve accuracy near boundaries.
We assume over a time step k that g = g(Rep) (i.e., the drag coeffi-
cient) is constant. A test case of A = 1.0 and Re = 100,000 showed this
to be true even when approaching a boundary in a normal direc-
tion.

Once the packet velocity is known the position after the time step
is found by approximating (10) and (11) with

%p(ip)™ L = 1, (i)™ + kit (i)™ /2,

yp(ip)m+1 =Y¥p (ip)m + kvp (ip)m’1/2,

(39)
(40)

or more accurately by integrating (10) and (11) directly using the
Runge-Kutta scheme. In the computer program’ equations (37), (38),
(10), and (11) are integrated simultaneously yielding the approximate
solution to (5).

Boundaries are handled by keeping track of gas and particle vortex
blobs; once a blob crosses the boundary it is destroyed. In this way the
boundary conditions (1) are satisfied.

The particle continuity equation (4) is satisfied by analyzing the
rate at which mass accumulates on the boundary or any other arbi-
trary boundary. If M is the rate at which mass accumulates, the rate
of accumulation can be found by tracing the paths (i.e., following the
streamline) of all the particle trajectories from the points (X, Y) where
the initial conditions are assumed, to the point (Xo, Yo) where the
path crosses the boundary of the object (0D). We have, following after
Glauert [13],

MM
Uppa

e = e (41)
Uppaw ds
where s is the nondimensional distance around the contour from some
fixed origin.

Chorin [12] has conjectured that the mean error in the gas flow is
O(k) + O(Re~1/2), where the first term is the error in the deterministic
technique used to solve Euler’s equations. The second term arises in
the random walk solution of the diffusion equation. The standard

1 'The computer program is available from the author.
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Fig. 2 Particle packet paths (i.e., averaged particle paths) for several values
of the momentum equilibration number; the flow is from left to right into the
front of the cylinder; the vortex method solution is applied to an incompressible
viscous fluid, and dilute particle suspension

deviation of 11 and 59 is (2k/Re)!/2, After m steps the random motion
of the vortex blobs will displace the location of the vortex by an
amount of order (m2k/Re)/2 ~ O(Re™1/2).

The error in the particle packet may now be estimated. Far from
a boundary the flow may be considered inviscid; here, the particle
packet is advanced by integrating between each time step taken in
advancing the gas vortex blobs. In this way the errors introduced can
always be made negligible compared to the error of O(k) + O(Re~1/2)
of the gas vortex blobs.

Now, close to a boundary the randomly positioned gas vortex blobs
give a randomness to the gas flow field, and convergence on the so-
lution can only be expected by averaging over a large area. Further-
more, with each time step we expect roughly half of the newly created
gas vortices to jump randomly over the boundary to be destroyed.
Thus we expect the boundary layer to be noisy with convergence oc-
curring over long time averages.

Fortunately, for values of A, the momentum equilibration number
of order unity, the particle’s vortex motion depends upon its entire
history. In this way the particle packets move through the gas blobs
with a motion determined largely by their previous history. In essence,
the particle packets sample a space-time average of the gas vortex
blobs. A more detailed error analysis considered by the author {19]
indicates that for all values of \, the error in the particle velocity is
always less than or equal to the error in the gas velocity.

Application to Flow About a Circular Cylinder

The origin is taken at the center of a fixed cylinder with a nondi-
mensional radius of 1. The negative x-axis is parallel to the undis-
turbed stream. The flow is from left to right; at time ¢t = 0 the flow is
started with constant nondimensional velocity of magnitude 1 in the
x-direction. Thus the velocity at position (—«, 0) is (1, 0). The
boundary of the domain, oD, is the circumference of the cylinder.

The circumference is divided into M = 20 pieces of length h =
27/M. The time step is k = 0.2. The value of k is chosen so that a de-
crease in k does not affect the flow. The time step must also be small
enough so that the particle equations can be integrated without an
excessive number of derivative evaluations. Furthermore, since in-
formation concerning the particle packet’s position and velocity is
only computed at the beginning and end of each time step, the particle
path between steps must be small enough to be approximated by a
straight line. This allows the impact angle and impact speed (com-
puted vectorially) to be computed accurately. The value of & = 0.2
proved accurate for the range of Reynolds numbers of interest.

Once & is chosen, M must be selected large enough so that any in-
crease in M does not change the solution. M must be increased for
decreasing values of k because decreases in k give the gas vortices a
higher probability of crossing the boundary of the cylinder and being
eliminated. We require a minimum number of gas vortices present
beyond the boundary; thus more gas vortices need be created on the
boundary as some vanish. '

The average drag coefficient (averaged over 120 time steps) was
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Fig. 4 Particle paths for the vortex method and inviscid flow; in the former
case the particles are deflected around the cylinder; the vortex method
demonstrates the effect of the displacement thickness on the particle’s path
since it solves the two-dimensional incompressible Navier-Stokes equa-
tions

calculated using a scheme outlined by Chorin [12]. The gas vorticity
near the boundary is sampled and from this the skin friction and
pressure drag contribution to the total drag are evaluated. At Re =
100 the average drag is Cp = 2.02, the experimental value is 1.9
(Schlichting [22, p. 16]); at Re = 1000, Cp = 1.04, the experimental
value is 1.00; at Re = 10,000, Cp = 0.87, the experimental value is 1.05.
Chorin [12] conjectures that the discrete number of vortices roughly
representing a smooth boundary-layer trips prematurely the drag
crisis, much like a rough wall does. The conjecture is apparently
confirmed because at Re = 100,000, Cp = 0.29, the experimental value
is 0.28 beyond the drag crisis.

Fig. 2 shows the computed data points for Re = 10,000 and A = 0.5,
2, and 4. Using the vortex method, the cylinder has been expanded .
in the y-direction to clearly show the particle deflection. The particles,
due to the difference in their inertia, are driven away from the gas
streamlines and impact with the cylinder. The higher values of A,
corresponding to bigger or heavier particles yield particle paths af-
fected less by the gas flow acceleration away from the stagnation point.
These larger particles follow nearly straight line trajectories. It is
important to note that the particle trajectory represents the collective
average motion of the many particles within a small neighborhood
of the particle packet.

Using a distribution of particles the relative number density flux
at the cylinder surface is found using (41). This information (see Fig.
3) is useful in determining the distribution of erosion about the cyl-
inder.

Other investigations have ighored boundary-layer and separation
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inder :

effects, assuming inviscid gas flow given from potential theory [13,
14]. One can argue that because the particle residence time in the thin
boundary layer is negligibly small that the trajectories will not be
substantially affected by its presence. This is because the work done
on a particle by the boundary layer depends on the distance traversed
which is very small, i.e., § ~ O(Re~1/2), However, this overlooks the
obvious fact that the boundary layer creates a displacement thickness
altering the apparent size of the object and consequently the inviscid
flow (see Fig. 4). Even more significant is the separation that may
occur. This drastically alters the flow profile and particle trajec-
tories.

In Fig. 5 the collection efficiency of a cylinder is given for various
values of the momentum equilibration number for the viscous vortex
method and inviscid case. The collection efficiency, a number quoted
frequently in the industrial literature, is the ratio of the number of
particles impacting with object to the number which would impact
if they followed straight line trajectories without deflection by the gas.
Clearly the effect of viscosity is to reduce the collection efficiency for
a given value of . This is directly a result of the increased “apparent”
size of the object due to the formation of a displacement thickness.
As indicated in Fig. 5 the discrepancy between the viscous (Navier-
Stokes) and inviscid (potential flow) case is negligible for larger par-
ticles where A > 2.0.

We now turn attention toward the back shoulder of the cylinder

and the wake region. Shortly after the start of fluid motion the ex- .

ternal pressure field causes fluid transversing the rear shoulder to
reverse its direction. The reverse motion moves forward and the
boundary-layer thickens. This motion gives rise to a vortex which
increases in size, until it separates from the cylinder and moves
downstream. At a distance from the cylinder a regular pattern of
vortices moving alternately clockwise and counterclockwise is ap-
parent. This is known as a Karman vortex street. When viewed in a
frame traveling with the vortex street system, the streamlines between
the vortices have a sinusoidal appearance.
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This same effect is visible in the particle paths in the wake region,
as calculated numerically (see Fig. 6) for Re = 100 using the vortex
method. The small dots and streamlines show the vortex blobs swept
downstream from the cylinder. The large circles and vectors indicate
the particle’s position and velocity. The vortex method predicts
separation occurring asymmetrically, and produces the sinusoidal
streamlines. It requires about 20 sec of CDC 7600 computer time to
follow ten particle packets to the cylinder and about 17 min to follow
the evolution from ¢ = 0 to ¢ = 50. In Fig. 7 the path of a particle
completely entrained in the fluid flow is indicated. Here A = 0.1 and
the motion is identical to fluid elements. This type of submicron size
particle is used in laser-doppler anemometry techniques to determine
the fluid velocity.

It is difficult to compare the numerical results with experiments
since to date two-phase, gas-solid experiments have measured only
secondary effects such as erosion of surfaces. With the recent advances
in laser-doppler techniques for gas-solid flow it is hoped in future work
to measure particle and gas velocity components at any point in the
flow domain. '

Some experimental work suitable for comparison has been con-
ducted on the velocity dependence of erosion. These experiments
indicate that erosion varies with high exponent (typically 2-4) values
of the gas free-stream velocity. Previous quantitative erosion models
do not predict these high exponent values. It was shown by Laitone
[23] that the high exponent values is partly an aerodynamic effect and
is not entirely due to particle-surface material interaction mecha-
nisms.

Variations of the numerically determined impact speed g on the
cylinder as a function of free-stream speed U shows g = U™ where
m varies from 1.15 to 1.23. This applies to shallow impacts high on
the cylinder’s front shoulder, where o < 20°.

Finnie [2] developed a theoretical erosion model which gives ex-
cellent agreement with shallow angle impact experiments. The model
gives a relationship between the impact speed of a particle (which
must be deduced by solving the fluid mechanical system) and the
resulting volume of surface material removed, or erosion, of a ductile
metal. The model assumes the particles act as cutting tools with the
cutting depth a function of the surface material hardness. The erosion,
Er, is predicted to vary with impact speed squared, i.e., Er « g2 The
vortex method predicts ¢ « U2, Combining this aerodynamic effect
with the surface interaction effect predicted by Finnie, we arrive at
Er « g2, thus Er « (U%23)2 and it follows that Er « q218,

In erosion experiments the impact speed is not measured, however
the gas velocity, U, and hence particle velocity, U, is measured far
from the body. Grant and Tabakoff [4] have conducted experiments
with flat plates at shallow angles to attack (o = 20°) entrained in a
gas-solid flow. They find Er « UZ%8 The agreement between that
predicted by the vortex method and experiment is quite good, however
more importantly it points out the importance in solving the fluid
mechanical system first, before applying an erosion model. Re-
searchers have proposed explanations for exponent values about 2.0
based on particle fragmentation [24] and based on indentation
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hardness theory [3]. This analysis shows the exponent values above
2.0 may be due to aerodynamics alone. The vortex method presented
in this study can provide researchers with a numerical solution
technique suitable for a wide class of two-phase, gas-solid flows about
various types of bodies.

Concluding Remarks

It has been the aim of this work to present a general solution tech-
nique applicable to a wide variety of commonly encountered geome-
tries in dilute gas-solid flow problems, and to apply the solution
technique to a specific geometry and thereby indicate the type of in-
formation obtainable which may prove useful to scientists and engi-
neers working with specific industrial systems.

The application to the cylinder demonstrates the discrepancy be-
tween the viscous and inviscid solution. At Reynolds numbers of 1000
and lower the inviscid approximation provides an accurate solution
only for values of the momentum equilibration number greater than
2.0. By applying an erosion model to the results predicted by the
vortex method a good agreement was gained with the erosion found
in experiments of particles impacting surfaces at shallow angles of
attack.

One of the problems that must be faced in the course of developing
this technique to a wider class of flows is the inclusion of a two-way
momentum coupling effect. This would extend the capability of the
method to include nondilute liquid-solid flows.
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Reexamination of Stability of a
Two-Dimensional Finite Panel
Exposed to an Incompressible Flow

Stability of a flat or buckled panel exposed to an incompressible flow has been reanalyzed
as the analyses on this problem by other investigators have errors in the fluid forces used.
The deflection of the panel in an oscillatory motion is assumed in such a way that there
occurs no change in the fluid volume in a control surface enclosing the panel. The nonlin-
ear equation of motion of the panel on a continuous elastic spring is solved by using the
Galerkin method and the generalized fluid forces which are derived in the author’s previ-
ous paper. The stability of the flat and buckled configuration in static equilibrium is ex-
amined against small disturbances. Existence of the limit cycle oscillation is studied by
applying the harmonic balance method. Numerical results are compared with those of
the analysis on a two-dimensional finite elastic channel conveying an almost incompress-

ible flow.

1 Introduction

Stability of plates of finite length in a subsonic flow has been ex-
amined by many investigators. A controversial point of the problem
is possibility of postdivergence flutter oscillation of the plates with
the leading and trailing edges supported or clamped. Some debate
on this topic was held between Dowell, and Weaver and Unny [1}].
Dowell [2] examined the stability of a flat or buckled plate by using
a nonlinear plate and linearized potential flow theories, and his nu-
merical result showed occurrence of divergence at a certain critical
speed, but no flutter above the divergence boundary. Recently Holmes
[3] investigated the behavior of a panel from the view point of dif-
ferentiable dynamics, taking into account structural nonlinearity and
damping. He confirmed Dowell’s result.

On the other hand, by using a linear plate theory, Dugundji, Dowell,
and Perkin [4] predicted postdivergence flutter of a traveling-wave
type and found it experimentally for a two-dimensional panel of 2642
mm length and 610 mm width resting on a continuous elastic foun-
dation. Ishii [5] also observed two different types of postdivergence
flutter of a two-dimensional plate of 300 mm length and 70 mm width,
that is, small amplitude oscillation with a high frequency and large
amplitude oscillation with a low frequency. His interesting finding
is that a positive static pressure gradient along the flow direction has
a destabilizing effect toward flutter. On the contrary, Gislason [6]
reported that no flutter oscillation of the plate with a chord-to-span
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ratio of 2 was observed when the dynamic pressure was increased up
to about twice the divergence speed.

The debate just mentioned remains, still, to be resolved. As is well
known, there is the same question about postdivergence flutter os-
cillation of fluid-conveying tubes supported or clamped at both ends:
As for a two-dimensional elastic channel conveying a flow, Matsuzaki
and Fung |7, 8] show that no postdivergence flutter of the channel
walls can oceur if structural nonlinearity and viscous damping are
considered and a linearized potential flow theory is used.

Recently, Matsuzaki and Ueda [9] have reexamined the fluid
pressure acting on a two-dimensional finite plate at small Mach
numbers, and presented simplified expressions for the generalized
fluid forces. According to their analysis, as the Mach number tends
to zero, the virtual mass induced by an oscillating fluid becomes in-
finitely large for a natural mode symmetric with respect to the mid-
chord point. That is, for instance, no motion of the plate in the first
natural mode is possible for M = 0. They also pointed out that for the
incompressible and almost incompressible flow cases Ishii [5] and
Weaver and Unny [10] have errors in the velocity potentials and
generalized forces which are used in the stability analyses of the
plate.

Kornecki [11] examined the possibility of flutter of a two-dimen-
sional flat panel constrained to zero displacement at both the edges
in the incompressible flow. When M = 0, the disturbed velocity po-
tential corresponding to the aerodynamic forces which are defined
by equation (A1) of reference [11] agrees with that given by equations
(40) and (41) of reference [9]. Therefore, the discussion made in ref-
erence [9] can be applied to the generalized incompressible aerody-
namic forces which are used by Korneki [11]. As for the flat panel,

. since unsteady generalized forces cannot be evaluated for the first

natural mode, his flutter analysis is invalid.
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Therefore, we shall reexamine the stability of the plate, especially
taking into account such a symmetric oscillatory mode as given by
equation (39) of reference [9], which does not produce a large virtual
mass. This means that the behaviors of small disturbances and peri-
odic oscillations are analyzed by considering dynamic coupling be-
tween such a particular symmetric mode and an antisymmetric nat-
ural mode.

2 Problem Formulation

A two-dimensional plate resting on a continuous elastic spring is -

simply supported by semi-infinitely long, and flat rigid walls at its
ends, as shown in Fig. 1. The equation of equilibrium of the plate
undergoing cylindrical bending and the boundary conditions are
given, respectively, by

Eh® o%w  Eh lfL (Eu_)de] o%w
12(1 — »%) dX* 2(1 —v3L o \oX 0X2

—p+k*w+c-a—l£+psh
ot

2w
—=0 (1)
ot?

w=0w/dX2=10 (2)

where w, h, E, v, ps, ¢, k*, and p are, respectively, the deflection of the
plate, the plate thickness, Young’s modulus, Poisson’s ratio, the
density of the plate, the viscous damping coefficient, the spring con-
stant, and the fluid dynamic pressure (positive for downward). The
flow is assumed to be inviscid and low subsonic. The space below the
plate is empty. We will use the pressure expressions obtained by
Matsuzaki and Ueda [9] for M << 1 and O(k) 5 1. Although they have
been derived under the assumption of a harmonic oscillation, we as-
sume like in references [8, 10] that the expressions are applicable to
a slightly divergent or convergent oscillation.
Let the deflection of the plate satisfying equation (2) be
2 mrX X . 3rX

W= Y Wwpysin + wg {sin — — 3 sin
m=1 L

(3)

As shown in reference [9], the last term of equation (3) represents a
symmetric mode which requires no change in the volume of fluid
contained by an arbitrary control surface enclosing the elastic plate.
Applying to equation (1) the method of weighted residuals in which
the weighting functions are taken to be the same as the assumed
modes, we obtain
pl(1 + QY)W 1/de2 + (1 + BRIV Wa/di?) + {(dW,/dt
+dWsldt) + (K, — QQ)W1 + (k1 — Q) W3
+ v {(Wi+ Wg)2 + 4W3+ 81W3) (W1 + W)
+v/pBRAYAW/dt =0 (4a)
u(l + BREd2W,/dt? + dWo/dt
+ [ky — QBIQ + 4y [(Wi + Wy)2 + 4WE + 8LWE W,
+ VuBQ(— QRAW./dt + QBdWs/dt) =0  (4b)
#(1 + BRENA2W1/dt? + (10 + BQE)d2Wy/dt? + {(dW1/dt
+ 10dWs/dt) + (k1 — QEQ)W1 + (ki + ks — Q) W3
+ oy {(We + Wa)2 + 4W3 + 8IWH (W + 82Ws)
- VuBRRWdWy/dt =0 (4c)

where

QY =@l = QY - 30, QY =i — 6+ 9

for ¢g=0,2,
QY =-Qf) = QY - 3Q4), (5)
Wa =wn/h, Q=pU%E, ky=K*

p ot (2)3 T (2)3
120-»i YT aa-»l

B=pL/(psh), p=phL/E, {=cL/E, K*=Fk*L/E (6)

The generalized forces @, are cited from reference [9]:
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Fig. 1 The panel geometry and a coordinate system

L\2
Qmn = -Q9 + Q3 (—[—]) 2172- for m+n =even (7a)
L d
_omld _
Qmn = Qb Udl for m+n=odd (76)
where
® = 2p[Si (nw) — {1 — (=1)*} /(n7)]
Q'9, = 4mn {Ci (mw) — Ci (nm)
+1n(n/m)}/{w(m2—-n2)} form=*n
D = [8{m Si(nw) +nSimm)] / {z%n? — m?)}
QP = (UmxP[QF), — (4m/n) (Ci (nw)
—~* —In (n7)}] — (2c*/mn=®)
X {1 = (=)™ {1 - (-1)"} (8)
c* =im/2+ y*+ In (kM/2), k=U/(wL) (9)

k, v*, Ci, and Si are, respectively, the reduced frequency, Euler’s
constant, and the cosine and sine integral functions. It is noted that
QY for m =1 to 3 and Qare real and positive and Q2 form=1
and 3 are complex. Numerical values of Q,,, for small Mach numbers
are given in Tables 1-3 of reference [9].

3 Stability Analysis

We shall now analyze the stability of the static equilibrium con-
figuration by considering small disturbances about it. If the distur-
bances decrease with time, then we definé the static configuration is
stable. Let (W1o, Wao, W3g) denote the deflection in static equilib-
rium. ‘

Two-Mode Approximation (W3 = 0). The stability of the flat
or buckled configuration will first be analyzed by employing a con-
ventional two-mode approximation, that is, by putting W3 = 0 in
equation (3), like in references {3, 10, and 11]. Omission of the time
derivatives from equations (4a) and (4b) yields stationary expres-

sions

QIP@Q1— @) + ¥y (Wi + 4Wi)] Wip =0 (10a)
Q1 (Q2 — Q) + 4y (Wip+ 4W§)] Wy = 0 (10b)

where
Qn = kn/QW (1)

From equations (10), we obtain four different types of the deflec-
tions:
(I) - Flat Configuration:

W10 = W20 =0 for Q >0 (12(1)
(2) First-Mode Deflection:
Wio=+{QQQ -~ /712, Wa=0 for Q2@ (12b)
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(8) Second-Mode Deflection:

Wio=0, Wi ==+{Q(@Q—Q/v]¥%/4 for @22 (12)
(4) Mixed-Mode Deflection (Wi F+ 0, Woo+0): When Q = Qu

where
Qu = (k1 — k2)/(4QF — Q), (13)

equatiéns (10a) and (10b) coincide with each other and become
Q@1 — Qu) + YW+ 4W5) =0 (14)

and there are an infinite number of static configurations of the mixed
mode. It is necessary for the mixed mode to exist that Qu — Q1 is
positive. Then, we obtain @y < Q; < Q2 from equation (13).

Let et (t) for m = 1 and 2 be infinitesimal disturbances about the
static equilibrium configuration W,0. Then, the disturbed motion
is written as

Wn(t) = Wno+ am(t) for m=1and2 (15)

Substituting equations (15) into equations (4a) and (4b) and ne-
glecting the higher-order terms of oy and ay, we obtain

a1d2ay/dt? + {dai/dt + Loy + / pBQRRAYday/dt =0 (16a)
— VuBQQ¥dai/dt + agd20s/dt? + tdas/dt + Iyas =0 (16b)

where

am =p(1+8Q2) for m=1,2 (17)
L= QR(Q1~ Q) + y(BWi + 4W) (18a)
I;= QY (Q2— Q) + 4y (Wi + 12W}) (18b)
Letting
Oy = O exp (et) for m=1,2 (19)

and substituting equations (19) into equations (16), we have a char-
acteristic equation for nontrivial solutions

Cuet + C3e3+ Coe2 + C1e+ Cy=0 (20)

where
Ca=aas, C3={la1+as), Co={2+ails+asli+ ufRQE)?,
Ci=§{Ih+13), Co=Id5—64v2Wi, Wi C @

The real parts of ¢* and a1 become infinitely large as M tends to
zero. If the real part of a; is sufficiently larger than as, then equation
(20) may be written as

ailage? + fe+I13)e2 + Cie+ Co=0 (22)
The first and second modes become less and less coupled to each other
with decreasing M, since the smaller the Mach number is, the larger
the real part of a; is.

Incompressible Flow. Let us here assume M = 0. Then, it follows

from equation (22) that
=0 (23a)
axe®+ fe+ I, =0 (23b)

Equations (23a) and (23b) are related to the first mode Wy and second
mode Wa, respectively. Since the disturbance of the first mode re-
mains to be constant, only that of the second mode need to be exam-
ined. ’
From equation (23b), we obtain

€= (={+v/D)/(2a) (24)

where
D = {2 — daol; (25)

It is obvious that, if I3 > 0, i.e., if D < {2, then the static equilibrium
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is stable. However, if I; < 0, that is, if /D > {; then the disturbance
of the second mode grows in a divergent manner.

We shall examine the stability of the deflections in static equilib-
rium described by equations (12) and (14).

(1) Flat Configuration. Substituting equations (12a) into
equation (18b) yields

I:=Q%Q: - Q) (26a)

Therefore, the flat configuration is always stable for @ < @9 and un-
stable for @ > Qg regardless of the value of Q5.

(2) First-Mode Deflection (€ = @1). Similarly, using equations
(12b) we have

I = (4Q1) - @)@ - @n)

When Q1 > Qar, the first-mode deflection is always stable. If @1 < Qar,
the deflection is unstable for @1 < @ < Qs and stable for @ > Q.

(3) Second-Mode Deflection (@ = Q2). This configuration is
always stable since

I,=2Q08(Q~-Q)>0 for @>Q

(4) Mixed-Mode Deflection (@ = Q). Substituting @ = Qu
and equation (14) into equation (185), we have

I3=32yW%>0

(26b)

(26¢)

(26d)

Hence, the mixed-mode deflection in static equilibrium is stable,

We have seen that dynamic coupling between the first and second
modes becomes weak as M decreases, and that a complete decoupling
between the modes occurs when M = 0. For M = 0, no motion of the
plate in the first mode can occur, since the virtual mass for the first
mode becomes infinite. The instability is of divergence type.

2 Three-Mode Approximation (W3 ¥ 0). For the incom:
pressible flow, the three-mode approximation is now taken in order
to examine instability which is caused by dynamic coupling between
the second and last modes in equation (3). The last mode W3 is con-
sists of the first and third natural modes. Being different from the first
or third natural mode itself, this symmetric mode with respect to the
midchord point induces much smaller virtual mass for M « 1, and
may oscillate more rapidly. Since the flow is incompressible, no motion
of the first or third natural mode is possible [9]. The time derivatives
of W1 in equations (4) must be deleted. Small disturbances can be
considered only in terms of the second and last modes. Therefore, the
disturbed motion is given as

Wi =Wy

W2 = W20 + C—Yz exp (Et) (27)

W3 = Wag + &3 exp (et)

When Wig vanishes, equation (4a) is discarded. Otherwise, we must
use all of equations (4).

(1) Wi =0. Two types of static configurations are derived from
the stationary expressions for equations (4b) and (4c).

(Ia) Flat Configuration

Wio= Wap=Ws3=0 for >0 (28a)
(Ib) Second-Mode Configuration
Wap = £1QD(Q — Q2)/v)/2/4
W1() = Wa() =0 for Q > Q2 (28b)

Substituting equations (27) into equations (4b) and (4c) and ne-
glecting the higher-order terms of teg and &rs, we obtain a fourth-order
characteristic equation defined by equation (20). The coefficients of
the equation are

Cy=aza3>0,Cs= {(as+ as) >0,
Ca = {2+ asls+ asle + Coo,
C1= {2+ Iy),

CO = 1213 (29)
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I, = QR Q2 — Q) + 4y [((Wip + Wao)? + 12W5 + 81 W5}

(30a)
I = {Q(Q3 — Q) + 328yW4/10 (30b)
ag= p(l + BQP/10), Cur = upRQY)?/10>0 (31)
Q3 = (k1 + 9k2)/QY (32)

Since all the coefficients are real, the stability of the disturbances
can be examined by using the Routh-Hurwitz criterion. If and only
if

C,>0 (n=0,...,4) (33)
and
R>0 (34a)
where
R =C1C2C3— CoC% — C3Cy
= {?{lag + aa) (T2 + 3)($2 + Ca2) + (a2ls — aal2)?  (34b)

then the disturbances will decrease with increasing time and the static
configuration is stable.

(1e) Since QY and Q¥ are both positive, the flat configuration
is stable for a range of 0 < § < @, which is defined as the smaller of

Q2 and @3, but becomes statically unstable at @ = @, because of Cq-

= (). For @ > Q; the configuration is always unstable because at least
Cp or C; is negative.

(1) Next, we examine the second-mode configuration. Substi-
tution of equations (28b) into equations (32) yields

I = 2Q(Q - Q)

I3 = (205Q% — Q9)(Q — Qa) (35)

where

Qa = [20.5k2 — (k1 + 9%3))/(20.5Q%) — Q) (36)

It is clear that I is always positive for @ > @,. Since 20.5Q ~ Q¥
is positive, if Q4 is greater than @y, then the second mode is unstable
for Q2 < @ < Q4. Otherwise, this configuration is always stable,

(2) WipF0. Let us omit the time derivatives in equations (4a)
and (4c). From the resulting equations, it is clear that W1 and Waq
are always coupled, that is, W3o cannot vanish whenever Wyq % 0.

(2a) Symmetric Coupled-Mode Configuration (Wi * 0, Wao
+0, Wz =0). This configuration is numerically evaluated by using
the stationary expressions of (4a) and (4¢c). We will here examine the
number of the configurations and the range of § in which the con-
figurations exist.

From the stationary equations, we obtain the following quadratic
characteristic equation with respect to J for nontrivial solutions of
W10 and W30

9(vJ)2+ A1y + Ag =0 (37
where

J = (Wi + Wag)? + 4W5, + 81W35, (38)
Ao =(d — Qp+)(@ — Qp-) (39a)
A1=9Q1 + (@ - Qo) (39b)

Qs = [@1+ Q3 £ {(Q1 — Q3)% + 4Q:1Q3(Q))H2)/
(2 {1 - (Q?/QPQYN  (40)
Qc = (9k1 + k3)/(9Q + Q) (1)

o must be real and positive. Since the discriminant of equation (37)
is always positive, that is,

D=A}~364¢
= {9k — k3 — (9QY- @D+ (6QP)2 >0

oJ is assured to be real. Therefore, it follows from the requirement of

(42)
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positiveness that there are two static configurations for @ > Qg+ or
@ < Qp-,and @ > Q¢ because of Ag> 0 and A; <0, one for Q- <
€ < Qs+ because of Ap < 0, and none for the remaining range of .
Next, we analyze the stability of the configurations. Subtract
equation (4a) from equation (4c¢). Substituting equations (27) into
the resulting equation and equation (4b), and neglecting the higher-
order terms of as and o, we may again derive a fourth-order char-
acteristic equation, the coefficients of which are given by equations
(29). The necessary modifications in equations (30) and (31) are

as=u(l+BQA/3), Ca=ubRRAYQY/3,
QB =3Q® — QR for p=0,2,
I3=—Q8(Q — Q1)/3 + y{(Wio + 2W30)? + 242W5}/9
Q4 = 3k3/QY

As in the preceding section, the dynamic behavior of small distur-
bances about the configurations can be examined by applying the
Routh-Hurwitz criterion to equations (29).

(2b) Mixed-Mode Configuration (Wyo+ 0, Wao + 0, Wgo +0).
Like the mixed-mode configuration of the two-mode approximation,
this configuration exists at a discrete value of the dynamic pressure.
The stability of the configuration in static equilibrium can be exam-
ined in a similar manner.

(43)
(44)

4 Harmonic Balance Method

Let us study the possibility of a limit cycle oscillation about the flat
or buckled configuration with the viscous damping included, i.e.,
+ 0. We shall assume the limit cycle oscillation in a form of

W1 = AIO (45a)
Wy = Agg + Asg sin wi (45b)
Wi = Agp + Agy sin (wt + 6) (45¢)

Like in the preceding section, equation (4a) is discarded when
A10 =0.

(1) A0 =0. Substituting equations (45b) and (45¢) into equa-
tions (4b) and (4c¢), and balancing the terms of the constants and first
harmonics, respectively, yields the following six equations:

Constant terms:

3
[Qn + ¥Bm 22 6r(Ar20 + Azl/Z)]AmO + ¥Bm[BmAmoAm1

+ ﬁjAjoAjl cos 0]Am1 =0 (46(1)
sin wt or sin (wt + 8):

[(17 = 9m)amw? + Qm + YBm - Br(AZ + AZ/2)
r=2

+ YBLRAL, + AL/4)Amr + [0V iBQAQY sin d

+ 62637(2A20A30 cos 0 + A21A31 cos 20/4)]Aj1 =0 (46b)

cos wt or cos (wt + 0):

(=1)™ (17 — 9m){wAm + [0V uBRQLY cos 6
+ 62637(214201430 sin 0 + A21A31 sin 20/4)]Aj1 =0 (46C)

wherem =2and 8,and j =5 —m,
Q:=Q%Q:—-Q), Q=QR(@Q3—-Q), B=4, fa=82 (47

For nontrivial solutions of Ag; and Ag;, we obtain, from equations
(45¢),

10(§w)? + {ov/uBRALY cos § + B2B3y(2A20A30 sin 0
+ A21A31 sin 20/4)]2 =0 (48)
It follows from equation (48) that
w=0 (49)

because of { ¥ 0. That is, there is no limit cycle oscillation about the
flat (A10 = A20 = A30 = 0) or second-mode (A10 = A30 = 0, Az() :': 0)
configuration.
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Fig. 2 Static equilibrium deflections of the first and second modes and their
stability; W4o: — (stable), — —— (unstable); Wy — ~ — (slable)

(2) Ai10* 0. In the same way as for the case of Ajg = 0, using
equations (4a)-(4c), we obtain seven equations governing A0 (m =
1,2, 3), An1 (m = 2, 3), w, and 6. In this case, the equation corre-
sponding to (48) becomes

10(5w)? + [wv/uBRAY cos 0 + Bafay (2A20(A10/83 + As) sin 0
+ A21A31 sin 20/4}]2 =0 (50)

Consequently, we have again equation (49) for A0+ 0.

Therefore, we conclude that no limit cycle oscillation is predicted
about flat and buckled configurations, even though two modes being
capable of oscillatory motions are taken into account in the anal-
ysis, :

5 Numerical Results and Discussions

Numerical calculations were carried out for a latex rubber panel
exposed to airflow. The parameters used are the same as in references
[7,8]: L/h =100, 8 = 0.143, p = 0.952 X 107 %ec?, » =0.5,K* =0,2
X 1074, { = 0.01{. where {; = 2/ puk;.

(1) Two-Mode Analysis. In Fig. 2, the static deflections of the
first or second buckling mode of the panel are represented by solid
and broken curves or thin chain-dotted curves, respectively, for (@)
K* =0and (b) K* = 2 X 1074, The critical boundary pressures asso-
ciated with the Case (a) or (b) are indicated by a suffix ¢ or b, re-
spectively. As is shown analytically, the second-mode deflection is
always stable against small disturbances, while the first-mode de-
flection may become statically unstable. This occurs for Case (b) since
Q%becomes greater than Q4. The broken curve represents the un-
stable deflection.

(2) Three-Mode Analysis. Fig. 3 illustrates the static deflections

_of the symmetric coupled-mode (W1 + 0, W3 + 0, Wop = 0) and the
second mode against the dynamic pressure §. Wyg or Wy is, respec-
tively, shown by thick or thin solid and broken curves, W2o chain-
dotted ones. Since the symmetric and second modes are not coupled,
the deflections of the second mode are exactly the same as in Fig. 2.
Since the numerical result shows that Q- < Q¢ < @py+, there are two
configurations of the coupled mode for @ > Qg4 but none for @ <
Qz-. The coupled-mode deflection which starts to exist at @ = Qp—
is considered to correspond to the first-mode configuration given in
Fig. 2, as the amplitude of W3 is quite small compared with that of
Wio. Like the first-mode configuration, this static deflection is always
gtable for K* = 0, For K* = 2 X 10~4, it is unstable below @ = 1.11 X
10~4 which corresponds to Q% = 1.16 X 10~4, and gains its stability
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Fig. 3 Static equilibrium deflections of the sy tric coupled mode
(W10 F 0, W3 £ 0) and second mode { Wy F 0), and thelr stability, Wq:
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above it. As for the second coupled-mode configuration, the ratio of
the amplitude of Wy to that of Wy is negative and of order of unity.
Tt is unstable for both K* = 0 and 2 X 104, According to the nu-
merical result, Q4 is negative for the Cases (a) and (b). Hence, the
second-mode deflection is always stable. Additionally, since Q3 is
smaller than Q3, the flat configuration remains to be stable up to
& = @ like in the two-mode approximation.

The effect of dynamic modal-coupling on the stability is taken into
account in the three-mode approximation analysis, but not in the
two-mode analysis. The static configurations in equilibrium and their
stability which are predicted by the two and three-mode analyses are
similar.

Let us compare the present results with those of the analysis on a
two-dimensional channel conveying a compressible, but almost in-
compressible flow which are given in reference [8]. First, we shall
summarize the results of reference [8]: The flat configuration of the
channel walls in static equilibrium is stable up to @ = @, that is, the
smaller of @ and 3, but unstable above § = §;. When §; < Qq, the
statie first-mode configuration is always stable, whereas the second
mode is always unstable. If Q2 < @1, then the second mode is stable .
for Q2 < @ < @Qar but becomes unstable above @ = @as. The first-mode
configuration which is unstable for @; < @ < Qu obtains its stability
above @ > Q. No occurrence of the limit cycle oscillation of the walls
is predicted.

The main difference between both results is the number of the
stable static equilibrium configurations. At any dynamic pressure
there is always only a single one for the channel walls. On the other
hand, there may be two for the panel, as is seen in Figs. 2 and 3 of this
paper. The addition of one more stable configuration of the panel
might be caused by the limitation on modal oscillation due to the
assumption of incompressible flow. If the compressibility is accounted
for, then, for instance, the stable flat configuration in the range be-
tween @ or @p—, and Q7 for K* = 0 might become unstable since the
disturbance in the first mode would be able to increase with time
there.

According to the linear stability analysis of reference [4], a finite
flat panel is unstable for a narrow band range of the flow speed. Above
this range, however, the flat configuration regains its stability. It was
concluded that flutter oscillation occurs with further increase in the
speed. In order to compare with this analysis, we will go back to (1a)
Flat Configuration of Section 2.
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In equations (29) and (30), let us put Wig= Wy = W3p = 0 as well
as = 0 like in reference [4] so that we have, instead of equation (20),
a biquadratic characteristic equation

Cie* + Coe2+ Cp=0 (51)

Since Cy, Cy, and Cg are real, if a set of a £ ib (a, b: real) is a pair of
complex conjugate roots, so is ~a % ib. In this case the small distur-
bances described by equation (19) will increase oscillatorily. For
stahility €2 must be real and negative. Because of C4 > 0, the condition
for stability is

Cy>0, Co>0, D*>0 (52)
where
D*[Q] = C§ — 4CoCy
= (a2l3 — asl3)? + 2Cas(asls + asly) + Ch (53)
Let Qc2 be the dynamic pressure at which Cy vanishes
Qez = {(1 + FREDQVQL + (1 + fQY/10)QHQ2/Cae  (54)

where
Cae = (1+ BREIQD + (1 + fQEI/10)QEY — @10 (55)
(c2 is a monotonic function with respect to 5. When .
B> B = 10QR(Q; - Q)/1I(QP)?2 - @YY} @5 + QPP Q:],
(66)
Qc2 is‘greater than Q3. In this case, putting
Qe2=Qs+a (a>0)

we obtain
D*[Qcq] = —4a3a3Q QP (Q3 — Q2 + o) <0

because of @3> Q2. In addition, it is obvious from equations (53) that
D* > 0for 0 < @ < Q3. Let us illustrate the curve of D* and the stable
and unstable regions in Fig. 4 where @p1 and Qpg satisfy D* = 0.
The stability characteristics of this plate is the same as predicted
in reference [4]. That is, the flat configuration is stable for both 0 <
Q < Q9 and @5 < Q < @p1 and unstable because of divergence for Q2
< @ < @3 The small disturbances will increase in an oscillatory
manner for @p; < § < Qps. In reference [12], the similar linearized
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analysis is detailed for a cylindrical tube conveying a flow. As is ana-
lytically shown in Section 2 of the present paper where the viscous
damping is taken into account, i.e., { & 0, once the flat configuration
starts to be unstable, its stability is never regained at the higher dy-
namic pressure. And no limit cycle oscillation is predicted about the
flat configuration. Above the divergence boundary, there always exists
at least one stable buckled configuration. Therefore, the oscillatory
growth of the small disturbances about the flat configuration does not
necessarily lead to occurrence of flutter oscillation. In this regard, it
is recommended to reexamine the stability analyses on the simply
supported tube conveying fluid, for instance, reference [13], in which
the occurrence of flutter oscillation is predicted. Needless to say, the
effect of the damping must be included.

In order to take into account dynamic instability due to coupling
between the symmetric and antisymmetric modes, the third term is
included in equation (3). In a higher-mode approximation, the de-
flection might be assumed like equation (3) to be

X N o2mnrX
w =w1sin7r—+ > wem sin diis
m=1
N S @Cm+ DX wX
+ X wamer((2m + 1) Sm——f—__ sin —
m=1
forN=1,2,8,... (567)

A simpler modal assumption is, however, given by the ordinary Fou-
rier sine series

2N+1

. muX
Y. Wy sin
m=1

w = for N=1,2,3,... (58)
When the stability is examined, it is necessary that the disturbed

motion represented by

Win=Wpot+a, for m=1,2,...,2N+1 (59)

satisfies

N

Y aomer/2m+ 1) =0 (60)
m=0
Otherwise, the condition of no change in the fluid volume is vio-
lated.

Anyway, the present simplest analysis is considered to clarify the
characteristic features of the stability. It is pointed out that the in-
compressible flow assumption imposes an artificial condition, and
that there may exist the excess stable static configuration. Therefore,
it is most important to employ a compressible flow theory in a further
investigation.

6 Concluding Remarks

The stability of a two-dimensional panel of finite length exposed
to an incompressible flow has been reexamined by using the gener-
alized aerodynamic forces which are presented in the author’s previous
paper. In analyzing the dynamic behavior of the panel the deflection
ig assumed in such a way that during the oscillation of the panel there
occurs no change in the fluid volume in an arbitrary control surface
enclosing the plate. For the numerical example used, the flat config-
uration in static equilibrium is stable below @ = @2 regardless of the
values of @1 and @p— for the two and three-mode approximations,
respectively. Therefore, there are pressure ranges in which the panel
possesses two stable static configurations. No limit cycle oscillation
is predicted about the flat or buckled static configuration. A com-

-parison with the stability analysis on a two-dimensional channel

conveying an almost incompressible flow suggests that the assumption
of incompressibility of the flow may induce an excess stable static
configuration. Therefore, it is recommended to use a compressible
flow theory in a future investigation. In addition, it is important to
take into account the damping which always exists in reality.
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The analysis and design of pressure vessels and other structures subjected to cyclic load-
ing and occasional large overloads requires stress-strain relations sufficiently simple to
be usable with computer programs and yet adequate to describe the essential aspects of
the response of the material. One such form with two quite different options is proposed
for the time-independent domain which avoids the difficulties of earlier approaches. It
has the kinematic hardening attributes needed for reversal of loading, allows for cyclic
hardening or softening, gives zero mean stress as the asymptotic response to cyclic strain-
ing between fixed limits of strain, and reduces to a Jg stress-hardening form for radial or
proportionagl loading so that it can model both cyclic and other loading to a good first ap-

proximation.

Introduction

Many important machines and structures such as pressure vessels,
turbines, and railroad wheels are subjected to cycles of load, or to
cycles of temperature, or both, that produce significant inelastic re-
sponse. Their design also must encompass the probabilities of occa-
sional large excursions of load or temperature that may precede, in-
terrupt, or follow this exposure to low cycle fatigue.

Considerable attention has been devoted to the experimental de-
termination of the behavior of material subjected to cycles of uniaxial
stressing or straining, or subjected to cycles of shear. Cyclic hardening,
cyclic softening, and the usual approach to cyclic stability have been
demonstrated by the extensive investigations of Dolan, Morrow, their
colleagues and students, and many others throughout the world [1,
2}. However, little is known about the response of materials to more
complex cycles beyond the preliminary study made by Lamba
[3, 4].

Many models have been proposed to fit one or more aspects of the
response that has been observed in experiments. Time-independent
behavior is.of sufficient interest and complexity to have attracted
major attention, but with the full recognition that time effects often

are significant and may well govern design. Some models aim at a.

detailed and accurate representation of observed behavior over a wide
range of loading paths. Consequently, they are rather elaborate and
difficult to incorporate in computer programs for complex structures.
Others are addressed to an important but limited aspect of the be-
havior of the material and are not to be used outside of that range of
applicability.
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The purpose of this paper is to propose a model for consideration
that is simple enough to be used effectively in computer programs and
yet matches the essential features of the time-independent inelastic
behavior of materials reasonably well for cyclic loading and for oc-
casional overloading separately and in combination. In the sections
that follow, an outline will be given of the features of material behavior
perceived as most essential and relevant. A simple model with two
options will be proposed for cyclically stable material. One option
matches the rounding of cyclic stress-strain curves, the other without
the rounding matches the behavior on reloading following almost
purely elastic unloading. The difficulties or limitations of earlier
models will be exhibited along with possible physical or mathematical
explanations for them. Cyclic hardening or softening then will be
introduced into the simple model for each of the two options and the
ability to match experimental information will be demonstrated.
Finally, more elaborate forms of such a model, that include time-
dependent behavior and other ignored aspects of the real world, will
be touched upon briefly. Their development seems premature in the
absence of an accepted, broadly useful, elementary form for the
time-independent idealization.

Material Behavior Perceived as Most Essential and
Relevant

The complexity of all the details of the inelastic behavior of material
is infinitely great even when all time effects are ignored. Obviously,
therefore, the selection of just a few key aspects as the most essential
and relevant for the purpose is a debatable matter of judgment and
definition of essential. The choice is strongly dependent upon the
perception of purpose and relevance. Our purpose here is to write a
simple usable form that will include as a minimum both large excur-
sions of loading well out into the plastic range and the cyclic loading
that gives plastic hysteresis loops and can result in low cycle fatigue.
Our short list of the most essential and relevant aspects of material
behavior prior to significant material damage is:

1 Load excursions well out into the plastic range overwhelm or
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wipe out many of the effects of the history of plastic deformation prior
to such large overloads. It is relevant but not essential that, for such
excursions, a Mises or /5 stress-hardening form is usually a satisfac-
tory approximation for those metals and alloys that are fairly isotropic
in their initial state.

2 Under symmetric cycles of stress or strain, metals and alloys
in a soft or annealed state to start will harden cyclically and tend to
a stable limit cycle, Figs. 1, 2; those in a very hard or cold-worked
condition to start will soften to the stable cycle; and those already in
the stable condition neither harden nor soften but simply go through
the stable cycle so evocative of kinematic hardening [5).

3  Unsymmetric cycles of stress in the plastic range will cause
progressive “creep” or “ratcheting” in the “direction” of the mean
stress, right-hand side of Fig. 3.

4  Unsymmetric cycles of strain in the plastic range will cause
progressive relaxation to zero of the mean stress in the cycle, left-hand
side of Fig. 3.

A model will be presented here with two options, each of which
satisfies our four requirements 1-4. The first option gives full
rounding of the stress-strain curve on each load reversal following
appreciable plastic deformation, a condition often encountered in
practice. The second option gives a sharp transition when going from
purely elastic to elastic-plastic response, which is the correct picture
for reloading following almost purely elastic unloading. Neither of
these model options is as appropriate for hoth types of loading as are
the models of Mroz [6] and the other assemblages of many simple
models in parallel that correspond to a large set of closely nested yield
or loading surfaces |7]. However, the broader match by such assem-
blages is at the sacrifice of simplicity and some important elements
of reality.

A Simple Model for Cyclically Stable Material
The expression for the increment or rate of plastic strain & of a
time-independent material with a smooth yield surface f = 0 is

of of
O0ij 00 mn

=G

)

Umn 1)
where G is a scalar multiplier, o is the current stress, o, its incre-
ment or rate, and repeated subscripts denote summation.

Cyclic creep or ratcheting and stress relaxation can occur whether
the material hardens, softens, or is stable. Therefore, it is reasonable
to postpone the examination of hardening or softening and consider
a cyclically stable material first.

A combination of the Mises stress-hardening form and the kine-

matic hardening proposed by Prager [5] and modified by Shield and

Ziegler [8, 9] includes the key aspects 1 and 2 of cyclically stable ma-
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Fig. 3 Unsymmetric cycles of strain and of stress for cyclically stable ma-
terial

terial behavior. The simplest permissible and yet appropriate choices
appear to be

G=AJY (2)

and
(3)

where A, N, and k are constants, J5 = 3 sjs;j, si; is the stress deviator
0ij ~ % 04403, s§; is the center of the spherical yield domain in stress
deviator space, and & is the yield stress in simple shear when the yield
domain is centered at the origin, s{; = 0. The center moves in the di-
rection of s;; — s§; at a rate equal to the projection of §p, on that di-
rection in accordance with a Ziegler type of rule that satisfies the
consistency condition of the stress point s;; remaining on the current
yield surface, or f = 0

f = Yo = 55) (s = s5) —h? =0

4)

sf] = (Sij - sfj) (8mn — ssnn) S‘mn/2k2
and
(5)

for this simplest of the analytic models of an initially isotropic and
symmetric cyclically stable elastic-plastic material.

Simple tension or simple shear or any radial (proportional) loading
is represented by

e = AJY (55— %) (Smn — 5%n) Smn

(6)

where the fixed staté of stress ¢¥; or stress deviator s; is on the (initial)
yield surface for s{; = 0 = ¢§;. The response of the material is purely
elastic up to R = 1 and then is elastic-plastic in accord with equations
(4) and (5) as R increases. When plastic deformation takes place in
this forward direction or in the reverse direction as R decreases and
becomes negative

o;; =R ol sj=Rs), &j=Rsd
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Fig. 4 A poor representation by the rounding option when plastic deformation
occurs on unloading to zero stress and on subsequent reloading

$§ =iy sij— sy = &l oy — ofj = £af; (M
The stress-strain relation (5) can be written in terms of §§; from (4)
and then with s;; from (7)
8 =2k2 AJY 54 = 2k2 A JY 85 = 24 k2N¥2 |R| 2N g5
=24 k2N+2 |R|2N R 5Y; )
For monotonically increasing R, direct integration of (8) gives the total
plastic strain
94 L2N+2
e =
2N +1

but the incremental form (8) will normally be more useful here.

When the radial loading path is simple tension ¢ = R gy, where oy
= /3 k is the initial tensile (or compressive) yield stress, the plastic
tensile strain

(R2N+1 — 1) 59, ©)

&P =24 G o)V (|o}/o)?N (%) & (10)

When the path is simple shear 7 = R, where 7o = & is the initial yield
stress in shear and €0, = § 4P

3P =24 YN (|7]/m0)?N 7 1

The introduction of a stress-dependent plastic modulus inversely
proportional to J¥ gives the correct qualitative picture of cyclic creep
and stress relaxation in simple tension or simple shear. This is shown
in Fig. 3, where the elastic-plastic stress-strain curves are identical
except for a translation along the strain axis.

The rounding option, illustrated in Fig. 3, uses a yield surface of
small diameter. Unfortunately, on reloading following appreciable
unloading or reverse loading with small plastic deformation, the
stress-strain curve exhibits full rounding well before reaching the
stress level from which unloading began, Fig. 4. This is the price paid
to obtain proper rounding of the hysteresis loops. There is also a
somewhat more subtle problems with this option. When reverse
plastic deformation occurs on unloading (before reaching zero stress)
the reciprocal of the plastic tangent modulus starts off with a positive
value but then decreases to zero as the stress goes to zero before it
begins to increase again. This clearly is an incorrect representation.
However, it occurs only in the region of small stress for a reasonable
choice of k and, although not aesthetic, can be ignored because the
plots obtained will differ only very little from purely elastic response.
The apparent elastic range is extended. For all practical purposes, no
significant plastic deformation is computed until the sign of the stress
reverses and the magnitude of the reversed stress is a significant
fraction of the initial yield stress.

Corresponding errors of representation appear for loading paths
and cycles that do not include the origin, paths for which the J5 form
itself is a less satisfactory approximation.

The sharp corner option or representation, appropriate for a se-
quence of unloading and reloading, is obtained by introducing a large
diameter yield surface, so that only the flat portion of the elastic-
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2+/3k

Fig. 5 Elastic range for the sharp corner option and measurements for the
determination of & and W,

plastic stress-strain curves of Fig. 3 is used. This rules out reverse
plastic deformation on unloading.

The choice of a small or large diameter yield surface will be gov-
erned by the aspects of behavior most important for the application
at hand.

The parameters of the model are found from the upper or lower half
of a stable hysteresis loop of the material. 2N comes from the slope
of a plot of log €7/ or log ¥#/7, the logarithm of the reciprocal of the
plastic tangent modulus, versus log o or log 7, in the range of plastic
strains that is of greatest interest to the user of the model. Elastic
strain increments must, of course, be taken into account in reducing
the data; ¢¢ = 6/E, ¥¢ = 7/u, etc., add to the plastic strain increments
or rates to give total increments or rates, ¢ = &€ + &2, etc.

In the rounding option k should be taken as large as possible con-
sistent with the desired rounding of the loop, in order to suppress or
minimize plastic deformation on unloading and to reduce ifproper
rounding on direct reloading. Except for these two and closely related
loading cases, the model will be insensitive to the particular choice
of k, as can be seen from Fig. 3.

In the sharp corner approach, however, the size of the yield surface
has a dominant effect because it determines the stress level of the
plastic response. The elastic range 2+/3 k in tension-compression is
comparable to the total height of the hysteresis loop and is taken as
the vertical distance at zero total strain, Fig. 5. Because of their flat-
ness, the computed stress-strain curves (Fig. 7) will be affected little
by large variations of N.

Finally, A should be chosen to match the value of stress at some
intermediate value of strain within the range of plastic strains of
greatest interest.

A wide variety of more complex stress-strain relations are available
for time-independent behavior [10-14] that can model one or more
aspects of material behavior more closely than the simple three con-
stant form proposed here. Before considering the next step of modi-
fying the present form to include cyclic hardening or softening, it is
worth examining those time-independent models that have been
proposed and used for cyclic loading.

Scope and Limitations of Some Earlier Models

One or another aspect of reversed or of cyclic loading has attracted
attention in the past and led to suggestions of mathematical models.
A set of bars in parallel can model a simple tension curve as accurately
as desired. If each bar is elastic-perfectly plastic with the same
properties in tension and compression, the assemblage is immediately
cyclically stable for an unsymmetric cycle of stress or strain [7], Fig.
6. The assemblage does not “creep” or relax as it should in accord with
the requirements 3 and 4 listed under essential material behavior.
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Fig. 6 An immediate and inappropriate unsymmetric stable cycle

The more general assemblages of elastic-petfectly plastic homo-
geneous elements or states in parallel with their nested yield surfaces
have the same ability to model stress-strain behavior accurately for
generally outward loading paths and to exhibit a significant realistic
Bauschinger effect for a single reversal of loading. However, they too
suffer from the defect of not creeping as they should in the direction
of the mean stress in an unsymmetric plastic cycle of stress and not
settling down to zero mean stress in an unsymmetric plastic cycle of
strain.

Permitting one or more elements of the assemblage to harden, as
each strains plastically, produces a model of a cyclically hardening
material but does not overcome the basic difficulty of an inappropriate
response to unsymmetric plastic cycles of stress or of strain. The
models of Caulk and Naghdi [13] and of Popov [12] have this basic
drawback. So also to a far lesser extent does the model of Mroz [6] with
two or more nested yield or loading surfaces. However, each model
was devised for its own special set of requirements for matching
particular aspects of real world behavior. None began with all the
requirements 14 that have been chosen here as essential.

Differences in principle of the degree of thermodynamic revers-
ibility between assemblages of states in parallel or series and dislo-
cation structure were pointed out still earlier by Drucker [7] for both
conventionally cyclically stable models with nested loading surfaces
and cyclically hardening models with intertwined loading surfaces.
Useful and physically appealing as such assemblages may be for a
variety of problems, whether they are in the forms just described or
in the form of parallel layers for beams, plates, and shells [15], they
cannot represent unsymmetric cyclic behavior properly.

Alternative approaches have been proposed to give proper rounding
of reversed loading curves as well as proper cyclic response [11]. They,
as well as several of the earlier suggestions, seem more elaborate than
can be handled economically on computers today for boundary-value
problems with pointwise varying multiaxial states of stress in which
large load excursions are superposed occasionally on low-cycle fatigue
loading. Some of the complexity appears to be caused by the manner
in which the consistency condition is employed.

It is necessary for the stress point to remain on the yield surface(s)
and for the center of each surface to move appropriately as plastic
deformation continues. However, when this is built into the model
automatically through a specification in stress space as in equation
(4), the choice of a reasonable stress-strain relation is quite free. The
reverse approach, which relates the motion of the stress point and the
center of the yield surface through an incremental stress-strain
relation that is chosen in advance, can lead to a consistency relation
that may not be satisfied conveniently. This more difficult approach
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Model simulation by the sharp corner option computed with data of

so common today for nonlinear plastic hardening has not given good
results except for the model of Arutyunyan and Vakulenko [14]. It
may have developed as a consequence of generalizing Prager’s illus-
trative example of linear kinematic hardening, in which the motion
of the yield surface in stress space is proportional to plastic strain. Any
linking of the location of the yield surface in stress space to the current
components of plastic strain causes a severe difficulty. This class of
models can match observed Bauschinger effects for a single reversal
of loading extremely well, as demonstrated in a paper with Edelman
[10]. However, such models are not appropriate for cyclic loading
because unsymmetric strain cycles give unsymmetric stress cycles.
The temptation to think of the special form f(o3;, €,) as a good first
approximation to reality must be resisted here. Writing

of . of
f =0= aij + €mn>
d0ij ded,
and replacing
of of
—L by — &P
d0;j u by Fe Y240 m

generally leads to undesirable and misleading constraint.

Modification of the Proposed Simple Model to Include
Hardening or Softening '

The term hardening or softening in the cyclic context could refer
to the increase or decrease in the diameter of the yield surface or to
the increase or decrease in the plastic tangent modulus at a given
stress or to both. The first definition is appropriate for the general-
ization of the sharp corner approach and the second definition for the
rounding representation. Pure kinematic hardening with a translating
yield surface as given by equation (3) and a purely stress-dependent
plastic modulus as given by equation (5) is neither hardening nor
softening in either sense although the stress-strain relation (5) gives
rise to the usual work-hardening picture for each radial loading as
exhibited by form (10) for simple tension and form (11) for simple
shear.

The sharp corner form with cyclic hardening or softening is ob-
tained by replacing k2 in (3) by F, a positive scalar function of the path
of straining, thereby permitting the diameter of the yield surface to
change. Increase in F gives cyclic hardening, decrease gives cyclic
softening. However, the more general expression

f=T(s—s) (syj—sf) —F=0

does not require any alteration in the form of expression (5) of the
stress-strain relation )

(12)
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and any of the specialized forms such as (10) for simple tension. The
somewhat strange result is that for a hardening material purely in the
sense of g¢ increasing, the plastic modulus ¢/¢P at a given value of
stress o decreases. The motion of the center of the yield surface $§;
is affected significantly by the increase or decrease in F. Equation (4)
is replaced by a more general form that reduces to (4) when F is con-
stant.

f=0=(sij—s) G —$5) — F (13)

or

(14)

sfj (Sij - Sf]) = (Smn - sf-nn) émn - F
With the Prager-Ziegler type of assumption that §{; is in the direction
of s;5 — si;
= F) (siy — s§)/2F (15)

Szcj = [(smn — 8tan) $mn

Any one of a variety of choices for the functional dependence of F
might be selected on a trial basis. F as a function of plastic work,

WP=J:0',',' é,",-dt=£si,~é§}dt,

or of cumulative plastic strain measured by
f VT dt,
t
is not unreasonable. The choice of F' as a function of

Wee = f (sij — 55)) & dt (16)
¢
will be made here instead because it also is not unreasonable and it
does result in a convenient form for §§;, When plastic deformation
takes place, (16) may be rewritten using (5) and (12) as
wee = {7 @F) AT (s = i) $mn dt (17)
4

Tt is of some interest to note that f; +/¢f; &f; dt is given by the same
form (17) except for +/2F instead of 2F and so is proportional to Wre

for cyclically stable material. Substitution of

F = (dF/dWPe) Wee (18)

in (15) gives

§§ = [1 — 2F(dF/dWPe) A J}]
. X [(smn = Stun) S'mn] (sij - slcf)/ZF (19)

One of many reasonably simple choices for F that permits an ad-
justable asymptotic approach to the cyclically stable value F = k2
is

F=Fk2[1 ¥ aexp (—WP/Wy)]? (20)

where the upper sign applies for hardening from F = k2(1 — )2 to F
= k2, with « restricted to lie between zero and one. The lower sign
applies for softening from F = k2(1 + «)? to k2 for any positive c. The
other disposable constant W in (20) permits adjustment of the rate
of hardening or softening. Wy is the value of WP¢ at which F' = k2(1
* a/e)?. Also, from (20)

dF
e = 20 e (= WP/ Wo) [1 %t exp (= WP/ Wo)

_ , 2P/ W) exp (~WP</Wo) (1)
1+ o exp (—WP/Wo)

In the rounding representation, expansion or shrinking of the yield
surface does not affect the hysteresis loops appreciably. Cyclic
hardening or softening must be provided by the alternate definition,
i.e., an increase or decrease in the plastic tangent modulus at each
stress point. Perhaps the simplest approach is to maintain a constant
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(small) diameter yield surface and to give a hardening form by re-
writing (5) as

p Jo\V R ¢

€ = B = (Sij - Sij) (Smn = S5un) $mn (22)
3

Cyclic hardening is given by an increase in the normalizing stress o,

cyclic softening by a decrease. Following the same steps which lead

to the functional dependence of F in the previous form, one can write,

similarly to equation (20),
7 = o* [1 F cexp (—WP/Wy)] (23)

where o* is a constant stress and the sign before « is chosen in the
same way as for equation (20). The stable form of (22) is identical to
(b) if one lets

__ B

T (o%)2N

(24)

Because the size of the yield surface remains constant, the motion of
its center is still described by (4). However, the specialized forms for
radial loading, (8)-(11), must be modified. For example, (10) be-
comes

(%) & (25)

s - 20 o
3N +1

No matter what form of incremental stress-strain relation is chosen,
the solution to a boundary-value problem requires keeping track, at
each point of the body, of the state of stress, the location of the current
yield surface in stress space or equivalent information, and the in-
crement or rate of strain accompanying the increment or rate of stress.
The iterative process to be followed for each increment of load and
displacement or temperature change applied to the body, and the
direct updating of s¢; to give the state and response of the material
at each point, can be done sequentially within the accuracy of repre-
sentation of the model. Equation (19) for the motion of the center of
the yield surface in the sharp corner option and equation (22) for
plastic strain rates in the rounding option are more complicated than
the corresponding equations (4) and (5) for the cyclically stable ma-
terial, but their use and the calculation of Wr¢ are straightforward
given §;j and current values of W»¢, F or g, s, and s§;.

The parameters of the model for both forms are conveniently
chosen from a fully reversed, strain-controlled test in tension-com-
pression, as explained below, or analogously for shear. Material con-
stants 4 or B/(6*)2N, k, N are determined in the manner already
described for the stable loop.However, in the sharp corner form, and
for a cyclically hardening material, the log-log plot of the reciprocal
of the plastic tangent modulus versus stress, which provides N, is now
a plot for the initial loading curve, where N has the most influence
on model predictions, Fig. 7. Similarly, in the rounding form, % is
taken as large as possible, consistent with the stress level of the initial
loading curve.

Quite independently of the values chosen for A or B/(¢*)2N, k, N,
the initial response and the approach to the stable cyclic response
determine the remaining constants « and Wy/k. Let o7 and 0. beé the
stresses at the end of the initial curve and at the tip of the stable loop,
Fig. 5. Equations (20) for the sharp corner option or (23) for the

rounding option suggest that a first approximation to « is
01/6-=1F (26)

The choice of Wo/k for the rounding option requires picking two
points A and B at the end of any two curves in the course of hardening

- or softening and measuring the stress differences Ac4 and Agp from

the tip of the stable loop, Fig. 5. In view of the exponential rate of
approach to the stable cycle described by (23), an approximate value
of Wo/k is given by

Acop [ V3 k (2n) Aep]
— =exp |- ————
A T4 Wo

where n is the number of eycles between A and B and Ae? is the av-
erage plastic strain range of a cycle and is measured as indicated in

Fig. 5. For the sharp corner option, one must in addition use the
stresses o4 and g, Fig. 5, to get Wo/k from

@n

SEPTEMBER 1981, VOL. 48 / 483

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



g
MPa
300
200
100 |-
L L ! ]
-0.01 /f-Q005 0 0.005 J//0.0l €
- 100
~200 L
300l
Fig. 8 Model simulation by the rounding option computed with data of
Fig. 1
A k (2n) AeP
AR _ exp [— —_—_\/5 (2n) A¢ ] (28)
opAca Wo

More elaborate methods can determine o and Wy more accurately.
However, they probably are not worth developing because a close
match of a single set of data does not guarantee a correct response to
a different, e.g., nonradial, loading path. '

Of course, a model with 3 constants available for radial loading and
stable cyclic response and two more for cyclic hardening or softening
cannot aim at a precise description of material behavior for a variety
of paths of loading. Far more elaborate forms than the J3 or Mises
form are known to be required for radial loading alone. Quite com-
plicated functions of the history of loading, not constants, are needed
to obtain just a moderately good representation in detail of the strain
history for more general loading paths.

However, just as the very crude approximation of perfect plastieity
and the resulting plastic limit theorems and the shakedown theorems
have a meaningful place in analysis and design [16, 17], so also should
a simple but essentially valid approximation to both cyclic behavior
and response to occasional overloads provide a useful basis for life
prediction and safe design. It is too early to tell how well the particular
proposed simple form will do, but some comparisons with the ex-
perimental results of others will prove encouraging. Surely, much
more detailed matching of cyclic stress-strain behavior is not essential
for low cycle fatigue prediction. Some scalar measure such as Wre,
or perhaps WP or f; /P ¢%; dt based on the proposed simple model
should provide a first approximation of value.

1t is obvious that any representation that matches the stable cyclic
stress range of a material, and is flexible enough to permit a choice
of the initial response and the rate of approach to the stable cycle, will
match the data from which it is taken reasonably well.

Fig. 7 demonstrates this for the sharp corner form and the test of
Fig. 1 on 304 stainless [18] with the choice of A k2N*3 =0.3,k = 140
MPa(20 Ksi), N=1, a = 0.5, Wo/k = 0.05, E = 120 GPa(17 X 103
Kasi).

The rounding form, Fig. 8, shows better agreement with these data,
where the improper representation of Fig. 4 cannot appear. Fig. 9
demonstrates how closely the same form matches the cyclic hardening
of 2024-T4 aluminum in a symmetric strain cycle followed by a large
excursion which in turn is followed by an unsymmetric strain cycle.
Corresponding data, Fig. 2, were provided by Morrow and Kurath.
Parameters in Figs. 8 and 9 were, respectively, (B/(o*)2N) p2N+3 =
9 % 108, k = 50 MPa(7.3 Ksi), N = 6, a = 0.5, Wo/k = 0.07, E = 120
GPa(17 X 108 Ksi), (B/(c*)2N) k2N+3 = 7 X 1075, k = 140 MPa(20
Ksi), N =5, = 0.3, Wo/k = 0.2, E = 70 GPa(10% Ksi).

No claim can be made that either choice of constants in the fore-
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Fig. 8 Model simulation by the rounding option computed with data of
Fig. 2

going examples is adequate to describe the stress-strain behavior of
the material for more general paths of loading. Nevertheless, in dis-
tinction to all other simple models that have been proposed, and many
of the complex, the character of the response to unsymmetric plastic
cycles of stress or strain is correct in principle as is the general be-
havior for combinations of large excursions of stress with a dominant
pattern of cyclic loading.

Concluding Remarks on Rounding, Time Effects, and
Other Aspects of Reality

It is possible to break the connection between the desirable
rounding of the stress-strain curves for reversed plastic loading and
the undesirable rounding for reloading following an almost elastic
reversal, Fig. 4, by keeping track of the unloading-reloading paths and
introducing the physically correct transition from elastic to elastic-
plastic response. Whether this added degree of reality is worth the
complexity for general paths of loading is doubtful. The inclusion of
time and temperature effects certainly is of far greater practical im-
portance for many materials, such as the stainless steels, under op-
erating or emergency conditions in pressure vessels and piping or other
engineering structures and devices. Although much is known about
time-dependent creep and relaxation at a variety of temperatures [19],
very little experimental information exists on the time effects oc-
curring in conjunction with cyclic loading interspersed with large
excursions of load, along with temperature variation. Bodner [20] and
Onat [21] have suggested forms on the basis of the limited available
experimental information. When time and temperature effects are
primary, entirely different models of material behavior are required
from that proposed here. However, when elastic-plastic response
dominates but time and temperature effects are significant, a modified
form of the proposed simple model should be appropriate, one which
adds a linear or nonlinear viscous response and employs a temperature
modified stress [22] along with a time at temperature modified stress
for plastic response.

This assumes the simple model proposed is an adequate model or
can be made adequate with minor revision, an assumption that re-
quires further experimental exploration and study. The generalization
from isotropic to anisotropic cyclic hardening or softening suggested
by the data of Lamba [3] poses no difficulty in principle within the
mathematical theory of plasticity. However, the functional form for
the yield surface f = 0 will be far more complicated and could hardly
be classed as a minor revision.

In concluding it is worth returning to the two somewhat related
classes of models that have long been popular because they can exhibit
a proper Bauschinger effect for a reversal of loading. One includes the
current individual components of plastic strain explicitly and sepa-
rately in the yield function f. The other assembles well-defined
time-independent simple elements in parallel to produce a model that
has great physical appeal because it can actually be constructed and
its mechanical behavior is easily visualized. Unfortunately, neither
of these classes of models is basically appropriate for cyclic loading.
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Neither exhibits a proper response for repeated unsymmetric plastic
cycles of stress or of strain.
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The equilibrium and compatibility equations for nonlinear viscous materials described
by the power law are solved by introducing the complex stream and stress function. The
stresses, strain rates, and velocities derived from the summation form of the stream func-
tion and the product form of the stress function are identical to the results obtained from
the axially symmetric field equation. The stream function solution is used in the deforma-
tion analysis of a viscous hollow cylindrical inclusion buried in an infinitely large viscous
medium assuming an equal biaxial boundary stress. The stream function approach is
used in determining the stress-concentration factor for a cavity in a viscous material
subject to the identical boundary biaxial stress. The results agree with the results of
Nadai. The effect of the strain-rate-hardening exponent, the geometry of the inclusion,
and the material constants on the hoop stress-concentration factor in the interface be-

tween the inclusion and the matrix are discussed.

Introduction

When a hollow cylinder buried in a matrix is subjected to various
loading conditions a fracture may be observed due to the stress con-
centration of the interface. The stress concentration causes a void
growth [1, 2] and eventually a ductile fracture. This kind of phe-
nomenon needs to be addressed in order to adequately perform the
general deformation analysis, to predict the fracture or to establish
the fracture criteria.

Presented herein is the deformation analysis for a hollow cylindrical
inclusion of a rate-dependent material buried in another rate-sensitive
material subjected to equal biaxial tension or compression boundary
stresses. The constitution equation of the material is assumed to be
expressed by the power law in the steady creep stage. The direction
of the applied boundary stress is perpendicular to the inclusion axis.
The strain rate perpendicular to the plane is neglected, thus the
plane-strain condition is valid.

The analysis consists of three parts:
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1 The analysis associated with the complex conjugate stream
function.

2 The analysis using the complex conjugate stress function ap-
proach.

3 The analysis of the axially symmetnc problem with a uniform
external pressure.

Reducing the results to the solution of the problem of a single hole
in a rate-sensitive material the hoop stress-concentration factor in
the cavity is compared with the results of Nadai [3]. The comparison
shows the validity of the complex conjugate stream and stress function
approach associated with nonlinear viscous creep materials.

From the 1esults of the analysis

1 The effect of the rate-sensitive exponent on the stress distri-
bution at the interface is discussed.

2 The effect of the radius ratio of the hollow cylinder, as/a1, on
the stress concentration at the interface is addressed.

3 The validity of the complex conjugate stream or stress function
approach associated with nonlinear viscous materials is proved by
comparison of the results herein and the results of Nadai [3].

Analysis
The Stream Function Approach. Nadai [3] considered that the
shearing stress is assumed to be expressed in terms of the shear rate

“in the octahedral plane during the steady stage of creep (strain-

rate-hardening material) even though the stress components of the
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rate-dependent material may, in general, be expressed in terms of the
rate of the deformation tensor. Nadia [3] then established the relation
between plastic stress and strain rates. The plastic strain-rate com-
ponents are given by a scalar multiplier (A) times the deviatoric stress
components as in the Levy-Mises law without assuming rate-inde-
pendence and without a yield condition. Hence, the applicability of
the analysis is limited to small strains and the steady creep stage. The
analysis is not valid in the early portion of creep. A detailed expla-
nation of the constitutive equation for a steady creep material is given
by Nadai [3].

The governing equation (in the absence of work hardening) for
plastic flow under a plane strain condition in accordance with the
Levy-Mises equations is derived for materials with stress-strain rate
behavior of the type

7= gpem 1)

where 7, €, and o9 in equation (1) are the effective stress, strain rates,
and flow function, respectively.

The constitutive equation given by )'\(6,-,' + 0,0;) = &; where o)
is hydrostatic pressure, the strain rate given by &; = &(u; ; + u;;) and
the incompressibility condition under a plane-strain condition are
substituted into the two equilibrium equations. Using the stream
function definition, u = d¢/dy and v = —d¢/dx, the equilibrium
equations are expressed in terms of the hydrostatic pressure gradient
and the higher derivatives of the stream function with respect to x
and y. Eliminating the hydrostatic pressure gradient from the two
equilibrium equations gives [4],

2% [2 02 2 2\ [1 [o2 0?
e e
dx Ay \A dxdy oy?  ox?f 12A\0y? Ox?

On transformation of the stream function ¢ into the complex

plane,
2 24\ n— 2 \n 2 26\ {2\ n~
et e A P N e - = B S
0z2 |\022 0z2 072 [\0z2

oz2
where n = (1 + m)/2,0 <m <1, and ¢ is the stream function, z and
Z are the complex conjugate variables.
Expressing equation (2) in terms of the complex flow functions, the
effective strain rate (in two-dimensional Cartesian coordinates) and
the scalar-valued multiplier, gives

e
é=4 21—,
3 | loz2 022

. 8¢ 3 N\1—m (320 d2p}(1—m)/2
N
25 209 3 222 2z2

Note that for m = 1 or A = constant (perfectly viscous material, [3]),
equation (3) reduces to the familiar biharmonic form. Solution of the
biharmonic equation subjeet to the boundary conditions of plane-
strain extrusion through a square-cornered die was illustrated in
reference [5].

Summation Form Solution. Letting
&(z,2) = ¢p1(2) + $2(2) 5)
and denoting the second derivatives by
d2%¢y d%¢y
= d g=—22 6
dz? and 4 dz2 ©
upon substitution of equation (6) into equation (3) yields
d2 ‘p"- 1 2an—-1
PR Dpr=0 and 552 +Dg*r=0 7

where D is a constant. The detailed derivation of equations (3) and
(7) is given in [5].

Solutions for ¢1 and ¢5 are then given by
$1(2) =2(n—-1)2n — 1K In(z — Ag) + A1z + Ay ]
(f)z(E) = —2(77. - 1)(2n - l)K In (E - Ko) + K1§ + Kz

where K, A;, and K; (i = 0-2) are constants.

K=1/D (8)
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Fig. 1 Schematic diagram of problem

The stream function is given by letting 4; = K; = 0 in equation

(8)
p=2m(1-m)(Klnz—KlInZ) 9
Equation (9) can be rewritten as

¢ =2m(l — m)az?K(lnz — In2) (10)

where as is the radius defined in Fig. 1.
Equation (8) is not valid for m = 0.0 and 1.0. For m = 0, the stream
function is obtained as

orofnL]
¢ ¢ Ao? " Aoz
For m = 1.0, a perfectly viscous material, any biharmonic solution is
valid. For m > 1.0 velocities, strain rates and stresses in the field are
expressed in terms of the first and second derivatives of the stream
function obtained from equation (10).

To find the stress component using the strain rates, the hydrostatic
pressure is required. The hydrostatic pressure (negative mean stress)
op can be obtained from the equilibrium equation written in terms
of the stream function gradients:

_%Jri(l_ai +2{_17(°_2ﬂi_932)}=0

ox  dx\Aoxdyl oyl2al\oy? ox?

_a_“e__i(liz_qb_ +£{L(ﬁ_ﬁ)}=0
dy dy\Aoxdyl ox (2Aldy? ox?

Differentiating the first equation with respect to y and the second with
respect to x and adding yields

02 02 02\ (1 [ 2% 02
—2—i'£+(—+~—)[~.—(————}=0 a1
oxdy \Oy2 ox? 12A10y2  ox?
Transforming equation (11) to the complex plane gives
220, la, - 92 .
222 _ 9. (rm)f2gim=1)/2 4 o +D/2p(m=1/2)  (12)
22 o om® o

where

20-0 (\/g)l—m
cC=—|—
3 14

Substituting the second derivative of the stream function into equa-
tion (12) yields

0%¢, 020,
—F = —= = =2ltmelbym(1 — m)
022 022 1bo l
X (11— m2)a2m(z~@tmiz-m — z—mz—2+m)y  (13)
where K = byi.

The solution of equation (13) is found as

0p = —(2)mboctbom(1—=m)n=1(1 — m)2 (93)'" (5_2)"’ +A (14
. 2 z
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Thus the velocity components in the horizontal and vertical direction
are

= e — ——

. (bcb b¢)
oz OF

= —4bom(1l — m)as (2) cos {

= —4bgm(1 — m)ay (2) sin { (15)
n
where z = el
The velocity field under biaxial tension or compression associated
with a hollow cylindrical inclusion or hole has a symmetric plane. The
horizontal velocity, u, is zero at { = w/2 corresponding to the y-axis
and the vertical velocity, v, vanishes at the x-axis ({ = 0). To satisfy
this condition, the constant K is K = bgi.
The strain-rate components are
, . . (324, 02<I>)
by ==y =i |[———
Y o2 oz

= 4bom(1 — m) (2)2 cos 2¢
7

. ag)? .
éxy = dbom(1 — m) (—) sin 2{
n
Substitut@ng equations (14) and (16) into the constitutive equations,
oij = (&j/\) — 0,0, the total stress components can be obtained. The
components are

(16)

oz = (2)*mcbo(1 — m)fbom (1 — m)jm1

X (2)2”1 fmcos2{+ (1 —-m)}+ A

ay = (2)1mebo(l ~ m)ibom (1 — m)jm—1 17)

X (E)Zm f—m cos 20 + (1 — m)} + A
n

ag 2m .
Oxy = (2)F*me{bom (1 — m)j™ (—) sin 2¢
n

Transforming the velocities and stresses shown in equations (15) and
(17) to cylindrical coordinates gives

u, = 4bgm (1 — m)as (2)
n

Ug = 0 (18)
and
ag 2m
o, = A+ 2Vtmelbom (L — m)P*—1bo(1 — m) {—
n
ag\2m
og = A + 21 me{bom(1 — m)I™~1bo(1 — 2m)(1 — m) (——)
1
Org = 0 (19)

Stress Function Solution. The stress analysis associated with
a biaxial stress controlled system is performed using the stress func-
tion. The compatibility equation expressed in terms of the second
derivatives with respect to x and y of the strain rate can be repre-
sented in terms of the stress function gradient by using the consti-
tutive equations under a plane-strain condition. Substituting the
stress function definitions, 6x =y, 6y = V¥ cx, and o4y = — 4, into
the compatibility equation, the resulting governing equation as de-
rived in [4] is

(2"’__0_2) P {a_zi_biﬁ)}

2% [ . 22
,+——(2>\-—¢)=0 (20)
oy? ox? |2loy?  ox2 2%y,

Jx 0y

The scalar multiplier A is expressed in terms of the second derivatives

with respect to the complex conjugate variables.
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A= 3 (4)L=m)/m (ﬂ)(l—m)ﬂm A
72

2¢1
3\(1—m)/m
where A= —2—— R c1 = {ag)/m  (21)

and the governing equation (20) becomes
o2 l(az\p)(l—m)/Zm (a2¢)(1+m)/2m}
022 {22 272

22 [{d2\Q+m)/2m {2\ (1~m)/2

ZE Ry

022 |\0z2 0z2

The solution of equation (22) may be obtained by assuming the
stress function Y in the form of either a summation or a product of the
conjugate functions ¥1(2) and Y(z). When the solution cannot be
separated by either the summation or the product form, equation (22)
is solved by the mixed mode approach.

Product Solution. In this section, the stress function y is assumed
to be the product of two complex functions that is,

Y = Y1(2)a(@) + AzZ
Substitution of this solution form into equation (23) yields

o (] el (G20

oz2 dz2 dz2

BB o

02?2 072 0z?

(23)

where w = (1—m)/2m.
Equation (25) is assumed to be
Yi1(2) = A(Ay + Ag2)” (25)
where v is determined subject to the following condition:

AT
1//1w+1 (El/;) =]

the constant D is obtained from the boundary conditions. Substituting
equation (25) into equation (26), v and A are obtained as

(26)

y=1l—-m

](l—m)/Z exp l(_l_;_ml 7ri} (27

[ D
A=l
m(l — m)Ag?

Hence, equation (26) can be rewritten as

_ D (1-m)/2 1-m) . —m
Yi(z) = [_———__m(l — m)AOZ] exp{ m](Aoz + A1)
o D (1-m)/2 _ (1—-m) . _ e
Yo(2) = {m———(l — m)Koz} ex [ m}(KoZ + Ky)
and
D (1—m)
N (S — —2(1-~-m)
¥ [m(l ~ m)} (ro)

X {(Aoz + AN(KoZ + KQPl ™™ + A2z (28)

The stress and strain components in the plane-strain field can be
obtained.
If A1 = K1 = 0, equation (28) can be simplified further as

¢=[__D_~ -

(1—m)
(=) _
L= m)] (%) + AzZ (29)

since Ao and Ko are complex conjugate integral constants.
The stress components, 0., 0y, and o,y are obtained by using
equation (29)

(a a)z l D }(l—m)
== Y=
dz  OZ m(l —m)

XA =—mp 2" (—mecos2{—1+m)+ A
(30)
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e} o\2 D (1—m)
= |— [ =9 {—
e (az * OE) 4 {m(l - m)}

X (1 —myyp~2m(~mcos2{+1—-—m)+ A

D (1—m) .
Oxy =2 [—————} m(1 — m)n~2m gin 2¢ (30)
m(l ~m) (Cont.)
The strain rates, derived from the Levy-Mises constitutive equations,
are
V3 l D }(l—m)/m
€ = —&y = — (2/3)V/m it
€ & 4cy 2v3) m(l —m)
X m(1 — m)lm(zz)~1 {§+ 5]
Z 2z
2
- [?’. (2\/5)1/m(D)(1—m)/mm(1 —m) QS__&:
2¢q 2z
in 2
€y = — \/5(2\/5)1/”’(D)(1‘"’)/’"m(1 -m) sm_ ¢ (31)
1

2,
The velocity components u and v can be obtained by solving the
equation defining the linear strain rate, given by
_du ou

dz 0z

when this is done, the horizontal velocity, u, is given as

€x

u = _ﬁ(Zﬁ)lme(l“m)/’"m(l —m)y~lecos { (32)
C1
The vertical velocity component, by similarity, is given by
v = —V3 (24/3)V/mDA-m)/mm(1 — m)y~lsin ¢ (33)

C1

Equations (30)—(33) obtained from the stress function are identical
to equations (15)—(17) obtained from the stream function.

Axially Symmetric Approach. The equal biaxial stress field
corresponds to the axially symmetric problems subjected to a uniform
external pressure. The dynamic and axially symmetric stress field
subjected to a sudden step internal pressure or static pressure has
been solved in [6]. Nadai [3] determined the stress concentration in
a single hole for a strain-rate-hardening material. The states of the
field obtained using the axially symmetric equilibrium equation will
be compared in this section with those obtained from the complex
stream and stress functions.

The equilibrium equation for a strain-rate-hardening material
described by the power law under a plane-strain condition is given

by
o [ou\m 2 [ou,\m
o]
on on\ oy 7197
Using the incompressibility condition, the radial velocity and radial
strain rates are obtained and given as

u = — 4A/q
& = 4A/9?

(34)

(35)

Substituting equation (35) into equation (34) the hydrostatic pressure
can be found as

Alm
op = 21¥me (——) + K,
72

and the stress components are found from the constitutive equation.

These are
oy = 21+m (i) (%)m — Kc
YURY]
1-2 Alm
op = 2l+me ( m) (—E) - K, (36)
m |\n
where
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Equations (35) and (36) are the same as those obtained from the
complex conjugate stream function given in equations (18) and
(19).

The constant, A, in equations (35) and (36) corresponds to {bom (1
— m)a,?} in equations (18) and (19). As seen from the previous sec-
tions, the results obtained from the complex conjugate stream and
stress function and the solution of the axially symmetric field equation
are identical. This confirms the validity of the complex stress or
stream function approach to nonlinear viscous material problems.

Boundary-Value Problem, Using the stream function solution
transformed into cylindrical coordinates, a boundary-value problem
is solved. The stress or strain rate and velocity distribution in com-
posite cylinders comprised of nonlinear viscous materials is deter-
mined for different flow functions, ¢, and different strain-rate-
hardening exponents, m. The boundary stress is identical in the x and
y-direction, consequently the field can be replaced by an axially
symmetric field subjected to a uniform external pressure under a
plane-strain condition. Specifically, the solution emphasizes the
stresses, strain rates, and the velocities at the interface between two
composite cylinders. The schematic illustrating the problem is shown
in Fig. 1.

The material constants and the states of the field of the hollow
cylindrical inclusion are described by subseript 1. The matrix is ex-
pressed by subscript 2. The constant ¢ in equations (16), (18), and (19)
for the inclusion is given by

_ 201 (\/5)1‘"’1
) =— |-
3 14

and the constant for the matrix is denoted as

_ 202(\/5)1—'"2
Cog = ——
3 14

The boundary conditions of the problem are

20’0( 3\1-m
c=—1]—

1: Url = Urg at n=asg
2: o2 =—s (tension) at 7—>«
3: Or1 = Opg at n=as
4: o1 =0 at n=a1 (37)

where ag is the outside radius of the inner cylinder.
Using equation (18) and the first condition of equation (37), the
relation between the two constants is

bimi(1 — my) = bamz(1 — my) (38)

where b; (i = 1-2) is the integral constant of the inner cylinder and
matrix. From the second boundary condition and equation (19), Ag
can be determined by letting n —

Ag = —~s for tension (39)

where Ag is the constant of the matrix in equation (19)
From the fourth boundary condition, A1 is given as

1 2
Ag = —20migbimy (1 — moli™ ‘—(ﬂ) " (40)

mi\aj
where A1 is the constant of the inner cylinder in equation (19).
From the third boundary condition

1 2
— 90+ mg b ymy (1 — mo}ml{l - (53) '"}
miy a1

1
= 2 megolboma(l —~ mo)jm2— —s  (41)
m

2

Denoting
R = bimi(1 — m1) = bamy(1l ~ mg)

Equation (41) can be written as
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1
R™ 4+ — (WaRm2 —5) = 0
W1( 2 s)

where

9214+my 2m1
s
msy (15}

C:
Wy =—291+ms
ms

(41a)
Equation (41a) can be rearranged as

R™+

@——}(—) =

a1
(2)1+am1 ‘é 1—amy 2} i am) _1
X{ 3 (\i—) (ﬂ s ) (am1) 2] “2

where

Equation (42) is a nonlinear equation. The root, R, is obtained
numerically for various values of (as/a1), ¢, and 8. Once the value of
R is found, the stress strain rate, the velocity for various combinations
of the rate-hardening exponents and « and 8 for the inclusion and for
the matrix can be determined. The solutions associated with the
composite cylinders shown in Fig. 1 subjected to both uniform internal
and external pressure can be obtained using the methods described
in this paper.

Perfectly Viscous Material (m = 1.0). The equilibrium equation
results in a biharmonic equation and the solution is

a2 a?
$1(2) ” In .

2 2
$2(®) = Z—O In 55— (43)

where ¢(z,2) = ¢1(2) + $2(2).

Using equation (43), the velocities, strain rates, and stresses for
perfectly viscous materials can be found. The radial and hoop stress
of the inside cylinder is found as

- W - (]

W[HH]

and the stresses for the matrix are given as

{(‘)ﬂi—](—”

If ¢y = Ty, and a1 = ag in equation (45), the problem is reduced to the
problem of a hole in an infinite linear viscous material. The hoop
stress-concentration factor is 2.0 at = ay. This corresponds to the
linear elasticity solution at n = a,. The solution corresponds to
an axially symmetric problem with a uniform external pressure at
17—,

Stress Around the Cylindrical Cavity. From equation (19) and
the boundary condition, ¢, = 0 at n = as, the constants are found
as :

(44)

(45)

Am
21+mc

{bom(1 — m)jm = —
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Fig. 2 Hoop stress at interface for various matrix strain-rate-hardening ex-
ponent and boundary stress (my = 0.1)

and using the boundary condition, ¢, = ¢ at  — », the constant, A
is given as

A = o (tension)

Hence, the stress field associated with the cylindrical cavity is given

L e

2
gg = a{l —(1-2m) (2) m} (46)
7
The hoop stress at n = a gives
K =0i/0=2m 47)

The stress-concentration factor at the hole is 2m which agrees with
Nadai’s solution [3]. Nadai noted that the tangential stress is redis-
tributed in a uniform manner at m = 0.5 and when the strain-rate-
hardening exponent is smaller than 0.5, the hoop stress at the cavity
becomes smaller than ¢, the boundary stress.

The radial and hoop stress obtained by Nadai [3] for a hole in a rigid
perfectly plastic material is
200, a 200 a
oy \/gln , and oy 73 (ln , + 1)
which do not satisfy the condition that o, = ¢ as  — «. Nadai did
mention however, that “the cases when m tends to zero are of no
practical interest.” The validity of the complex stream and stress
function application to nonlinear viscous materials is illustrated by
the boundary-value problem. The solutions obtained by applying the
complex conjugate stream function are reduced to the linear viscous
material case and to the case of a cavity in a nonlinear viscous mate-

rial. These reduced solutions agree with existing solutions.

Results and Discussion

The numerical results of composite cylinders comprised of different
nonlinear viscous materials are shown in Figs. 2-5. Figs. 2-5 illustrate
the effect of the strain-hardening exponent and the boundary stress
on the hoop stress-concentration factors and radial velocity at the
interface of the two cylinders.

Fig. 2 presents the results for go/o; = 1.2, as/a; = 2.0, and for my
< my. The hoop stress-concentration factor for the inside cylinder,
Kj1, and the matrix K1, for mg < 0.5 is inversely related to the
boundary stress, s/01. K3, is less than one for my < 0.5 and is directly
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Fig. 3 Hoop stress at interface for various matrix strain-rate-hardening ex-
ponent and boundary stress (my = 0.9)

proportional to the boundary stress for mg > 0.5. Fig. 2 shows the
results for go/01 = 1.2, as/ay = 2.0, and my > me. K11 and Ko are both
proportional to the boundary stress for mg < 0.5. Therefore, the results
shown in Fig. 1 are opposite to those shown in Fig. 3. When Figs. 2 and
3 are compared three common aspects are noted:

1 Kj; and Kg; are both proportional to the strain-rate-hardening
exponent of the matrix, ms.

2 At mgy = 0.5, Ky, is independent of o2/01, az/a1, and s/oy and
equals 1.0,

3 . Ko is less than one for my < 0.5.

The second and third items are consistent with the hoop stress
concentration of a cavity in an infinite nonlinear viscous material
shown in equation (46). The radial velocity, u,, at the interface (y =
ag) for my < mg, as/a; = 2.0, and as/a; = 5 subjected to various
boundary stresses is shown in Fig. 4. Fig. 5.presents the velocity for
my > ms. The magnitude of the radial velocity is larger for m; < msg
than for m; > my when the boundary stress = 3.00. The converse is
true for s/g1 = 1.00. When Fig. 4 is compared with Fig. 5 two common
points should be noted:

1 'The radial velocity increases with increased strain-rate-hard-
ening exponents of the matrix.

2 As expected, the radial velocity is lower for both m; > ms and
my < mg for a stiff inclusion (ag/a; = 5).

The results show both Kq; and Ky for mi = 0.1 (<mys) to be in-
versely related to a2/0 for various values of as/ay and o9/ and both
are nearly independent of g2/c1 at my = 0.7 for various as/a,-values.
The effect of as/a1 and go/aq for my = 0.9 (>ms) on K1 and Ko shows
that Ky, is independent of as/a; and o9/01 and proportional to az/a;
at my = 0.63. Kg; is independent of as/a; and o9/01 for my = 0,18 and
is barely proportional to ¢o/cy and inversely related as/a; for mg =
0.63.
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Conclusions
The following conclusions can be drawn from the analysis:

1 The complex stream and stress function approach is valid for
nonlinear viscous materials described by the power law.

2 The dominant parameter affecting the stress-concentration
factor at the interface between the inclusion and the matrix is the
strain-rate-hardening exponent of the inclusion and the matrix rather
than the value of ag/ay or go/a1.
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Sliding

An Analysis of Contact Between a
Pair of Surface Asperities During

An analysis of friction junction formed by a pair of interacting hemispherically shaped
surface asperities was carried out. Depending on the maximum geometrical interference

of the asperities junction deformation can be elastic or plastic. Elastic junctions were an-
alyzed using Hertz solution. Depending on whether the junction is welded or nonwelded
it was assumed that the interfacial shear stress is constant and equal to or less than the
bulk shear strength of the weaker material, Solution for the case of plastic junction was
approximated by Green’s slip-line field solution.

Introduction

The problem of contact of a pair of rough surfaces has been of in-
terest to many scientists and engineers. It has long been realized that
surfaces are rough on microscopic scale and that this causes the real
area of contact to be extremely small compared to the nominal
area.

The real contact area is a significant parameter in determining
friction, wear and the thermal behavior of a pair of interacting sur-
faces. It is well understood that the real area of contact consists of a
number of microcontacts. The problem of relating friction to the
surface topography in most cases reduces to the determination of real
contact area and studying the mechanism of mating microcontacts.
Relation of the friction force to the normal load and the contact area
is a classical problem. Amonton’s law of friction that the friction force
is directly proportional to the normal load and it is independent of
the contact area is one of the earliest available theories in this re-
spect.

Bowden, Moore, and Tabor [1] introduced the notion of adhesion
at microcontacts formed by the interacting asperities. They explained
friction by continued forming and shearing of such junction. This
argument leads to the conclusion that the friction coefficient, given
by the ratio of shear strength to the normal pressure, is a constant
(~0.17), since for perfect adhesion the mean pressure is approximately
equal to the hardness Hy, and the shear strength is ~(1/6)H;. This
value is rather low as compared with those observed in practical sit-
uations. With the notion of surface roughness and asperity interaction,
investigations pertaining to geometrical description of asperities and
the mechanism of junction deformation were promoted.
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Archard [2] using the Hertz solution for elastic contact of spherical
bodies showed that though for a single elastic junction the contact area
is proportional to 2/3 power of normal load, nearly direct propor-
tionality results in case of actual surfaces, where contact takes place
at many points.

Plastic junction under combined normal and shear stress were
analyzed by Green [3]. Green proposed slip-line field solutions for
junctions of rigid plastic materials for plane-strain and plane-stress
conditions. Various geometrical shapes were considered and some of
the theoretical models were verified experimentally. It was also shown
that a distinctive feature of steady sliding is that the two surfaces
move parallel to each other and some limits on the validity of the
theory were discussed and related to the failure of Amonton’s law.

A further support to Green’s solutions was provided by Greenwood
and Tabor {4]. O’Connor and Johnson [5] studied experimentally the
effect of tangential force, less-than the limiting friction, on the de-
formation of interacting asperities and deformation of bulk bodies.
The initial stages of junction deformation were investigated by Cocks
{6]. He concluded that junctions do not break when sliding begins;
instead the relative motion is accommodated by the plastic shear of
underlying material in a direction somewhat inclined to the interface.
The mechanism of formation and destruction of friction junctions,
in relation to the physical and mechanical properties of the materials
concerned, has been studied by Ainbinder and Prancs [7]. Edwards
and Halling {8, 9] have provided an upper bound plasticity solution
for interacting wedge-shaped asperities. With the assumption of a
kinematically admissible velocity field they minimized the work
dissipated in plastic deformation and frictional effects, to obtain the
desired angles.

With the understanding that the contact of a pair of rough surfaces
takes place only at a number of interacting asperities, study of indi-
vidual asperity interaction is the primary objective of this paper.

Asperity Contact Model
The estimation of normal and friction forces carried by a pair of
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rough surfaces in sliding contact is primarily dependent on the be-
havior of the individual junctions. Knowing the statistical properties
of a rough surface and the mechanism at any junction, an estimate
of the desired forces may be made. Thus an appropriate model of a
junction in sliding contact is necessary. Furthermore, depending on
the properties of surfaces in contact and the load to be supported by
the junction, a general method for defining the type or class of a
junction is essential. Hence, before modeling a junction, a systematic
classification of junctions will be briefly presented.

Classification of Contacts. A number of models for a junction,
formed by two interacting asperities, have been investigated in the
available literature. Most of these investigations are limited to static
contacts. In other words, very little or no sliding is assumed. In the
case of a sliding contact the problem of solving for the friction and
normal forces becomes extremely difficult. One of the possible ways
of approaching the required solution is to consider the problem to be
of a quasi-static nature. This is the basic assumption which will be
made in determining the variation of loads carried by a junction as
it goes through its life cycle.

After assuming a certain geometry for asperities in contact, is is
simple to define two types of junctions, namely, elastic and plastic.
For exceptionally smooth surfaces, the deformation may be purely
elastic but for most surfaces, the contacts are plastic. Adhesion be-
tween mating asperities is one of the important properties which
determines the frictional behavior of a pair of surfaces. That is, the
friction coefficient will depend on the adhering properties of the
contacting asperities. Depending on whether there is some adhesion
or not we may introduce the concept of two further types of junctions,
namely, welded junction and nonwelded junction. We can define these
two types of junctions in terms of a stress ratio, 3, the ratio of s, the
shear strength of the junction to k, the shear strength of the weaker
material.

B=s/k
For welded junction, the stress ratio,
B=s/k=1,

i.e., the ultimate shear strength of the junction is equal to that of the
weaker material. '
For nonwelded junction, the stress ratio,

B=s/k<1

A welded junction will have adhesion, i.e., the pair of asperities will
be welded together upon contact, due to the adhesive forces. On the
other hand in the case of a nonwelded junction, adhesive forces will
be less important.

For any case, if the actual contact area is A then, the total shear
force,

S =3sA = BkA, (1)

where 0 < 8 < 1, depending on whether we have welded junction or
nonwelded junction.

There have been no direct measurements of the strength of adhesive
bounds between individual microscopic asperities. Current work with
field-ion tips provides a method for simulating such interactions but
even this is limited to the materials and environments which may be
examined. At present, therefore, information on the strength of as-
perity junctions must be sought in macroscopic experiments. The
most suitable source of data is to be found in the literature concerning
pressure welding. Milner and Rowe [10] have pointed out that the
deformation required to give significant adhesion is two orders of
magnitude greater than the strain at which the elastic-plastic tran-
sition takes place. Thus the assumptions of elastic contacts and strong
adhesive bounds seem to be incompatible. Therefore, it is assumed
that elastic contacts lead to nonwelded junctions only for which 8 <
1. Plastic contacts, however, can lead to both welded and nonwelded
junctions,

Geometrical Configuration of Contacting Asperities. Fig. 1 ‘

shows geometrical configuration of a pair of contacting asperities

494 / VOL. 48, SEPTEMBER 1981

“Xmax

Fig. 1

schematically. Geometrically, a single asperity is idealized as a
hemisphere of radius equal to the radius of the asperity curvature at
its peak. :

There is some experimental evidence [11] that the statistical cor-
relation of radius of curvature at the peaks and the peak heights, for
most rough surfaces is not significant. Thus, assuming identical radius
of curvature distribution at all asperity heights will not introduce any
serious error in further calculations. A junction is formed and de-
stroyed as one hemisphere slides past the other at a given sliding ve-
locity. For simplicity it will be further assumed that the center of the
hemisphere in motion moves along a fixed horizontal line.

Elastic Contact. The Hertz solution is applicable in case of static
contact of two elastic bodies. Therefore with the known geometry of
contact the normal force and the area of contact can be determined.
An estimate of friction force as sliding occurs is the main problem.
With the assumption of quasi-static motion during the life cycle of
a junction, the normal and friction forces at any time may be calcu-
lated separately. With the geometry of interacting asperities shown
in Fig. 1 the deformation, as the center of lower asperity moves from
0, to O, with respect to the upper asperity, may be divided in two
distinct steps: compression according to the Hertz law from Og to O
and subsequent sliding from O3 to Os. At any position Oj of the center
of lower asperity, the normal and shear forces, P and S, respectively,
can be estimated. These forces may be resolved in horizontal and
vertical components and hence V and H are determined. The neces-
sary calculations are performed as follows.

The Hertz solution for elastic contact of two spherical bodies of radii
R, and R is given by the following equations:

Total Normal Load

4
p =§E’w3/2\/R1R2/(R1 + Ry) @

Area of Contact
A = Tw[R1Ro/(R1 + R2)] 3

Here w is the geometrical interference between the two spheres and
E’ is given by the relation,

1 1= 1-4

E E; E,
where Ey, Eo, and »1, 3 are the Young’s moduli and Poisson’s ratios
for the two materials.

By geometry shown in Fig. 1, the geometrical interference w, which
is equal to the normal compression from Qs to Oy is given by

_,w=(R1+R2)—\/d2+x2 (4)

where d is the distance between the centers of two hemispheres in
contact and x denotes the position of the moving hemisphere. By
substitution of (4) into (2) and (3), the load P and area of contact A,
at any time may be estimated. Now the inclination of load P to the
horizontal 8 is given by (see Fig. 1),
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d

Sin0=\/ﬁ
- . cos0=——-i— (5)

VdE+ x2
The friction force, depending on the type of junction under question
may be determined by equation (1). Thus the total horizontal and
vertical forces, H and V at any position x, of the sliding asperity, are
determined,

V=Psinf— S cosf
H=Pcosf+ Ssinf (6)

Equations (1)—(6) can be solved for different values of d and §.

Elastic Limit of Junction Deformation. A limiting value of the
geometrical interference w can be estimated for initiation of plastic
flow. For Hertz solution, the maximum contact pressure occurs at the
center of contact spot and is given by

3P

“=%a

The maximum shear stress occurs inside the material at a depth of
approximately half the radius of the contact area and is equal to about
0.31qo [12). From the Tresca yield criterion the maximum shear stress
for initiation of plastic deformation is Y/2, where Y is the tensile yield
stress of the material under consideration. Thus

2 24
Substituting P and A, from equations (2) and (3) we get

Y2
w = 64 (E) RiRo/(R1 + Ro)

Since Y is approximately equal to one third of the hardness for most

materials, we have
Hp\2
w =~ 0.7 (E,') @,
where @ = R1R2/R1 + Rz.

The foregoing equation gives the value of w for initiation of plastic
flow. For fully plastic junction or a noticeable plastic flow, w will be
rather greater than the value given by the previous relation. Thus the
criterion for fully plastic junction can be given in terms of maximum
geometric interference, by the relation

Wmax ~> Wp
and
Hp\2
wp = (E—) p @
Hence, for the junction to be completely plastic, wmax must be greater
than wp.

Plastic Contact. An approximate solution for normal and shear
stresses for plastic contacts can be determined through slip-line
theory, where the material is assumed to be rigid plastic and nonstrain
hardening. One of the well-known solutions of this type is due to
Green [3] in which a slip-line field for two wedge-shaped asperities

in contact has been suggested. This solution is reviewed in the Ap-

pendix. Green’s solution is valid for a plane-strain problem and most
surfaces fall within the geometrical limitations of the solution. For
hemispherical asperities, the plane-strain assumption is not valid.
However, in order to make the analysis feasible we will approximate
the solution to our problem by the Green’s plane-strain solution.
Plastic deformation will be allowed in the softer material and the
equivalent junction angle o will be determined by the geometry.
Quasi-static sliding will be assumed and green’s solution will be used
at any time of the junction life.

The slip-line angle v may be determined by velocity boundary
conditions or the shiear stress at the interface, as will be explained later
in this section. Thus, knowing the angles & and v, at any time the
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b)

Fig. 2

stresses normal and tangential to the interface AE are given (see the
Appendix),

1
p=k 1+sin2'y+£7r+2'y—2a

s =k cos 2y (8)

Now assuming that the contact spot is circular with a radius a, even
though Green’s solution is strictly valid for plane strain, we get

P=pra?
S =swa? 9

Radius a is determined by geometry as in the Appendix. Resolution
of these forces in two fixed directions gives

V=Pcosd—Ssinéd

H=Psinéd+ Scoséd (10)

where 0 is the inclination of the interface to the sliding velocity. Thus
V and H may be determined as a function of the position of the sliding
asperity if all necessary angles are determined by geometry. We will
consider the case of welded and nonwelded junctions separately.

Welded Junction. For welded junction the geometry shown in Fig.
2 will be assumed. For simplicity of the analysis the deformed material
will be assumed to flow outside ways and the equivalent junction angle
o will be determined by the minimum inclination of the line AB to
the interface, when the incompressibility requirement for the mate-
rials is satisfied. A detailed calculation of « is given in the Appendix.
Here it is sufficient to say that the minimum inclination of line AB
is equal to that of a tangent to the spherical surface when the two
shaded areas (see Fig. 2(a)) are equated in order to satisfy incom-
pressibility.

Since no motion is allowed at the interface AE, the angle « is de-

termined by the direction of velocity U, i.e.,
vy=208 (11)

Thus, knowing « by geometry and v by equation (11), the required
normal and tangential stresses may be calculated by equation (8). It
is clear from the geometry of Fig. 2(a) that the interference w reaches
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a maximum value, when the center Os of the lower asperity reaches
the central position O. As Oz moves to the right of O, the junction will
instantaneously go in tension because we are ignoring elasticity here.
To allow for this tensile loading we rotate the slip-line field as shown
in Fig. 2(b). Hence V and H through the whole life cycle of a welded
junction may be determined.

During tensile loading of the junction, the maximum allowable
stress will be limited by the adhesion strength. We denote this stress
by pa- When the normal stress at the interface, p, exceeds the bond
strength p,, the junction immediately breaks and the life of the
junction is completed. Another failure mechanism which might occur
during the junction life can be explained by the slip line geometry,
shown in Fig. 2. When slip lines BC and DE both become parallel to
the sliding velocity, i.e., when ) = 0, the material will be sheared off
at constant stresses along the straight slip line BE. Such a geometrical
configuration is shown in Fig. 3. We assume that during the remainder
of the junction life shear along BE occurs. The termination of junction
will take place when the two asperities are separated during the sliding
motion. Whether this failure mechanism will take place or not, will
depenid on the initial geometry of the interacting asperities, i.e., R,
Ry, and wiax.

Nonwelded Junction. For the case of a nonwelded junction sliding
at the interface is allowed and further it is assumed that the shear
stress at the interface is constant. We ignore the flow of deformed
material and approximate the junction angle o by the inclination of
the tangent AB to the interface AE as shown in Fig. 4. With a geo-
metrical interference w at any time the following geometrical relations
may be derived (see the Appendix):

Contact Radius
\/ 2R:R;
a=4/—w,
Ri+ Ry

« = arcsin(a/Rs)

and the angles

= ér — arctg(d/x) (12)

Since we are assuming the shear stress s at the interface to be constant
and less than the shear strength k of the weaker material, i.e., § < 1.
This assumption is consistent with the one made by Green [3]. Thus,
knowing the shear stress s, at the interface AE, from equation (8) we
have

5= k cos (2v),
or
1
v = —Z-arccos (s/k).
Hence, for 3 < 1,
1
Y= Earccos B8 (13)
After determining the equivalent junction angle from the geometry

(equation (12)) and the angle -y from equation (13), the required
stresses in the case of a nonwelded junction may be estimated. Now
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V and H are determined by equations (9) and (10). After about half
the life of a nonwelded junction, i.e., after O moves to the right of O
(see Fig. 4) and the interface becomes parallel to the direction of ve-
locity, two possibilities must be considered:

Possibility 1. The junction instantaneously goes into tension and
the solution is determined by a procedure similar to that used in the
case of a welded junction, except that here the shear stress at the in-
terface will remain constant.

Possibility 2. Another possibility might be that the two inter-
acting bodies just slide off with the interface remaining horizontal,
as shown in Fig. 4(b).

The normal compressive stress for Possibility 2 will be, in fact, a
function of the elastic deformation in the contacting bodies. However,
ds the two bodies slide off, as shown in Fig. 4(b), the normal stress will
increase, because the contact area is reduced and stresses on a part
of the interface, which was originally in contact, are relieved. More-
over, this increased value of compressive stress will be limited by
plastic stress obtained by slip-line field solution. Since the shear stress
is constant and by geometry of Fig. 4(b) the equivalent junction angle
« remains constant, the normal compressive stress given by the slip-
line field solution will remain constant. Though this stress will be an
uppet bound for the actual normal stress, it will not be very unrea-
sonable to assume that the normal stress during the process of sliding
remains constant and is equal to the upper bound obtained by the
plastic solution.

The area of contact for Possibility 1 is determined by equation (12).
However for Possibility 2, by geometry of Fig. 4(b) we have

) —{a ~t)v/2at — t2,

-t
A = 2[a? arccos (a
a

where
(14)

t=ag—~-x
2

Thus the total vertical load V and the horizontal force H may be de-
termined from equations (8), (13), and (14). By substitution of & and
v in equation (8), the normal pressure p is determined, hence,
P=pA
S =34 = kA,
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here A is the area of contact given by (14) during the later half life of
the nonwelded junction. If Possibility 1 takes place the forces V and
H are determined by equations similar to equations (10). However
for Possibility 2, since the interface remains horizontal,

V=P

H=S8 (15)

This is valid for the later half life of the nonwelded junction. The
junction life will be completed when the area of contact is reduced to
Zero.

Discussion of the Asperity Contact Model

It was assumed earlier that the stress s for a nonwelded junction
is constant throughout the junction life and this constant value is less
than the shear strength %, of the weaker material. However, for a
welded junction the shear stress behaves as a cosine relation (equation
(8)) and has a maximum value of k. During the asperity interaction
the junction may therefore be nonwelded for part of its life and welded
during the remainder of the life, depending on the interfacial shear
stress. We can represent such a behavior of the plastic contact by
assuming that the adhesion stress p, is such that Possibility 2 of the
nonwelded junction is relevant. Thus the normal stress remains
compressive during the entire junction life for nonwelded junction
solution, whereas the junction goes in tension and fracture takes place
in case of a welded junction. As the life of the junctions starts, the
shear stress required for a welded junction s; is less than that for
nonwelded junction s,,. Thus the junction will behave as welded and
the shear stress

$ ™= 8.

When s; = s, and later when s; > s, the junction will behave as a
nonwelded junction and the shear stress

$ = Sy

The nonwelded junction solution will be relevant until $; = s, and
§s > 8y during the remainder of the junction life. Thus the junction
will once again tend to become welded. However, due to the limiting
tensile stress p, the tensile stress given by the welded junction solu-
tion may or may not be supported by the junction and therefore the
junction life can terminate.

Conclusions

Junction deformation models for sliding interaction of hemi-
spherical asperities have been considered. For elastic deformation
the normal force and contact area are approximated by Hertz solution.
The friction force is assumed to be proportional to the contact area,
in other words a constant interfacial shear stress has been assumed.
Depending on the interfacial characteristics this stress may be varied
from any small value up the bulk shear stress of the weaker material
and hence nonwelded and welded junctions are formulated.

Plastic junctions have been approximated by the plane-strain
slip-line field solution proposed by Green. For a welded plastic
junction no displacement is allowed at the interface and perfect
welding is assumed. In case of nonwelded plastic junction interfacial
sliding is allowed and a constant shear stress is assumed. The value
of this shear stress, will again depend on the interfacial characteristics.
Tension is allowed in the junctions until a limiting stress p,, the ad-
hesion stress, is reached. Beyond this failure takes place and the
junction life is terminated.

With a known junction model and statistical description of the
surface parameters, the overall average contact forces, area of contact,
and contact resistance can be computed for different surface pairs
with varying surface roughness.
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APPENDIX

Fig. 5 shows the slip-line field suggested by Green [3]. The solution
is determined by the junction angle « and the angle v, which is de-
termined by the velocity boundary condition. Using the notation -
shown in Fig. 5 for a and 3-lines, it is easily seen that for motion from
D to E, BCDE is a 3-line. The stress relations along the slip lines are
given by

p + 2k¢ = constant, along «-line

p — 2k¢ = constant, along §-line (16)

where p is the hydrostatic pressure, k is the ultimate shear stress of
the material as determined by the yield criterion and ¢ is the anti-
clockwise rotation of a-line from any fixed direction. In triangle ABC,
p = k-and using (16) along CD we have

pp — 2k(w + ) =k — 2R(w — 1/47 — )
or

pp = k(1 +1/27% + 2y — 2a) an
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The stresses p* and s*, normal and tangential to the interface AE may
be determined by resolving the forces acting on ED and AD. Thus

p* =ppcos®y+ ksinycosy+ ppsin?y + ksinycosy
s* = —ppsin+y cosy + k cos? vy + pp sin y cos y — k sin? y

or

p* =pp + k sin (2y)

s* = k cos (2v) (18)
Substituting for pp from (17) into (18) we get
p* = R[1 + sin (2v) + 1/27 + 2y — 2]
s* = k cos (2v) (19)

The limitation of this solution is imposed by the angle DAC which
should be positive, i.e.,

=127 —v)— (/dn + ) 20
Ydr +y—a20

Yz oa-—1/4r (20)

For most practical surfaces, the junction angle is very small as
compared to 1/4m. Therefore the lower limit of vy is zero. The upper
limit is obtained when the field can be first extended to the sides EF
or AG,i.e., when

v =1/4n + (o — ¢),
y=1/4r + (a —0),

itp>0

ifo>¢ (21)

The relevant geometrical parameters during plastic interaction of
hemispherical asperities may be determined by simple geometrical
relations. Since the geometry will differ slightly for welded and non-
welded junctions, we consider these two cases separately.

Welded Junction

When two hemispherical asperities interact during sliding to form
welded junction, such that complete welding is assumed at the in-
terface and no interfacial displacement is allowed, we can assume that
the deformed material flows outside ways as shown in Fig. 6. The
equivalent junction angle « will be determined by satisfying the in-
compressibility requirement for the deforming material by equating
the shaded areas. Furthermore o will be determined by the minimum
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Fig. 7

angle which the line AB should make with the interface AE in order
to satisfy incompressibility. Such a line will be tangent to the spherical
surface. By the simple geometry

area CEF = % (0 — sin 8 cos 0) 22)

If we denote the coordinates of any point with respect to the coor-
dinate system shown in Fig. 6, the equation to the straight line AB is
given by

y=mx+c
where
m = [(yg —u)/(xp — x4)]
and
¢ = [(uxp — ypxa)/{xp — x4)]

The area ABC is now given by the following integral:

u (y—c)/m
ABC = f f (dxdy).
y=yp Jx=y/T-y2

Integrating the foregoing equation and rearranging it gives

1
ABC =§[x,4(u — cos o) + u(sin @ — sin 0) + 6 — a] (23)

where

x4 = (1 —u cos a)/sin av. (24)

Note that u = cos # and all the distances are measured in terms of the
radius of the upper hemisphere E;.
Substituting x4 in equation (8) and then equating the two areas
gives the final equation for «
- 2
=2u co? ol + u?) 25)
sin &

Equation (25) may be solved by Newton’s iteration method and the
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desired junction angle o may be computed. Knowing «, for any given
value of u, the contact area is determined by evaluating the value of
x4 from equation (24) which is the radius of the contact spot.

Nonwelded Junction

In this case the flow of the deformed material is neglected and the
junction angle is determined by a tangent to the spherical surface at
the point B (see Fig. 7). Thus

w1(2R1 - w1) = a2 and wz(2R2 - wz) = (12

or
pe a2
wy;=—— and wy=—
2R1 2Rs
Also, since, w = w; + wo,
1 1
w=a?|—+—
2r1 2R,
Thus
R1Ry
a=1+/2 where = (26)
o T Ri+Rs

Journal of Applied Mechanics

Also
sin @ = —-——d—-— or @ =arcsin [d/(R1+ Ra—w)] (27)
Ri+Ry—w
Since 6 = 1/21 — 0, we have
6 = 1/27 — arcsin [d/(Ry + R2 — w)] (28)

Considering the sum of all angles at the point B on the line AB we
get

12 — 1+ 127 +a=n
or
o=y
But since by geometry
Y1 = arcsin (a/Ry),
we have
« = arcsin (a/R;) (29)

where the radius of the contact spot, a, is given by equation (26).
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M. P. Wnuk?

Stable Phase of Ductile Fracture in
Two and Three Dimensions, Final
Stretch Model

‘Analysis given here is based on the final stretch concept employed in conjunction with
a line plasticity model as suggested by the author in 1972 [6] and in this Journal in 1974
[8]. Its objective is to provide the equations governing quasi-static extension of a tensile
crack contained in either partially or in a fully yielded specimen. Differential equations
defining the apparent material resistance developed during the early stages of a ductile
fracture process are derived from a requirement that the “essential work of fracture” dis-
sipated in a small volume immediately ahead of the crack front, or equivalently, the
“final stretch,” remains invariant in the process of ductile tear. The model suggests a cer-
tain near-tip distribution of displacements associated with a quasi-static Mode I crack
such that the resulting strains are logarithmically singular at the crack tip. In contrast
to the earlier work on this subject, here we impose no restrictions on the amount of plas-
ticity which precedes the onset of crack growth and which accompanies spread of stable
ductile fracture up to the point of global failure. The final results, which are illustrated
in the diagrams of J-resistance curves, are analogous to the data obtained by other re-
searchers on the basis of the incremental plasticity theory. Similarities between the
present results and the solutions due to Hutchinson, Paris, and coworkers as well as the
most recent data obtained by Shih and coworkers, are pointed out.

Department of Civil Engineering,
The Technological Institute,
Northwestern University,
Evanston, lll. 60201

1 Introduction
Objective of the analysis given here hag been to provide equations
governing quasi-static crack extension in either partially yielded or

half of §;, the COD at which the initially blunted crack begins to
propagate.

in fully yielded specimens. The basic assumption made was that crack
flank angle (or “crack tip opening angle,” CTOA) remains constant
during crack propagation. The experimental and numerical data
available today seem to confirm such assumption: It has been also
suggested (although not necessarily generally accepted) that the COD
at which crack advances is typically about half or a quarter of the COD
observed at the onset of crack growth. Such initial decrease and
subseguent constancy of the COD during slow crack growth is implied
by the solutions given in this investigation. Note that the assumed
values of 3, which is a COD for a propagating crack, are usually about

1 On leave from South Dakota State University, Brookings, S. D. 57007.

Contributed by the Applied Mechanics Division for presentation at the
Winter Annual Meeting, Washington, D. C., November 15-20, 1981, of THE
AMERICAN SOCIETY OF MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until December 1, 1981. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division,
December, 1979; final revision, September, 1980. Paper No. 81-WA/APM-5.
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To make the problem susceptible to a mathematical treatment a
major simplification has been imposed: a line-plasticity model of the
DBCS type has been employed for description of a quasi-static crack.
Such model, supplemented by the concept of final stretch (which in
essence simulates the constancy of the CTOA), has been first sug-
gested by this author in 1972, and then further developed by Wnulk
[22, 23] and Smith [20]. Agreement of the end results of such highly
idealized model with those obtained from the recent studies of Prandtl
slip-line fields associated with a growing crack, cf. Rice and Sorensen
[3] and Rice, Drugan, and Sham [5], is remarkable. Thus one is
tempted to conclude that despite widely acknowledged deficiencies
of one-dimensional modeling of near crack tip plastic stress and dis-
placement fields, and despite somewhat unrealistic details inherent .
to this model, the gross features of the ductile fracture phenomenon
are predicted correctly.

The objective of this paper is to discuss solutions, derived from a
line-plasticity model supplemented by a concept of final stretch and
extended to incorporate a nonsteady quasi-static motion of a crack.
The restriction of the contained yielding is removed.

2 Final Stretch Criterion of Failure
Failure of a volume element located on the prospective path of the
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Fig. 1(a) Model of the crack and the associated structured end-zone con-
sisting of fhe process zone (A) embedded within the yield zone (R); (b)
Closeup view of the crack tip as it appears during the crack advapcement;
note the relations between the initiation COD, §;, the final stretch 9, and the
process zone size A

crack front is linked to the incremental work dissipated within the
process zone just prior to the collapse of this zone. If ¢ denotes the
instant at which the control element breaks down, then the incre-
mental accumulation of damage occurs within the time interval ¢ —
8t < 7 <t, where the increment 8t { =A/l) corresponds to the time
used by the crack front to traverse its own process zone. Size of such
hypothetical zone, over which an intensive straining occurs before the
crack may advance, is characterized by the length A which is assumed
to be a microstructural constant. The process zone is presumed in all
the considerations which follow to be fully enveloped by the plastic
zone R (this requirement is somewhat analogous to the Hutchinson-
Paris condition restricting the size of the HRR zone to be small versus
the extent of the yielded ligament).

The rate of damage accumulation is given by the product of the
stress restraining separation of new surfaces, S, and the rate ¢ at
which these surfaces are being separated, observed at a certain fixed
control point P (see Fig. 1). The integral of this product taken over
the time interval 6t represents the damage accumulated in the ma-
terial element adjacent to the crack tip while it undergoes the final
stages of straining preceding failure. Requiring that the prior-to-
fracture work done at a fixed material point P, while the process zone
of a microstructural dimension A passes through it, is a material
constant, Wnuk [6,_ 8] postulated the failure condition

a = j; ;t S,[x1(M)upfxy(r)]dr = constant (=Ya) (1)

Symbol x; = x1(7) denotes the distance from the crack tip. Since point
P is stationary while the crack front moves, this distance is time-
dependent.

For a constant? restraining stress (S = yield stress, Y) the equation
above reduces to the so-called “final stretch” condition proposed by
Wnuk [6]

u(O,l+ A)—u(A,)=0u (2)

The opening displacement u = u(x1, [) is regarded here to be a func-
tion of two variables, the time-dependent coordinate, x1, and the
current crack length I. On the right-hand-side of equation (2) we have
the opening constant ii. According to the condition (2) for a continued
crack extension an increment & (=212) of opening must be attained in
a small segment A of yield zone immediately adjacent to the crack tip.
From examination of Fig. 1 it becomes obvious that the second term
in the LHS of equation (2) represents displacement ahead of a DBCS
crack evaluated at the outer edge of the process zone, i.e., at the dis-
tance A from the physical tip of the crack whose current length is I.
The first term in the LHS of equation (2) should be evaluated at the
same point but when the crack tip has moved to the right and now

2 Interestingly, other assumptions concerning the distribution of the re-
straining force S over the process zone lead to identical end results, i.e., the
equation governing extension of a ductile fracture in its subcritical (stable)
range, cf. Smith [20].

Journal of Applied Mechanics

coincides with the control point. We conclude, therefore, that the
quantity u(0, I + A) is identical with the tip displacement when crack
length equals I + A, i.e., utip(l + A), while u(A, I) can be identified as
a displacement prevailing a small distance away from the tip when
crack length equals [, say uip+a(!). Note that we are using the current
crack length as a time-like variable.

3 General Considerations— R-Curve for an
Arbitrary Crack Configuration

When a ductile crack initiation occurs near or after general yield
of the specimen, material resistance to cracking continues to rise
steeply with crack advance. Such behavior of the material fracture
toughness may be represented by either R -curve or a Jg -curve; both
representations being equivalent between each other. Even if the
initiation parameters, K; or J¢, are known from observations of the
onset of crack growth, they alone are not sufficient means for pre-
dicting the instability which eventually terminates the process of slow
stable cracking under fully plastic conditions. Therefore, it is neces-
sary to devise a technique which would supply a more complete in-
formation regarding material response to propagation of ductile
fracture, i.e., a resistance curve represented in (R, [) or in (Jg, [) plane
if [ denotes the current size of an advancing crack.

Let us now summarize the mathematical procedures required to
obtain a resistance curve for a quasi-static crack. Discussion involves
Mode I fracture, but it would remain equally valid for Modes II and.
111

The essential feature of the analysis is the final stretch condition
which presumes that the displacement accumulated at a fixed control
point during the final act of fracture, i.e., during fracturing of a finite
process zone adjacent to the crack front, remains a material property,
say 4 (or 6 = 2¢). All one needs in order to set up the final stretch
equation is an expression for the displacement normal to the crack
plane at a small distance from the tip of an advancing crack. Let this
displacement be given as

fuxs, Do = w0, 1) — 21

[&w(xb l)] 3)

x1—0

or

[u(x1, D]x—0 = CIF() — 21 P(x1, ) + .. ] (4)

where C is a constant, C = 4Y/wE1, u(0, 1) is identical with the crack
tip opening displacement, u; ({), while F and ® are certain functions
of the arguments shown. The modulus E; is identical with the Young
modulus E for plane stress, while for plane strain it equals (1 —
v2)~lE.

Note that the expansion of the kind (3) is not a Taylor series, since
the derivative ou(xy, )/dx1 becomes singular at x; = 0, while the
derivative-like quotient? 6u:/6x; when evaluated at the point located
a small distance (x, = A) away from the crack tip (x; = 0), is finite.
Substituting the forms (3) and (4) into the final stretch criterion for
fracture (2) we obtain the differential equation which governs the
growth of a quasi-static crack, i.e.,

(due/dDyi=a + [6u/0x1)51=4 = /A (5)

or

3 Note that the symbol [6u/8x1],,~a used in equation (3) should not be in-
terpreted as a partial derivative, although it is somewhat analogous to a partial
derivative of the function u(x1, ). This point is brought out when the following
two forms are compared:

dul(xy, 1) -

i [400, ) — ey, D) @
0x1 210 X1 .|
(A, = [‘3”(’“’ ”] =C-1 lim [“(O b - uloy ”J (b)
x1=4 x1—>A

in which the constant C = 4Y/wE,. It is noted that for the dxsplacement dis-
tribution u(x1, [) associated with a quasi-statically moving crack the form (a)
is singular while the form () is not. Specific examples of function ® are given
in Section 4.
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(dF/dl)y = + B(A, 1) = C~L(@/A) G)]

For a wide class of problems the function F(l), which describes the
opening displacement at the current crack tip, may be represented
as follows: ’

F(l) = C~lu (D) = F[I, R()] = 16[R(1)/1] )

Thus we assume that the nondimensional part of F(l), i.e., the func-
tion ¢, depends only on the ratio R(/)/l. This is true for a broad class
of crack configurations. Confining our attention to this type of
problems we may reduce the governing equation (6) a little further.
At this point we should note that within the subcritical range of ex-
ternal loads imposed on the body containing a crack, the plastic zone
size R, used here as a measure of the external field intensity, remains
a function of the current crack length. This function, R = R(l),is a
priori unknown and it will be subject to determination. Following
equation (7) we find

gg = Q.E + 215 @ (8)

dl 2l R dl
If we now denote the ratio R(1)/l by x (), then the partial derivatives
in equation (8) can be evaluated as follows:

oF

v ¢ — (do/dx)x

JF

= 9
R do/dx )

When these expressions are substituted in equation (8) and then into
equation (6), one obtains a nonlinear differential equation which
defines the R-curve for a broad class of crack configurations,
namely,

Ry + (ﬁ’) M - 08,1 - )}, £(0) = RO/ (10)
dl dx

Here, the symbol M (= &/CA = (wE1/8Y) (8/A)) denotes the tearing
modulus, a material property required for characterization of ductile
fracture process. If the material resistance is represented by the J-
integral rather than by the function R = R(l), the governing equation
(8) simplifies considerably. This follows from the known relationship
between the tip displacement © (0, [} and the J-integral, namely,

Jr = 2nY)u(0,1) = 2nY)CF(l) = kF() (10a)

where the new constant k = 8nY2/7E; and n is a certain material
sensitive coefficient whose value lies usually in the range 1 to 2.6.
Obviously, the derivative dF/dl needed in evaluation of the difference
F(l + A) — F(l), as implied by equation (2), becomes identical with
the slope of the JJ- resistance curve, dJg/dl, within the accuracy of a
numerical constant. Replacing dF/dl by «~1dJr/d! in equation (6)
we obtain an alternative representation for the apparent material
toughness associated with the slow stable cracking process, i.e.,

L VN a1
dl

or
% =nY@/A) — 2nYCH(A, 1) (11a)

This last equation is perhaps an easiest vehicle to generate the data
pertaining to material resistance developed during the course of
ductile fracture. If the “correction term” 2n YC ®(A, 1) is small versus
the first term, a constant n Y(CTOA) appearing on the left-hand-side
of equation (11a), then the ductile tearing process obeys Paris’ sug-
gestion of constant slope dJr/dl, expected to be valid in highly ductile
materials. Indeed, Smith [20] has shown that an assumption of finite
specimen dimensions does not upset the general form of equation
(11a), and he also pointed out to a possibility of having the second
term in equation (11a) neglected when the amount of stable cracking
is small. It appears to us that the conclusions of this kind may not yet
be sufficiently justified and more numerical and experimental work
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is needed to verify the validity of such presumptions. It is also nec-
essary to establish more precisely the restrictions under which ap-
proximations of the Paris type are valid. In particular it will become
mandatory for anybody who would want to apply the analytical results
of the theory given here for reduction and processing of the empirical
data collected on the small laboratory specimens, to provide bounds
on the minimum size of such specimens (otherwise it is impossible to
test the validity of our equations). An analysis aimed at this end will
be developed in a future paper.

To provide an evidence that the slope dJ/r/d! does not necessarily
remain constant during slow stable crack extension, we have inte-
grated numerically the governing equations (a different equation for
each of the four configurations considered). The results are gathered
and shown by the plots in Fig. 2. Tt is seen from this figure that neither
is the slope of any of the Jg-curves constant, nor are such resistance
curves a unique material property. Their shapes and slopes depend
not only on the initial crack size but they are also influenced by the
loading and crack configurations.

It is noteworthy that the point of transition from stable to unstable
fracture can be predicted directly from equations (10) and (11). For
the particular crack configurations considered here the partial de-
rivatives OR4/0l and J4/d! (index “A” denotes outer field parameter)
can be replaced by the ratios R4/l and J4/, i.e.,

ORs _Ba 3Ja_Ja
ol 17 ol 1
At instability we have
Ja=dgp

(12)

Ra=R
or (13)

dJ4/0l = dJgr/di OR4/dl = dR/di

Recalling that Jr/l = k¢ and combining equations (12) with expres-
sions (10) and (11) we arrive at the following equality which has to be
satisfied when the global failure occurs

{PA, D+ 6B, D) =M (14

This equation contains two instability parameters /s and By which are
subject to determination. A second equation is therefore needed, and
it is given by the top line in (13). One ought to point out that while the
equations (10) and (11) describing material resistance curves are valid
for an arbitrary crack configuration, the conditions at the terminal
instability, as given by equations (12), are rather strongly dependent
on the choice of specimen and loading configurations. In view of this’
the reader is reminded here that the instability locus defined by the
expressions (14) applies only to the crack configurations for which
the relations (12) are valid.

In closing let us point out that the only quantities needed to set up’
the governing equations for the problem considered, ¢ and ¥, can be
derived, respectively, from (1) the expression for the crack-tip opening
displacement for a given crack configuration, and (2) the gradient of
the displacements in the immediate proximity of the crack tip, i.e.,

o (1) = (wE1/4Y) wiip(1)/D) or ¢ = (1E1/8nY2)J (1)/1

©(A, ) = (wE/4Y) [Bu(x1, D)/6x1]ci=a
The predictive powers of the results given in this section, i.e.,
equations (10) and (11) are of rather sweeping generality. Verification
of validity of these equations against physical reality will be an es-

sential step in deciding in favor or against the model suggested
here.

(15)

4 Examples of Solutions for 2D and 3D Crack
Configurations

To illustrate the outcome of numerical solutions of the four dif-
ferential equations involved in this study, Fig. 2 was constructed in
which the Jr resistance curves are plotted for all the four configura-
tions considered, i.e.,
(a) traction-free,

2D crack { .
(b) pressurized,
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Fig. 2(a) J-resistance curves for a 2D crack subject to (a) tensile stress

applied remotely from the crack, (b) hydrostatic pressure acting on the crack
surface. Input data: tearing modulus, M = 5, Initial crack length, /o = 10004,
initial extent of the yield zone, R; = 10A.

and

3D crack {(a) tractlorf-free,

(b) pressurized.
Material properties are chosen in the intermediate range so that the
complete equations given in this text had to be used rather than their
reduced forms. .

The discrepancies between the respective Jg resistance curves are
obvious upon examination of Fig. 2. A trend of an increased slope is
noted when fracture initiates from a disk-shaped crack. Note also that
for a vanishing plasticity, i.e., when R/l — 0, the slope of an R-curve
for a 3D crack, dR/dl becomes nearly infinite as then an R -curve de-
generates to the step-like function which allows no stable crack
growth, as it would be expected for the Griffith (brittle) limit.

The nonlinear differential equations which were employed to obtain
the curves shown in Fig. 2 were derived from the basic condition for
propagation of subcritical fracture, i.e., equation (6), applied to the
four configurations just listed. All four equations are of the general
form g(l, R(l), dR/dl) = 0, as given in the Appendices A and B, cf.
equations (47) and (55) for a 2D crack, cases (a) and (b); and equations
(68) and (73) for a 3D crack, case (a) and (b), respectively. Once these
equations are integrated numerically for a given set of the initial data
(lo, R;), the Jp-resistance curves can be obtained by replacing R and
JR, according to the following formulas:

Te() = x {[l log (1 + R/D) (16a)
" R{l+2log [I+ (BRID+VEMD]  (16b)
for a 2D crack configuration (x = 2nYC = 8nY?%/xE;), and
R/(1 + (R/1)) (17a)
0=
Jrll=rq, [1 + R/ + \/? (2 + 7;)] (17b)

for a penny-shaped crack.
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Fig. 2(b) J-resistance curves for the four configurations:
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(a) traction-free

{b) pressurized

Input data: tearing modulus, M = 5, initial crack length, I, = 10004, initial
extent of the yield zone, R; = 10A.

2D crack

3D crack

These relationships result from the simple formula, Jp =
(@nY)u,(0, 1), which connects the crack tip opening displacement
with the material resistance to ductile fracture. The constant «x; =
(2nY)C; = 8nY%(1 ~— v?)/wE applies to a 3D crack configuration.

It might be of interest to note that the ssy and Isy limiting cases can
be readily deduced from the basic equations given in the Appendices.
For the 2D configuration (case a) one obtains

1
M——- log (4eR/A),ssy, AKR «!
dR 2
@R 1. [eR (18)
—{M — —log {—|}, sy, AK R > |
. l[ 2 og(elAz)] Y

The equivalent representation of the material resistance to crack
growth (Jg versus !) leads to these forms? for a 2D crack, case a,

4Y2/7I'E1) log (Jss/JR)y 88y
ddg

=4 . %el
dl \aY(/A) - @nY?/xE;) log (—2) Isy

(19)

Similarly, in the limiting cases of small scale yield (ssy) and large scale
yield (Isy) one obtains for a 2D crack, case b,

41t should be noted that in the analogous equation given by Wnuk [23] and
by Smith [20] the empirical constant n was assumed to be 1. Wnuk’s [23] paper
contains also a misprint due to which the base of the natural logarithm “e”
appears in the denominator of the argument of the log-term present in the
second of equations (4.4).
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1
M- Elog (4—85), ssy

A
dR _ (20)
dl 1 _ 1 4eR
M — ~log {—1, lsy
log (4e2R/1) 2 A
A K{nglog(4ilssy
OR _ 21)

a M 1l ! }l
K{ zog(A) x}, lsy

The nondimensional quantity x, which appears in the second equation
written in the foregoing, is related to the material resistance Jg
through the relation

kx log (dex) = Jg/l (21a)

Analogous reduction of the basic equations valid for an arbitrary
R/l ratio, for the two limiting situations considered here, can be per-
formed for the 3D configuration. The results are®

M - 1log (81/A) + (I/2R) + b/4, ssy
dR 2
= case (a)(22)

dl - Y(R\2 8l\] 2R
Bl -1y + 280
(z){ °g(A)] [

1 8l I 1 l
R M—Elog—A-+§E—§ Ek--rl,ssy
El— = . case (b)(23)

R 8l R
—i{M - 1 + 1
4R{ (z) g(A)} T
If the Jg versus [ representation is used, then for a 3D crack one ob-

tains
1 81 1 JH)}
M--1 —I,
[ PR (A) (mz 5

d~J—E=K1 (24)
dl [M 1lo (81)+1]l

el hidd s

2 %4 4

for the case {a), and

and

81)1 1 5

g — 88
A V2x 4]x =Jrlxil’ Y

[M —=log (
(25)

dd, R _
di 8
[M*xlog( )+2xl , s
A e= /TRl
for case (b).

Note that the relations, x = Jg/x1l, for the ssy condition and, x =
(JR/2x11)12, for the Isy condition are the limiting expressions obtained
from the equation (b) in (17) when x assumes very small (ssy) and very
large (Isy) values, respectively.

The new constant Js5, which appears in the top equation in (19),
denotes the steady-state level of the material resistance to cracking
attained during a fully developed ductile tear process, i.e., when
dJg/dl — 0. Within the small scale yielding range the derivatives
dJr/dl and dR/dl differ only by a constant factor. Setting, therefore,
the slope dR/dl given by the top equation in (18) to zero, we obtain
first the constant

R = (A/4) exp (2M — 1) (26)
and then the constant
= (2nY2A/7Ey) exp {(xE1/4Yn)($/A) — 1) (27)

Smith [20] considers only the case of limited amount of stable crack

5 If the terms of order lesser than {/R are omitted in the top equation in (22)
and (23), then the material resistance in the small scale yielding range becomes
insensitive to the loading configuration, as it would be expected {compare also
the corresponding 2D solutions).
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growth for which the terms other than the constant M in the corre-
sponding lsy equations may be neglected. The Jp-resistance curve
reduces then to a straight line.

JR(AD = Jie +nYG/AAL lsy (28)

Such approximation becomes in fact equivalent to the Paris concept

of constant slope of the resistance curve (dJgr/dl);. It follows from

equation (10) that when all the imposed restrictions are met the fol-

lowing equality should hold:

dJ ddJ, o
=R = J) =nY(/A)

di dl |
or, in terms of the Paris’ (T'y) and Shil’s (T;) tearing moduli, we ob-
tain

(29)

Ty =nTs, Tg=(E/co®){dJr/dl)

Ts = (E/ao)(6/A) or (E/a)(CTOA) (30)

Equality of this kind suggests an approach to testing the validity of
the model discussed here. An independent study by Curry [24], aimed
at evaluation of a J-resistance curve resulting from measurements
obtained on a single edge notched bend specimen (SENB) loaded in
four point (pure) bending, has shown that initial gradient of the Jr
versus Al curve is indeed given by an expression of type (29). Through
application of Burns and McMeeking |25] expression which relates
the bending moment to the Jr-integral computed for a slow crack
growth test performed on a SENB specimen, Curry [24], predicts the
initial slope of the resistance curve as

(dJp/dl); =~ 1.70o(CTOA) (31)

If the crack opening angle (CTOA) is identified with the ratio of the
final stretch to the process zone size, 3/ A, then formulas (31) and (29)
are in agreement.

Curry [24] concludes that since the crack tip opening angle remains
essentially constant during slow crack growth, the Paris tearing
modulus 7 is also a constant; TyaddJr/da =~ (dJgr/da);a CTOA.

This need not be the case if the amount of slow crack growth prior
to the terminal instability does not fulfill the restriction Al/ly << 1.
As shown by Wnuk [23] a substantial amount of postyield stable crack
extension may precede the transition into an unstable fracture if the
tearing modulus has sufficiently low value and/or when the yield point
of a material is increased, e.g., due to cold-working or irradiation.
Then, it appears that a more complete representation of the crack
growth history is necessary, and it is provided by the closed form so-
lutions of the “Isy” equations given by the bottom line in (18) and (19).
These solutions for a center-cracked infinite width plate are

R(l) = Ri(I/lo)V/2 exp {l (1+2A)(1 - lo/l)]

Jr(l) = J; + [J +— (1+2)\ )] (——1)—-—l10g(ll] (32)
0

where k = 8nY%/nE; and

M+- l (ZA—) or

A= 2eR;* (33)
- (Ji/Klo) — (1/2) log (2elo/A)
They suggest a variable tearing modulus, 77, namely,

8 Y\2 [J;

TJ'_"—’EUJ(—“) [——L+)\ lag(l”
T ool lklo 2 Lo,

= {1» . plane streés (34)

1 —»? plane strain

The plot of Ty versus the dimensionless crack length I/l is given in
Fig. 3. It shows that there may be a distinct variation in the tearing
modulus (considered by Paris and his coworkers to be a material
constant), and that the initially high value of T'; (see, e.g., Fig. 3) is
followed by a gradual monotonic decrease with a tendency to level off
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Fig. 3(a) Material and applied tearing moduli for the “Isy” case plotted
versus the current crack length. The coefficient o = (8nw/m) ( Y/06,)? is about
41.7 when the constraint factor ( Y/0p) is assumedtobe 3, w = 1 — 2 = 0,91,
and the empirical factor n ~ 2. With these values the initial tearing modulus
( T,MATY, is about 119 while ( T,APPL), is about 52. Other input data are as
follows: I, = 10A, R, = 35A, M = 4.85.

prior to occurrence of the terminal instability. Perhaps it ought to be
pointed out that the graph shown in Fig. 3 was obtained under an
assumption of a constant crack tip opening angle (or 6/A) throughout
the slow crack growth phase of ductile fracture.

For comparison the quantity (E/0¢%)0J4/0l is added in Fig. 3. This
entity is of the same dimension as the material tearing modulus T,
but it reflects the amount of energy available for fracture (note the
index “A” which emphasizes the “applied” nature of the J/-integral,
used in this context as an external field intensity). It has been sug-
gested by Wnuk [23] that the difference

A\ = (wE1/8Y?n)[dJg/dl — dJ4/0l] (35)
or
A = (700%/8Y%n)[Tmar — Tapr]
Tuar = (E/eo®)(dJr/dl), Taver, = (E/60?)(0J4/31)  (36)

be used as a measure of the “distance” of any given state encountered
in the course of a ductile fracture from the state of terminal instability;
this difference is plotted in lower half of Fig. 3. Indeed, when both
entities Tmar and Tappr, become equal, an unstable brittle-like
fracture is imminent. For a stable crack extension the stability index
A is required to be a positive number, i.e., TmaT > TAPpPL.
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APPENDIX A

(a) 2D Traction-Free Crack. Equation describing an opening
displacement ahead of a traction-free tensile crack extending in an
infinite plate can be briefly written as

uy(xy, 1) =clfl =11}, ¢ =2Y/wE; 37
where
1+X 1+e+X 1-X24+e(1+X)
I=1log —log =log
1-X 1+e—X 1—- X2+ 61 ~X)
(38)
1+e+ X
I = elog ——— X = X[x:(), R(), 1]

e—-X’

The entity may be expressed in terms of the R/! ratio, denoted by x,
and a small quantity € = x1/1 as follows:

2=1—9%e— ve? = (2 2y-1
S X€ — X€2, (2x + x2) (39)
1
S=1—-xe—§x(1+x)62+...
Substitution of (39) into (38) leads to
1+x+... 1+ x
1=1 = lo, —log{l+e+...
Og)((1+e+...) g og ( ¢ )
24+ (1 - 4+, 2 1-
I =¢log (L~ xe =elog[ + X+...} (40)
T+x)e+... [1+x)e 1+x

It follows then that the expansions of these forms for e — 0 are

1+
I=log X-—e+...=210g(1+x)—e+...
2 2x(1 + x)
H=¢l =¢logl—/——1+... 41
€08 (1+x)el o8 (1 +x)? 4

Note that the second expression just shown contains a logarithmic
factor log (1/€) which is typical for a quasi-static crack problem in any
configuration. It reflects the singular behavior of strains when € ap-
proaches zero. Of course, the product ¢ log (1/€), which appears in the
formula for the near tip displacements, vanishes when ¢ = 0.

Combining expressions (41) with the equation (37) gives the desired
near-tip displacement for a 2D traction-free crack

[y (x1, D)s1—0 = 2cl [log 1+x)— glog ng—(i-:—):) +.. .Lsmﬂ
(42)
Setting € = 0 one retrieves the tip displacement
uy (0, 1) = ugp(l) = (4Y/wE1)! log (1 + R/1) (43)

Using this result the formula (42) can be written in an alternative
form

[uy(xb l)]xr'o = utip(l) — (2Y/wEy) (fl—l) log [W

x1(1 + %)2 [x=2)
(44)
or, if the notation of Section 5 is employed, one has
[uy (21, D10 = Cllo(x) — x1®(x1, D}z=zy (45)

The coefficient C = 2¢ = 4Y/wE,, while the functions F(I) and ¢{x1,
1) are obtained through a comparison of (45) and (42), namely,

px) =log (1 +x), x=RO/N
_ 1. J%lx(2+x)
P(xy, 1) = 2 log [————x1(1 T (46)

Hence, the application of the general result (6) yields the differential
equation defining an R-curve
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dR R ( R) { 1 {2eR(2l + R)” 47

—=—+11+—|{M——log
al i l 2 A

(b) 2D Pressurized Crack. We begin with Rice’s formula [21]
which with our notation reads

Uy P21, 1) = CRIW/T — x1/R — II + 1V}
14 (1~ xl/R)l/Zl
I = L jog | "X
R [1 ~ (- w/R)
A+ (1—xi/R)V2
IV = log ——— 212
B (1 - x/R)
C= 4Y/7TE1

= (1 +1/R)\2, (48)

Expansions of Il and IV at the point x; = 0 give

11 = —~log (4R) +...
2R X1

A+1—x1/2R +...

A—1+x1/2R+

A+1 A xl)
=1 +log |1 — Ty

BU Og[ A2—1(R ]

A+1 A (xl)
- Lt
A1 AZ-1\R

R\t2  (R\1/2] x4 1\1/2
o+ B (52 )
l i l R

Replacing v/1 — x1/R by 1 — x1/2R and substituting (49) into the top
equation in (48) we obtain

1/2 1/2
[ty ®)x1, [)]41+0 = CR [1 +2log [(1 + ?) + (%) ]

IV = log

= log

(49)

\/1+l/ +. J (50)

Hence it follows

1y ®(0, 1) = wip (1)

= (4Y/wE{)R [1 +2log [(1 + E)l/z + (5)1/2 } 1)
l l R=R()
and
olx) =x{l +2log [V1+x + \/;
P(x1, D) = (1/2) log( ) 420 +2)
x(l) =R{)/! (52)

Application of equation (6) leads to the governing equation of the
problem, namely,

—=h‘1{M——log( ) VvVl +x) - ¢(x)}+x
x{1+2log [VI+x ++/x]} ’

x
1+x
For x « 1 equation (53) reduces to the small scale yielding limit

dR 4eR

_— = M —_——

dl 2 s ( A )

For x 3> 1 we obtain the other extreme, i.e., the large scale yielding
case

x) =

h(x) = dp/dx = f + (53)

(54)

(55)

dl

= [log (4¢2R/1)]~ 1[ ——1og (‘“;R)]

APPENDIX B

(a) Traction-Free Penny-Shaped Crack. Using Olesiak and
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Wnuk [26] solution for the displacements normal to the crack surface
at a distance r; from the crack front

2 m
F (“2, —)
p

m
+ pE (uz, —) —m?
p

m2—p

Uz(ry, 1) = Cy (i){
mil p

1—p?
56
1- mZ]p>m ( )

Symbols F and E denote the incomplete elliptic integrals of the first
and second kind, respectively. Other notations used are

l I+
m=m, p=l+;?1=m(1+e), €=rifl
) 1 p2\ise
pg =sin~! (1 2) , =4Y/mE(1 - »?) (57)
-m

For the distance ry approaching zero one may express the incomplete
elliptic integrals F' and E through a difference of the corresponding
complete elliptic integrals K(m/p) and E(m/p, ©/2) and certain cor-

rective terms:
F (M, —”5) =K (ﬁ) - AF
o

E(uz,ﬁ)ﬂz(m ) AE
p p 2

The corrective terms are defined as follows:

1r/2 \/71
7r/2 —€
1- ( ) sin? ¢
/2 [1 2yd
w/2—¢ B ( ) sin \[/ ‘p

The lower limit in each integral was obtained by expanding the am-
plitude of the elliptic integrals involved, pg into a power series of €,
i.e.,

(58)

20+ R

(59)

(60)

Note that with € — 0 and p — m second of the foregoing integrals re-
duces to zero. The behavior of the first one needs to be investigated
further, since its integrand becomes singular at p — m. Such inves-
tigation reveals

!
— FO(2
T VR@F N + 0

- 2 3/2
\/m O(e3/2) (61)

This result does not contain a logarithmic term expected in this type
of a problem. To extract the logarithmically singular terms inherent
in the expressions (58) we apply formulas given by Gradstein and
Rhyzik (Tables of Integrals, Moscow, 1971, Russian edition, p. 919)

to obtain
4
K(in—) =log—+...
0

/2
E(m)l =1+£10g(8/€)+...
pllp—m 2

These results combined with (61) and substituted into equations (58)
yield

e

—m

(62)

%log (8/¢) — + O(el/2)

\/R(Zl +R)

m € 2le
E [y, — =1+ -~log (8/¢) - ——=+ 0(&*?) (63
[ (”2 p”p»m p 08 )~ ey T 0D 69
Observing now that.
2_ 42
m—e =(-2m)e+...
P m

Journal of Applied Mechanics

—m2(L = pA/(1 = M), /2 = —m2

and adding (m2 — p?)p~1F with pE we get

2_ 2
{m Ly pE}
0 p—m

Finally, the result just given is combined with the second of the ex-
pressions (63) to yield the desired expansion of the displacement u, (ry,
1), see equation (56), valid in the vicinity of crack tip, i.e.,

=m_ﬂ2e-1og(8/e)+me+... (64)

[wz(r1, Dm0 = Cil [1 -m— glog (8/¢€)

m3
+(1+ )e+
1—=m?

"}Fn/z (65)
and
utip(z) =Ci{(l—m)=

Cilx(1+x)71 (65a)

If we agree to represent these relations by the general formula

[z]r1vt = Cullp(x) — r1®lry, D} (66)

it remains to define the functions ¢ and ®. Comparison between (66)
and (65) gives

()__x_
o) =T

®(ry, 1) = Elog @Bl/r) =1+ (87)

1
l x(1+x)(2+x)]
x(l) = R()/1

These results combined with the equation (6) generate the differential
equation of an R-curve valid for an arbitrary R/l ratio

%1; =(1+x)? lM - llog (Sl/A)} + 1)
2 (68)
fx)=1+2x + tx
x(2+x)

The limiting cases of the contained yielding and large scale plasticity
are discussed in Section 4.

(b) Pressurized Penny-Shaped Crack. Examination of Ol-
esiak and Wnuk’s [26] formulas for the opening displacement i, (ry,
{) near the front of a pressurized penny-shaped crack reveals that the
only difference between this solution and that for a traction-free crack,
is the presence of a multiplicative factor

=[1+ (1 - m?)V2|m~2 (69)
which appears in front of the bracketed expression in equation (56).
When m is replaced (1 + x)~1, the function B reads
B(x) = {1+ x)[L+x + V22 + x)]}s=r2 (70)
Thus, omitting the algebraic details, we can utilize the expression (65)
which can be easily adapted for the considered crack and loading
configuration, i.e.,

feez PXr1, Dlrso = C1IB(x) {1 -m - glog (8/¢)

e L
utip(l) = C1lB(x)x (1 + x)~1 (71)
These formulas imply
¢lx) = x[L+x +vx(2+x)]
®(x1, 1) = (1 +x2)[1 +x +vx2 + x)]hlog (81/A) — H(x)}
Hx)=1+[x1+x)2+x)"L, x() =R/ (72)

Application of the final stretch criterion gives now
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d—}; ) [M - Bi(;—)mg (8l/A)} + Bylx) (13)
where the auxiliary functions @ and @, are defined as follows:
o) = VEiETE
(x + V@ + )1 +x +/x2 +x)
Bolx) = x + x(;;‘:i:}%t 5 (73a)

In closing it should be noted that in order to obtain the correct
limiting expressions for the ssy case the function ¢(x) in (67) and (72)
should be represented by a power series in which the term x2 is re-
tained, i.e.,

x(1—x+...), case a
= (74)
$(@)ssy {x(1+\/2x +x+...), caseb

which implies

508 / VOL. 48, SEPTEMBER 1981

kR(1 — x), case @

J(l)SS o~ R 75
R losy KR[1+7+ ?(2+§)], case b (78)

Differentiation of ¢ with respect to x reduces the order of the poly-
nomials (74), and thus upon completion of the necessary calculations
we find that the highest order term which survives is on the order of
%%, ie., a constant. This constant is needed and should not be
omitted.

Expansions of functions $1(x), B(x), and $5(x) for x — 0 are given
as follows:

Pix)=1—-8v2x +8x+...
Bx)=1++v2x+2x +...

1 1
Py(x) =—+ +14+... (16)
2(x) 2% 24/2x
These relations were utilized in derivation of the top equations in (26)
and in (29), valid in the limit of contained yielding.
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Arrest of Mode lll Fast Fracture by
a Transition From Elastic to
Viscoplastic Material Properties

The transient problem of arrest of a rapidly propagating Mode I1I crack has been investi-
gated for a crack which initially propagates in an elastic solid, and then enters a region

of viscoplastic material properties. The transition to the viscoplastic behavior is modeled
by a gradual process which staris at a certain time at which the constitutive relations
change in a timewise manner from elastic to elastic-viscoplastic. Both deceleration and
complete arrest of the crack have been treated. The solution has been obtained numerical-
ly by a finite-difference procedure. Arrest of a crack in a perfectly elastic material has
been treated as a special case. Several field quantities such as the effective plastic strain,
plastic work, total strain, and crack surface displacement have been computed, and their
relation to arrest criteria have been explored.

1 Introduction
The ultimate goal of fast-fracture studies is to analyze the condi-
tions for prevention of rapid crack propagation. A prudent assumption

is, however, that high rate fracture phenomena cannot always be

prevented. Thus it is important to consider the conditions for arrest
of a rapidly propagating crack tip.

Rapid crack propagation usually is an essentially brittle fracture
process. In this paper we consider the case that a crack starts to
propagate under brittle conditions, but then approaches an interface

‘beyond which the material can yield considerably before rupturing.
We investigate crack arrest as well as reduction of crack-tip speed as
the crack-tip enters the region of plastic deformation.

In earlier work, which was concerned with rapid crack propagation
in an elastic-viscoplastic material [1, 2] the authors have used a con-
stitutive model which was proposed by Bodner and Partom [3]. This
model does not require the statement of a separate yield criterion, nor
is it necessary to consider loading and unloading separately. Plastic
deformation always exists, but it is negligibly small when the material
behavior should be essentially elastic.

In this paper we use the Bodner-Partom model for the material
béhavior in the region of elastic-viscoplastic behavior. Since the
crack-tip speeds are high, and since considerable transient effects may
occur when the region of plastic deformation is approached, the effect
of inertia has been included in the analysis.

The constitutive equations for the elastic-viscoplastic region have
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been summarized in Section 2. The modeling of crack arrest as the
plastic region is entered, and of penetration of the region of plastic
deformation, is discussed in Section 3. The numerical method of
analysis is discussed in some detail in Section 4. The last section is
concerned with the discussion of the results, principally the plastic
strains just ahead of the crack tip.

2 Constitutive Equations

In this section the governing equations for the Bodner-Partom
model are briefly summarized.

In the usual manner the total rate of strain is expressed as the su-
perposition of elastic (reversible) and plastic (irreversible) compo-
nents

=@+ 6,0 =123 (1)

The elastic strain rates are related to the stress-rates by Hooke’s
law

&€ = =3y — —— uaby; (2

2 1—-v

where g is the shear modulus, » is Poisson’s ratio, and d;; is the Kro-
necker delta. It is assumed that the plastic deformations are incom-
pressible, é;®P) = 0, and that the Prandtl-Reuss flow law holds.
Thus

;P =¢;;\0) = Agy; 3)

where s;; and é;;(®) denote the deviators of the stress tensor and the
plastic strain-rate tensor, respectively. Equation (3) can be squared
to yield A in the form

A2 =DyP/J, (4)

Here

Do®) =3¢ (p)éij ®) and Jg = 4ssi (ba, b)
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are the second invariants of the plastic strain-rate deviator and the
stress deviator, respectively.

Following reference [3] we take the following relation between Do®)
and Jo:

Dy = Do? exp [—(A2/J)7], (6)
where
A= %Zzl(n + 1)/n]1/n (7)

The coefficient n is related to the steepness of the DyP) — J5 curve,
Dg¢? is the limiting value of Dy®) for very high stresses, and Z is an
internal state variable referred to as the hardness of the material,
which expresses its overall resistance to plastic flow. For isotropic
work-hardening the evolution equation for Z is taken to depend on
the amount of plastic (irreversible) work, Wy, which has been done
on the material from a reference state. Specifically, Z is assumed to
have the form

Z =71+ (Zo~ Z1) exp [-mWp/Z] (8)

where Zy, Z1, and m are appropriate parameters of the material, and
the rate of plastic work can be expressed in the form ’

Wp = Gijéij(p) = Sijéij(m =2AdJ, (9)

In equation (8), Zy is the initial hardness and Z is the upper limit of
Z. The hardness must have an upper limit, because otherwise Do{#)
would approach zero for large Wp,, which would imply fully elastic
behavior at appreciable strains.

In reference [3] the model was used to investigate tensile straining
for a number of histories, that included straining at various rates,
rapid changes of strain rate, unloading and reloading, and stress re-
laxation. The calculations were based on material constants chosen
to represent commercially pure titanium. Theoretical and experi-
mental results showed good agreement.

The system of governing equations is completed with the stress
equations of motion

Gijj = pli; (10)
where p is the mass density.

The Bodner-Partom theory is applied in this paper to a dynamic
problem. It should be noted that its validity under dynamic conditions
was examined in [4] where the response of elastic-viscoplastic beams
subjected to dynamic loads was computed. Comparisons between
theoretical and experimental dynamic deflections showed good
agreement for relatively short response times.

The particular example of this paper is concerned with deformation
in antiplane strain. Thus the only nonvanishing displacement com-

ponent is ug(x1, X, t), and the corresponding total strains are
€1 =4us1; ez =}uap (11a, b)

The nonzero stress components follow from (1) and (2) as

031 = 2ulear — €1'P)), o3z = 2uless — e2®)  (12a,b)
and the second invariant of the stress deviator reduces to
Jo = o312 + o392 (13)

Substitution of (11a, b) into (12¢, b), and subsequent substitution
of the results into (10) yields

1
(w11 + us2e) — 2(ear, 1P + €302P) = — i3 (14)
cr

where ¢ = (u/p)'/? is the speed of elastic shear waves. The plastic
strains are governed by the flow rule (3).

3 Arrest of a Rapidly Propagating Mode III Crack
We consider a semi-infinite Mode III crack which propagatesin the

center plane of a thick strip of height 2h. The geometry is shown in

Fig. 1. An interface (or a transition region) separates the strip into two
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Fig. 1

Propagating crack in a strip

semi-infinite strips in which the constitutive behavior is elastic and
elastic-viscoplastic, respectively. The crack originally propagates with
a constant velocity vg in the elastic part of the strip in an essentially
brittle fracture process. It is assumed that a steady-state situation
relative to the moving crack tip has been established. As the region
of viscoplastic constitutive behavior is approached, the steady-state
process is terminated and a transient process starts.

Conceptually, it would be possible to model the interface between
the elastic and viscoplastic parts as a discrete plane across which
relevant stresses and displacements must be continuous. Since the
computations are carried out relative to a coordinate system which
moves with the crack tip, the presence of such an interface, which
would be located a monotonically decreasing distance from the crack
tip, creates some awkward complications in the numerical analysis.
Even though the complications may not be unsurmountable, the
authors have decided to model the transition into the viscoplastic
region in an alternative manner, which approximates a transition
region rather than a discrete interface. In this model it is assumed that
at a certain time ¢ (say t = 0) the constitutive behavior starts to change
in a timewise manner from elastic to elastic-viscoplastic. Since time
is measured relative to a coordinate system moving with the crack tip
the change of the constitutive behavior with time can be considered
as a change with the coordinate in the direction of crack propagation.
At time ¢ = {1 the transition from elastic to viscoplastic has been
completed. The time ¢ = 0 corresponds to the time that the crack-tip
region first becomes aware of plastic deformation ahead of the crack
tip, while at the time ¢ = t; the crack tip is completely surrounded by
a plastic zone. In the time interval 0 < ¢ < t; the crack-tip speed may
change its magnitude. Three cases have been considered:

1 The crack-tip speed does not change.
2 The crack tip is arrested.
3 The crack-tip speed changes from vg to v7, where vr < vg.

In the latter two cases it is assumed that the velocity changes also take
place in the time interval 0 < ¢t < t5. The initial conditions in the strip
for ¢ < 0 are given by the steady-state displacement distribution.
produced by a crack moving at a velocity vg in the x1-direction in the
center plane of an elastic strip, which is subjected to a tearing loads
at its boundaries. For a constant displacement, Wy, on the faces at
%9 = +h, the displacement distribution within the strip has a
closed-form expression which is given in reference [5]. The displace-’
ment field within the strip can also be obtained numerically by a very
efficient method which was described in [1].

At time ¢ = 0 the material starts to change gradually. The properties
become elastic-viscoplastic with a constitutive behavior defined by
equations (1)-(9). At the same time the crack-tip speed starts to de-
crease. The external loading does, however, not change, so that the

boundary conditions on the faces of the strip remain of the form
us(x1, £h, t) = Wy (15)

By virtue of antisymmetry it suffices to consider the upper half of the
strip only. The boundary condition on the surface of the crack is

03p(x1,0,£) =0 for —w<x; <0 (16)

while the condition of displacement antisymmetry yields
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us(x1,0,2) =0 for x1>0 17)

Let v(t) denote the time-dependent velocity of the propagating
crack tip. A system of (x1, xg, x3) coordinates is now chosen to move
with the crack tip. A stationary system (x, y, z) and the moving system
(x1, x2, x3) are related by

t
X1 =% — f v(s)ds, x2=y, x3=z (18)
0
The time derivatives in the equation of motion and in the flow rule
then reduce to
fs] I} o2 22 02
)=——~v—; ()=—=—2 p2—m——— (19)
ot ox1 0x10t dx12  dt dx1
Consequently, in terms of the moving coordinates, the equation of
motion (14) takes the form

dv 9

(1 —verPus iy + ug g — 2(ear1® + e309P)

Lol 2, L 1 22 (20)
——u ——ug1F——u
cr? ot a1 cr2dt &1 cr2dt? s
In the moving system the flow rule (3) is given by
o
— €31 P) = veg 1P+ Aog (21)
ot
o
> €39 = vegg 1P + Ao, (22)
and equation (9) for the rate of plastic work reduces to
o
g; Wp = U(Wp),l + 2AJ2 (23)

Equations (20)—(23) form a system of nonlinear differential equations
for the variables ua(x1, X9, ), €31P)(x1, X9, £), €32P (x4, x9, ), and
Whp(x1, 22, £) which govern the field induced by the motion of the
crack in the elastic-viscoplastic medium.

When Dy = 0 in (6), Hooke’s law for a perfectly elastic material is
obtained. The transition from the elastic state to the elastic-visco-
plastic state during the time interval 0 < ¢ < ¢ is modeled by multi-
plying the parameter Dq in (6) by an appropriate temporal function
G (t) which rises gradually from G(0) =0to G(t)) =1, and G(t) =1
for t > t1.

4 Numerical Solution

The system of equations (20)—(23) has been solved numerically by
a finite-difference procedure which employs a grid of mesh sizes Ax;
and Axp in the x; and xg-directions, respectively, and a time incre-
ment At. The procedure can be divided into three steps. In the first
step equation (20) is integrated. Equations (21)-(23) are solved in the
second step. In the third step the boundary conditions (16)-(17) are
imposed.

In the integration of equation (20) the derivatives are replaced by
their central difference approximations to yield an implicit three-level
scheme of second-order accuracy, (i.e., the error resulting from the
replacement of the differential equation (20) by its finite-difference
approximation is of a second order in the spatial and temporal in-
crements). The following system of equations in the unknown dis-
placements at ¢ + At is obtained:

eauz(xy — Axy, 29, t + At) + uglxy, xg, £ + At)
— equalxy + Axq, x9, t + At) = 2[1 — (cr? — v)e?
— erlea?ua(xy, xg, £) — ual(xy, %2, t — Al)
+ eafualey — Axq, xo, t — Af) — ua(x1 + Axy, x9, ¢ — At)]
+ (er? — v2) e?[ug(xy + Axy, %9, t) + uslxr — Axy, %o, £)]
+ erZe?[us(xy, xa + Axa, t) + uslxy, x2 — Axs, t)]
V (24)

Journal of Applied Mechanics

d
+ ;::‘ €1At[U3(x1 + Axl, X9, t) —us(xy ~ Ax1, X9, t)]/Q

— cr2eAtez P (x1 + Axy, xg, £) = €31 P (x1 — Axy, %9, 1)}

— cp2ealitfega P (xq, x9 + Axy, ) = €32 PN (x1, X9 — Axg, )] (24)
(Cont.)

where €1 = At/Axy, €3 = At/Axo, €3 = €1 v/2.

This system is tridiagonal so that a direct inversion algorithm can
be employed and no iterations are needed. According to the three-level
scheme (24) it is possible to compute the displacement 13 at time ¢
+ At if the field variables are known at time ¢ and ¢t — At throughout
the region.

In the second part of the numerical procedure the three differential
equations (21)—(23) are solved. To this end we rewrite (21)—(23) in the
form

(25)

€51 (P A om
u= 632(‘7) f A=v(t)l, B=]A 032 (26)

W, 24 Jy

3
—U=AU;+B
ot

where

with 1 being the unit matrix. The quasi-linear system (25) is solved
by the Lax-Wendroff method which is given in [6] for a homogeneous
system (B = 0). Here we generalize this method as follows:

I} (At)2 22

U(xq,x9,t + At) =U+ At — U+ —=——U + O(At3)
ot 2 ot?

2
=U+ At(AU; + B) + (A1)

(A2u + dA u
T U
dt

+AB; + %) + 0(AL%)  (27)

Let us define the operator § by
QU = (1 — A% 2)U(xy, X9, 1)

1 1dA
+ = [AZ%e;2 + A€ +~— e1At] U(xy + Axq, %9, ¢
2( 1 P ) (x1 1, X2, t)

1 1dA
+ = (A2€12 — Aey — —— élAt) U(xy — Axy, x9,8) -
-2 2 dt

1
+ ZAelAt[B(xl + Axy, x9,t) —B(xy — Ax1, x9,£)]  (28)

Equation (27) can be spatially discretized in the form
U(xly X2, t+ At) = Q U(xll X2, t)
At
+ AtB{x1, %9, ¢ +? + O(At3)  (29)

In (29), B(x1, x2, t + At/2) can be approximated by 3 [B(x1, x2, t) +
B(xy, x2, £ + At)]. Hence U at time ¢ + At can be computed tentatively
as :

O(x1, %2, ¢ + At) = Q U(xs, x5, 8) + AtB(x1,%5,t)  (30)
This value is subsequently corrected according to

OCx1, 22, t + At) = Q U(xy, 29, )
At
+ 5 [Blxs, x5, 8) + Blay, xp, t + A (31)
where the asterisk on B means that this quantity is evaluated by using
the predicted value given by (30).

According to (30)-(31) it is possible to compute the inelastic field
variables by an explicit method of second-order accuracy whenever
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Fig. 2 Normalized displacements at (—h/2, 0) and normalized stresses at
(Axy, 0) versus time for arrest (v, = 0) of a propagating crack (vo/cr = 0.8)
in an elastic strip. The rate of change of the crack-tip speed is given by
equation (33), with crty/h = 0.25 (—) and crt4/h = 0.5 (- - -). Also shown
the normalized stress-intensity factor (- -) for sudden crack arrest.

all the field variables are known at time ¢. In the special case of a
stationary crack we have A = 0, and the scheme (30)—(31) reduces to
the improved Euler-Cauchy method for the numerical integration of
ordinary differential equations.

The final part of the scheme consists of the application of the
boundary conditions (16)—(17). Equation (16) is employed to deter-
mine the displacement along the surface of crack behind the tip in the
form

us(x1, 0, 2) = uglxy, Axg, t) —~ 2Ax2e32 PN (21, 0,8) %1 <0 (32)
5 Results
The method of solution has been applied to compute the fields

generated by crack arrest as the crack tip enters titanium, for which
the material parameters are, see [3]:

u = 0.44 X 105N/mm?,
7y = 1400 N/mm?2,

p = 4.87 gm/cm3, Zo = 1150 N/mm?,

Do=10%sec™!, m=100andn =1,

The height of the strip is chosen as 2h where h = ¢7/(5Do), which
means that an elastic shear wave will propagate a distance of 5i during
the time interval D=1,

The results presented in this paper have been obtained with the
spatial increments Axy/h = Axg/h = 0.05 and the time increment
cpAt/h = 0.025. The latter value fulfills the stability condition dis-
cussed in reference 6] for the Lax-Wendroff scheme (30)—(31), which
in the present case can be written in the form vAt/Ax, < 1. It also
satisfies the stability condition for the scheme (25) discussed for an
elastic problem in reference [7]. The applied displacements + W, on
the two faces of the strip have been chosen as Wy/h ='0.008.

(1) Crack Arrest in a Perfectly Elastic Strip. We consider
the case that the propagating crack tip changes its velocity at time
t = 0 from a steady speed vg to the final value vy = 0 over the time
interval 0 < ¢ < t1. The strip is assumed to be perfectly elastic. We
consider the elastic strip because crack arrest problems in elastic
materials are of great importance, and because results for the
stress-intensity factor for sudden arrest of a crack in a strip have been
given by Nilsson [8]. These results can be compared with our nu-
merical solution for crack arrest over short time intervals [0, ¢1].

The time-dependent velocity is chosen in the form

_fwo—vA)[1l —sin® (wt/261)] + vy 0<t <ty
vf t>t

v(t) (33)
from which the acceleration dv/dt can be determined.

In Fig. 2 we present the displacement on the faces of the crack at
a distance x; = —h/2 behind the tip, versus the nondimensional time
crt/h, for initial speed vo/cr = 0.8 and two values of t1:et1/h =0.25
and 0.5, respectively. Also shown in Fig. 2 are the normalized stresses
oas at the closest grid point (Axy, 0) directly ahead of the tip. The
stresses are normalized with respect to the static value, (o32)st,
achieved at the same point by a stationary crack in the strip. Also
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shown are the results of Nilsson for the normalized stress-intensity
factor generated by sudden arrest of the crack. The stress-intensity
factor is normalized with respect to the static value (K3)gy =
uWo(2/h)1/2, for a stationary crack in the strip. Fig. 2 shows that the
two time durations ¢; do not make a significant difference for the
displacement, but it also shows that the maximum level of the stresses
obtained at short times after arrest is initiated increases as the time
duration ¢; decreases. For the case of sudden arrest, the results of
Nilsson show a jump of about 1.72 at ¢ = 0 after which a sudden de-
crease occurs, All results show that after short times the normalized
quantities decrease rapidly and oscillate with decreasing amplitudes
around unity. It should be noted that since the stresses are computed
at the nearest point to the tip of the crack, they can be regarded as the
asymptotic value of the near-tip stresses which are directly propor-
tional to the stress-intensity factor. Accordingly the normalized stress
near the tip can be directly compared with the normalized stress-
intensity factor.

The displacements on the crack face at the point (—h/2, 0) shown
in Fig. 2 are normalized with respect to (ug)s;c—the static displacement,
for a stationary crack in the strip. It is readily seen that for both cases
of ¢rt1/h = 0.25 and 0.5 the values of the normalized displacements
equal unity when cpt/h = 5.

The aforementioned numerical results are given here for the arrest
problem in which vy = 0. It should be mentioned, however, that the
present numerical method can be applied also to the more compli-
cated case of steady propagation followed by nonsteady propagation
of the crack tip. A short-time solution to this problem has been dis-
cussed recently by Nilsson [9].

In concluding this section we mention that by considering the case
vf = vg the steady-state solution for a propagating crack should be
produced when the numerical scheme (24) is applied at ¢t > 0. The
procedure which was designed for transient phenomena then should
provide time-independent results. This case forms a necessary test
for the numerical method, and it was actually performed to yield ex-
cellent results.

(2) Crack Arrestin an Elastic-Viscoplastic Strip. The results
of Fig. 2 show that arrest of a propagating crack in an elastic material
induces high values of the stresses immediately after the arrest ini-
tiates. Accordingly, when the loads remain unchanged crack arrest
requires changes of the material properties. As discussed in Section
3, we assume that the material properties change gradually from
elastic to elastic-viscoplastic during the time interval 0 < ¢ < ¢1. The
specific change is represented by the function G(¢) (see Section 3)
which is chosen here in the form

sin (wt/2t4)

0=L¢t=<t
G =1 '

34
t> i 84)

The value of the ¢ was chosen to be equal to the time required for the
crack tip to travel the length of the plastic zone ahead of the tip ofa
steadily moving crack tip in an elastic perfectly plastic material under
small scale yielding conditions. The extension of the elastic-plastic
boundary ahead of the crack tip is given by [10}: (1/7) (K3/70)? where
7o is the yield stress in shear and K3 is the stress intensity of the elastic
field. For steady Mode I1I crack propagation in an elastic strip Ka is
given by [11]
K3 = uWo [2(1 = vo¥/er?)/2/h] /2 (35)
Consequently, the duration time ¢ in (34) is approximated by
t1 = (K3/10)2/[mvel (36)

Adopting an offset rule by which the yield stress is determined at a
permanent strain of 0.2 percent, we obtain for our material that the
yield stress in shear is given approximately by 7o/ = 0.008. From
(35)~(36) we obtain the following expression for ¢y

2
crti/h = - (eq/vo) (1 ~ ve2/er®V2[(Wo/h)/ (1o/w)]? (37)

It is assumed that as the material changes its properties during the
time interval [0, £1], the velocity of the crack decreases according to
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Fig. 3 Comparisons of crack-face displacement u3 at (—h/2, 0), and the
effective plastic strain &, the total strain €5, and the plastic work W}, at (Axy,
0) for vo/cy = 0.5 and three values of v¢/cy: vy =0 (—), w/cr = 0.3(---),
and v/cr = 0.5 (---)

(33). In Fig. 3 the displacement, on the crack face at distance %1 = —h/2
behind the tip is shown together with the total strain esg, the plastic
work W, and the effective plastic strain €, at the closest point (Ax,
0) ahead of the crack tip. The rate of the effective plastic strain is
defined by

€ = [26;Pe; e)/3]12" (38)
With respect to the moving coordinates ‘é}, reduces to
o_ _
szfp = U(fp),l + 2A(J2/3)1/2 (39)

'The plots in Fig. 3 are shown for an initial crack-tip speed vo/cr = 0.5,
and for terminal velocities vg/er = 0, 0.3 and 0.5, respectively. For
these cases the value of £ in (33)~(34) has been computed from (37)
as cpti/h = 1.1.

It is of interest to mention that several functions G (¢) in addition
to the one given by (34) have been used to represent the transition
from the elastic to the viscoplastic state. The rise time ¢1 in all these
functions was kept constant and given by (37). It turns out that the
resulting field after the transition has been completed was almost
independent of the specific form of G(t). This indicated that the
specific representation of G(¢) is not important as long as the rise time
is kept constant.

Several fracture criteria for continuing crack growth in ductile
materials appear in the literature. This subject has recently been re-
viewed by Shih, et al. [12]. The crack opening displacement at a given
distance behind the tip can be used as a growth criterion. Alternatively
a strain-based fracture criterion can be used in Mode I1I crack prop-
agation according to which crack growth can initiate or continue if
ahead of the crack tip in the plastic zone the total strain ess achieves
a critical value. Rice, et al. [13], proposed a criterion for continuing
crack growth which requires that the amount of effective plastic strain,
€p, accumulated near the tip be equal to or greater than a critical value.
Here we investigate the stability of a crack using the foregoing criteria
applied to the field variables shown in Fig. 3.

Let us first consider the time-dependent effective plastic strain.
If the critical value of the effective plastic strain for continued crack
propagation is very high (more that 2 percent say) then we readily
observe that stopping of the crack should ocecur in all cases shown in
Fig. 3 since this value is never achieved. Suppose next that the critical
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Fig. 4 Effective plastic strains ahead of the crack tip at {Ax;, 0) for crack
arrest; vo/cr = 0.5 (—) and vo/cy = 0.4 (---)

value would be achieved for crack arrest. Clearly, the crack will then
not stop, but the crack-tip speed will presumably be reduced. The
transient phenomena that take place during the change of crack-tip
speed require extensive computations. 1t is, however, possible to ob-
tain the final value of the crack-tip speed after the crack tip has en-
tered the viscoplastic material, since at that velocity the steady-state
plastic strain should just equal the critical value. Thus, referring to
Fig. 3, if (€p)er is 0.75 percent, the terminal velocity should be v/er =
0.3.

Next, let us examine the criteria based on the crack-opening dis-
placement and on the total strain measured ahead of the crack tip,
respectively. These quantities are presented in Fig. 3, and they indi-
cate that similar conclusions can be drawn about the stability of the
crack as for the critical plastic strain criterion.

It is interesting to note that the dissipative plastic work W mea-
sured ahead of the crack tip can also be used as an equivalent criterion
for crack growth as can be noted from Fig. 3.

For crack arrest the effective plastic strains, €, accumulated at the
closest point (Axy, 0) ahead of the tip are compared in Fig. 4 for two
initial velocities: vg/c = 0.4 and 0.5. In each case t in (33)—(34) has
been computed from (36), giving ¢rt1/h = 1.45 and 1.1, respectively.
The graphs show that crack arrest is more likely to occur for a crack
propagating at a lower initial velocity, since the accumulated plastic
strain will be lower. Similar conclusions can be drawn on the basis of
the crack opening displacement, the total strain and the plastic
work.

A check on the validity of our numerical method can be performed
by comparing the long-time solution produced by the scheme (24),
(30)—(31) (which is designed for a time-dependent problem) after the
material changed its properties, with the steady-state solution of a
propagating crack in the elastic viscoplastic strip which has been
discussed in reference [1]. It turns out that for vg = vy = 0.8 c7 the
stress, strain, and displacement at time crt/h = 5 coincide with the
steady-state solution at the same locations. It should be mentioned
that as the initial steady velocity decreases the steady-state solution
is recovered after longer times since as can be noticed from equation
(37) the time required to establish the plastic zone ahead of the crack
increases as vy decreases.

Acknowledgment

The work reported here was carried out in the course of research
sponsored by the Office of Naval Research under Contract
N00014-76-C0063.

References

1 Aboudi, J., and Achenbach, J. D., “Rapid Mode III Crack Propagation
in a Strip of Viscoplastic Work-Hardening Material,” International Journal
of Solids and Structures, in press,

2 Aboudi, J., and Achenbach, J. D., “Numerical Analysis of Fast Mode

SEPTEMBER 1981, VOL. 48 / 513

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1 Fracture of a Strip of Viscoplastic Work-Hardening Material,” submitted for
publication.

3 Bodner, S. R., and Partom, Y. “Constitutive Equations for Elastic-
Viscoplastic Strain-Hardening Material,” ASME JOURNAL OF APPLIED
MECHANICS, Vol. 42, 1975, pp. 385-389. ‘

4 Sperling, A., and Partom, Y., “Numerical Analysis of Large Elastic-
Plastic Deformation of Beams Due to Dynamic Loading,” International
Journal of Selids and Structures, Vol. 13, 1977, pp. 865-876.

5 Field, F. A., and Baker, B. R., “Crack Propagation Under Shear Dis-
placements,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 29, 1962, pp.
436-437.

6 Richtmyer, R. D., and Morton, K. W., D:fference Methods for Initial-

" Value Problems, 2nd ed., Interscience, 1967.

7 Aboudi, J., “The Dynamic Stresses Induced by Moving Interfacial

Cracks,” Compt. Meth. Appl. Mech. Eng., Vol. 10, 1977, pp. 303-310.

514 / VOL. 48, SEPTEMBER 1981

8 Nilsson, F., “A Suddenly Stopping Crack in an Infinite Strip Under
Tearing Action,” ASTM-STP 627, 1977, pp. T7-91.

9 Nilsson, F., “Steady Mode III Crack Propagation Followed by Nonsteady
Growth,” International Journal of Solids and Structures, Vol. 13, 1977, pp.
543-549.

10 Rice, J. R., “Mathematical Analysis in the Mechanics of Fracture,” in
Fracture: An Advanced Treatise, ed., Liebowitz, H., Vol. 2, Academic Press,
1968, pp. 191-311.

11 Sih, G. C., and Chen, E. P., “Moving Cracks in a Finite Strip Under
Tearing Action,” The Journal of The Franklin Institute, Vol. 290, 1970, pp.
25-32.

12 Shih, C. F.,, de Lorenzi, H. G., and Andrews, W. R., “Studies on Crack
Initiation and Stable Growth,” ASTM-STP 668, 1979, pp. 65-75.

13 Rice, J. R., Drugan, W. J., and Sham, T. L., “Elastic Plastic Analysis of
Growing Cracks,” Division of Engineering, Brown University, Technical Report
65, 1979.

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



B. L. Karihaloo?
L. M. Keer

Professor of Civil and
Mechanical Engineering.
Mem. ASME

S. Nemat-Nassgr

Professor ot Clvil Engineering and
Applied Mathematics.
Mem. ASME

Approximate Description of Crack
Kinking and Curving

An approximate description is given of the slightly out-of-plane growth of a straight crack
under mixed-mode loading and in the presence of an in-plane stress. By using a perturba-
tion technique, conditions are derived for the deviation of the crack from straightness.
The allowance for the possible curvature of the quasi-statically growing crack, and the

effect of the finite length of the main crack are included in the analysis, which retains sec-

A. Oranratnachai

ond-order terms. In particular, it is shown that the curvature of the crack path depends

on the in-plane stress and the derivatives of the stress-intensity factors with respect to
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crack growth is also studied and the conclusions are the same as those reported by Cotter-

Department of Civil Engineering, ell and Rice.

Northwestern University,
Evanston, ill. 60201

Introduction

In a recent paper Cotterell and Rice [1] used a perturbation tech-
nique, originally proposed by Banichuk [4}, and Goldstein and Sal-
ganik [3], to derive, among other things, the conditions necessary for
slightly out-of-plane quasi-static growth of a semi-infinite straight
crack under mixed-mode loading conditions. They also studied the
stability of the crack growth under the influence of a nonsingular
stress acting parallel to the crack plane. It was shown that the devia-
tion of the quasi-statically growing crack that always occurred at a
finite angle from the initial straight path resulted from the presence
of a Mode II component in the externally applied loading.

As regards the dependence of the stability of the crack growth on
the nonsingular stress term, T, representing the tensile stress acting
parallel to the crack and appearing in the Irwin-Williams [5] crack
tip stress field, it was shown that the straight path is stable for T <
0 and unstable for T > 0.

In [1] a strict first-order approximation was used in the analysis and
the considered crack was semi-infinite. In the present analysis we
include second-order terms in the governing integral equations and
related field quantities. In addition, the effect of the crack length upon
its extension is also investigated. We show in particular that crack
curving can occur without kinking when 7' = 0 and when the Mode
II stress-intensity factor is zero but its derivative with respect to the
initial crack length is not.

1 On leave from the Department of Civil Engineering and Surveying, The
University of Newcastle, N.S.W., 2308, Australia.
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We consider an infinite plane containing a crack such that its tips
at x = a are located along the x-axis, as shown in Fig. 1, where the
straight and the curved portions represent, respectively, the pre-
existing crack and its extension. The deviation of the crack from the
x-axis is described by the function A(x), which is assumed to be small
relative to the extended length. The crack is opened by surface normal
and shear tractions, T, T, which are necessary to remove the stresses
due to external load (shown in Fig. 1).

Following [1], the stress field is expressed in terms of the analytic
functions ¢(z) and Y(z) [2] as

0ux + ayy = 2[0(2) + ()]
Oyy — Oxx — 2i0xy = 2[Z&’TZ)+W]

where z = x + iy, i = 4/—1. Then the boundary condition on the crack
is in the form

1

)+ d@) + e~ W0z (z) + Y &) = Ty — iTs 2)

where 0 is the angle made by the crack with the x-axis (6 = X’ « 1).
Introducing the analytic function,

Q) = $(2) + 26’ (2) + ¥ (2), (3

equation (2) is written as

B(2) + ¢2) + e~ %[(z = 2)¢/(z) + QE) — $(2)] = T — iTs. (4)

Following the method described in [1] we assume that there are two
functions F(z) and W(z) which correspond to ¢(z) and Q(z), and
whose boundary values are F*(¢) and W*(¢) on the upper and lower
surfaces of a straight cut located along the x-axis and in between the
crack tips; ¢(z) and £(2) have their cut along the actual crack. The
functions F(z) and W(z) can be written by the following perturbation
scheme:
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Fig. 1 Geometry of the straight crack and its kinked-curved extension, and
the external loading

F(z) = Fo(z) + Fi(2) + Fa(z) + O(\3)
Wi(z) = Wo(z) + Wi(2) + Wa(z) + O(A3)
where Fo(z) and Wy(z) are O(\%), F1(z) and W1(z) are O(\), and Fo(2)

and Ws(z) are O(A\?). On the boundary of the crack'at z = ¢ + iA(t)
the function ¢(z) is given by

(5

+

$*(2) = Fg(t) + i\ [&] + FE(t)
dz t
d2 + +
+é(i>\)2[ F"] +iA[ﬂ + F£(t) + ON3).  (6)

de t dz t

Since
ldF()] dF# (t) dF{|* dF$#(t)
y — =—-"e¢tc.,
dz t dt

equation (6) can be written as

d*(2) = F5(t) + iNF5 '(¢) + Fi(8)

—EN2FE 7(¢) + INFE/(¢) + F5(2), (7)
where the prime denotes the differentiation with respect to t. We can
also express Q%(z) in terms of W§(t), Wi (t), etc., in the same form

as in equation (7). Using this expression and noting that, for small
)\:

e 28 ~ 1 — 2N — 2X"2+ O(03), (8)
equation (4) becomes

Tn = iTs = F§(t) + W5(t) + F(t) + Wi(t)
+IMFE(E) + W) + 2iA[F5 (1) — W5 @)Y
FE(6) + Wi(t) + 2N (A[FF () — WE©)]Y
— IN{FE() + WE(6)]” — 2[NF5 /()
+iIMFFE) + WIOY + 2iA[FE¢) - WIO + 2ANF5 ' (9)

where only terms of the first and second order have been retained. It
has been found in [1] that the angle of the kinked extension is pro-
portional to the ratio of the Mode II to the Mode I stress-intensity
factor (i.e., Kni/K1); hence, for the case of the slightly deviated ex-
tension considered here the magnitude of T will be limited to within
the first order of smallness. This limitation greatly simplifies the
analysis to follow. Thus ordering the terms in equation (9) leads to

N FER) + WEQR) = (10)
Ao FE() + W) = —iTs — iM[FE(t) + W)
— 2i\[F5(t) - Wg@)ly (11
A2 FE() + W) = —iA[FEE) + WTQ)] = 2iNFT®)
~ WIOW +AF5(t) + WEO]” + 2[NFg /@) :
—2N(NFF@) — WE@]Y — 2ANFT . (12)
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The solution to equation (10) is

1 a 2 — }2)1/2
= f 7, ",
2m(22 —a?)1/2 J—q t—2z

From equation (11) the boundary values of [F1(z) + W1(2)] and [Fy(2)
— Wi(2)] are given by

Folz) = Wo(z) (13)

[F1(6) + Wi@)]* + [F1(t) + W1()]~ = —2i(Ts + AT},)  (14)
and
[Fi(t) — Wi)]* — [Fu(t) — Wit)]™ = (15)
Therefore, F1(z) = W1(z), which are given by
Fi(z) = Wi(z) =mf —i(T, + \T, )(—__—tz)lfdt.
(16)

Using equations (13) and (16), equation (12) yields the boundary value
of [Fa(2) + W3(2)]

[Fa(t) + Walt)]* + [Falt) + WaD)]™

= 9NT', + AN'T, + 4(\2T5) + A2T, (17)
whose solution is
1
Fa(z) + Wa(z) = m j‘ [2AT", + 4N'T
) — L2
+ 4(A2TS,) + AT, —dt. (18)

At apointz = a + r + iwr, where w = N (a) is the slope of the crack
tip at x = a, the functions F'(z) and W(z) are single-valued and o,
and o, can be obtained from equation (9) as follows:

Ooww — L0 = 2Fo(a + 1) + 2F(a + r) + 2iw[rFola + r))

— 2iwFgla + r) — 3w 2Fy(a + r) — 20w2rFola + r) + 2iwrFi(a +r)

+ 2iwir[Fi(a +r) — Fila + )Y + Fala + r) + Wala + r) + O(w?).
(19)

By substituting equations (13), (16), and (18) into equation (19) the
stress-intensity factors, K1 and Ky, are obtained as

Ki—iKp=1lim (1 + w2)1/4(27rr)1/2(0w - Ory)
r—0

= (1 + w2)Y4(rq)-1/2 f (g1 — iqm) ( at 2)1/2 dt, (20)
where
q1= (§w? = DTn + JoAT, — 2(N2T7)
¥ (%“’ - 2>\’)T5 - AT, - TS (21)
qu=—"Ts ~ % T, — AT, (22)

Let L and ! be the projections on the x-axis of the pre-existing crack
(length L) and its extension, respectively. Let t = a — [ + r and as-
sume the equation to the curved crack path in the form (see Fig. 1)

hir)—h(l), 0<r=l
x(r)=[ (r)=h(), 0<r o3
—-B(L+r), -L=<r=<o9
where
h{r) = (¢ — B)r + ar¥/2 4+ xr?, (24)
' B =h(D/L, (25)
and «, 17 and x are constants to be determined from the ordering
scheme;

After integration by parts and use of the Taylor expansion for
(1 + w?)1/4, equation (20) can be written as
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(ﬂ-a)I/Z f [(A - _) Ts + (1 - 3w? + §oM)T, ]

L + t\1/2 1 al
i _—— 3T —T.) 2N
(l - t) (wa)l/2 j:L (3oTn = T5) (L + r)/2(1 — ry3r2 dr

_ 1 I a BA2 ’
(ma)l/2 f—L 2 "L+ e — r)3/2] dr

1 l ot
___(m)me [M( t) ]dt (26)

-1 l w L+ r\1/2
K =—f T, + |2 = M|T,
1 (ra)l/2 —L[ +(2 A)T”l—r) dr

+ 1 fl arT, dr

(wa)l/2 J-L (L + r)1/2( —

where now and in the sequel prime is used to denote differentiation
with respect to r.

To simplify equations (26) and (27), we resolve the components of
the tractions in the directions of x and y-axes, whereupon

(27)

ry82

=1 = N0y + N20, — 2N o4y + O(A3)

Ty = N(oyy — 04z) + (1 = 2N 0y + ON3). (28)

For the case of crack extension the stress components on the boundary
of the pre-existing crack are zero, and those on the extended portion
can be derived from the stress field that exists along the prolongation
of the pre-existing crack tip [4]. In the r, h-coordinates the stress
components on the curved portion are expressed in the form

292
a1, 1) = e, 0) 4 2220 0 12 000 1, 0

2 dy?
Pe) 0 h2 92
Oy h) = 0,y (r, 0) + h 2220 0) | 17 0%y 0, 0)
dy 2 oy?
304y (r, 0)  h2d2,,(r, 0
Gay(r, B) = oy r, 0) + b 2220 ) BP0y (n0) oy
oy 2 dy?

Using the asymptotic expansion for the stress field together with its
derivatives with respect to y near the tip of the main crack, equation
(29) becomes

Gulr h) = =L (1—9}’2) 3_ku h
"" @rr2\" " 8r2) " 2\/2mrr

1/2 3 h? 3 1/2h
-T-b 14-——|—=-b + O(\3
! (27r) ( 8 ,.2) 2 = (2#) r A%

—k1 3h?\ 1 ky h

oy (r,h) = (27rr)1/2( 5:2—) _5W7
G e oo

) = (:7 " g) - T
by (?ﬂr)”2 ( s g) b (2 )1 1009 (30)

where ki, k11 are the Mode I and Mode 11 stress-intensity factors and
by, byr are coefficients of terms proportional to square root in the
Irwin-Williams expansion [5] (see the Appendix). For the stress state
under consideration as shown in Fig. 1, T' = (p — 1)o=. The details
required for the calculation of equation (30) are given in the Ap-
pendix.

Substituting 2a = L + [ into equations (25) and (26), expanding (L
+ 112 and (L + 1)V2 in terms of /L and I/L, and assuming that [/L
is a small quantity of the same order as A/, we obtain

N2 i ! 3 3wl
kim0 [ oo B s 22
by 0 8 2
2\i/2
(3
1rv

41~r)
AN 15A? dr
I—r 8(—r)1-nr)2

+ N2+ AN+ (31)
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' Ty dr

L7, 2\1/2
X f =2 (1 = r)2dr — (—) —= (812 —2Ir — r?)
o 2L L o 8L2 (l—r)z

2\1/2 1 A dr
-2 v -S| &
(r) j; [ 2“’ 2 —r)] =02

(Cont.)
o\1/2 pl
K=~ (") f Tn —
T 0 2 20 —r)] (I — r)12
2\1/2 ~IT,
R
T 0 2L 2 2(-r)
212 i I—A  dr
- |- Tsll = ——| ———— (32
(w) S, [ 2L ] i @
where terms only up to second order are retained.
Substituting equation (30) into equation (28), and the resulting

expression into equations (31) and (32), equations (31) and (32) with
the definition of A in equation (23) become

__flm( L3R hh') ku(h

riz \or 2h )
+ (2m)12Th2 + b1r1/2(1 — h_ + E}i,) — byrl/?
8r2  r
8 h )} a1 pl ( kr

+ - 4 on/ —+—f 2Ly byl

(2 or =r2 g Jo 12 v )
2
X [—"i— + ﬂ;ﬁ (=311/2 + 33r1/2) — wx(l — r)

Loogo s {151 156(Ir)1/2
IR SRS o M
g% 32 g

[

8r2 1

12r(71V2 — 11r1/2)
V2 4 p1/2

60r2 9 }

(V2 41722 " 4
18r ) dr

12 4 r1/2}] (-

+lfl{ﬁ(£+_ +ﬂz
x Jo |r12\or g U
h ,6 =71~ (Ir)Y/2 + 8y
el o
e Tl T T ey
X 1/2
(l )] (=12 oxL f [ e tor ]

1
s o ot

1 L Ry kun {h
_1 L, ko fr o, YTy,
Ku . ﬂ {r1/2 + i (27‘ 2h ) + byrl/2 — pyyrl/2
ﬁ h )][n (51 — (Ir)1/2 — 4r) 3x
B | i & . 97
(2 o 4\ ey g L1

dr ki (h ku
(l—r)1/2+ f {rl/z 2r+§)+r_{/§

1
+ gnx(l - r)(3ll/2 - 12r1/2 4

@m2Th’ + B)

X (I~ r)Y2dr + 2r —r ) (33)

dr
)1/2

h B dr
- (2 )1/2Th’+ -b 1/2(———)+b 1/2]_______
2w (h" + ) - by o 2 o I
—70— ()12 + 8
12 | I P
27rL f ( v o )[w + 4( V2 4 p1/2

5. . L h (B
- X(l r)](l rY2dr rLf {r1/2(2r 2)+r1/2

— @M2T(h + B) — byr1/2 (— ) + bnrlfz}(z ~r)dr. (34)

Using equations (24) and (25), and noting that w = h'(l), it follows
that,

3 3 9
Ki~ki—=-o?k1—-ak +l1/2(—— k
1 1 g I 9 1I 8“"’ I
9 2\1/2
——nkn+2(—)
4 T,
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1 7 15
+ -k + + — — 3xk
[ I(L 4ax ?7) XRIT

32
11 {2\1/2 by 5 86
+ == T+—=~-abn+—n% +]
2 7r) TRt M
5 2\1/2 39 4
+l3/2[——nxk1+(—) T{n (———)+7axl
8 T 16 =«
21 13 653
+ = anb bu+——qx +...|+0@) (35
16" 8 T g4 X ] (Cont.)
3 9\1/2
K[[Nk11+gk1+ll/2 [“nkl—z(—) aT + ..l+l[k1(i+ X)
2 4 iy L
kn 3 (2)1/2 ]
——— ——b += b PR Y B
1 \r 7T 1 I 16L I

2\1/2 i__ 1 __§_ 2
() (BL 3) 8b1 37rozb1+ ]+O(l ). (36)

If @, 11, and x in equations (35) and (36) are set equal to zero the
results become

kil byl
Ki=ki——+—+0(?2 37
mat 12, (37)

knl bul
Ku=hky——+ + 0(l2 38
us= k= 12). (38)

We can identify the crack extension change (as | — 0) of K1and Kyt
as the following quantities:

k b Ki—k k
a2 ./ PTG .S ek L2 § (39)
4L 2 10 ! oLo
k b -
2 TS el (40)
4L 2 1 l oLg

the right-hand sides of which can be computed from the boundary
conditions of the main crack. With these definitions equations (35)
and (36) can be written in the form

3 3
Ky =ky—-o?k1 — ~—kno
1= R etk = ok

9 9 2\1/2 31
+ 11/2[_ s anky — = nkn +2 (—) o?T + pw anki+. ]
T

+1 Ik( +15)3k+ ()1/2
oLo 17 ax 32?7 XRIL
_5 dkn_5aki, 86, ]
+—kmZ+...|+ 0032 (41
T5%Lo 8 L an™ 5 @)

9\1/2
KH=k11+gk1+ll/2[—ﬂk1—2('—) OlT+...]
2 4 T,

ok ok 1/2
+ z’ku + = 2231 -( ) 2T +. ] +0(32). (42)
oLy 20Lg
Following the discussion in [1] that the crack will extend in the
direction of vanishing K1, the ordered conditions for determining the
constants «, 7, and x can be found as follows:

1°; ku+§k1 =0 (43)

3 2\1/2
172, -k —2 (—) aT =0, (44)

4 vy
Ok adk; 3 (7r)1/2

J2% kit ——————|— =0, 45
Xt oLe 2oL 2%2) " (45)
from which it follows that the terms in equation (24) are 1dent1f1ed

ag?

2 Equation (47) differs with the corresponding expression in Cotterell and
Rice [1], their equation (45), by a factor of 2.
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a~ — 2kulky (46)
8 ( )1/2 “
- 7
~3 )
T2 1 ok 1 2k
{ o e (48)
ki 2k1 oLy 2k110Lg

Discussion

By taking into account the length of the pre-existing crack it ap-
pears that the crack growth path depends not only on the in-plane
uniform stress T, T' = (p — 1), as concluded in {1] but also upon the
derivatives with respect to the pre-existing crack length, L, of both
Mode I and Mode II stress-intensity factors as indicated by equation
(48). When T = 0 we obtain from equations (46)~(48)

a=—2kuy/ky, 1=0, x=(a/2k))dk/dL¢+ (a/2k1)0k11/OLy,

and it follows from equation (24) that the crack path is a curved one
whose curvature depends upon the derivatives of ky, k1, whereas in
the absence of these additional terms, the extended portion would
be predicted as a straight crack with angle .

The initial angle of deviation from straightness « as given by
equation (46) can be viewed as a parameter that characterizes the
inhomogeneity in the system, which is unavoidable in an actual sit-
uation. Equation (24), together with equations (46)~(48), indicates
that the slope of the crack extension increases with an increase in the
value of T' > 0. If, however, T' < 0, the kinked crack has a tendency
to revert to its original straight path; i.e., the crack growth is unstable
when T > 0, but stable otherwise. This conclusion is identical to that
obtained in [1].

Consider now a loading condition for which 7' = 0 and k11 = 0, but
0k11/dLg 5 0. Then it follows from equations (46)—(48) and equation
(24) that, in the r, h-coordinate system of Fig. 1, the crack path is given
by

Ok
h==Br — {2 k2 + O(572
Br {bLo/ I}r (r5/2),

so that without an initial kink the crack can have a smooth curved
path in a nonhomogeneous stress field in which the Mode II stress-
intensity factor, while zero at the tip of the pre-existing crack, grad-
ually changes with distance away from the crack tip. Thermally in-
duced crack curving of this kind has been observed experimentally
by one of the authors (SN-N) in glass plates.
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APPENDIX

Stress Components and Their Derivatives Near a
Crack Tip

Referring to Fig. 2 the stress components in the x, y-coordinates
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Fig. 2 Coordinate axes at the tip of a straight crack

can be expressed in terms of the polar stress components, o, og9, and
o+ as follows:

Gxx(X,y) = 0, cOs2 ¢ + ogg 8in2 ¢ — 7,9 8in 2,
oyy (%, y) = ayr sin? ¢ + gy cos? ¢ + a4 sin 2¢,
Lo — 0pg) sin 2¢ + 01 cOs 2¢.

Oxy (x, y) (49)

Using the chain rule of differentiation and a transformation of coor-
dinates, we obtain derivatives with respect to y in polar form as

. o0 cosf o
— = gin f — —
oy or r of
2 2 4 2 2 122
B o 2 WP 1) 0> 15
dy2 oz r lorod rof r lor r2og2
(50)

Hence, the stress components, 0y, 0yy, 0xy, along line Ox in Fig. 2
are

022 (2, 0) = apr(x, B),
U'yy(xy 0) = aps(x, B),
ny(x; 0) = arp(x, ﬁ):

and their first and second derivatives with respect to y are in the form,
using (49) and (50),

(51)

bzrxx 1 ba,-,
( 0)=- - 20, ] ,
) X o ro r=x,0=8
_adﬂ (x,0) = l Q04p + 96 ]
o x| o8 rez8=8
aaxy 1 A0,
0 + 0~ 0 . 52
a ( ) < o8 Orr 90 - ( )
0204« az¢7rr A0y, A0
x,0)=— r— —4——+ 2(o Orr) R
dy? (0 x2] 202 or of g M,
Tyy 1 azo'gg ao’gg bo’ra
= |2 r 2+ 4—2 — 2(op — Orr ,
y? *0 x2| 002 ’ or o8 (oo = brr) r=x,0=p
bzo'xy %g,9 Q0
O =—=|—tr— +2——(0,—cr )—4o .
oy? (=, 0) x2| 002 or Y o i
(63)

The asymptotic series representations of o, ggs, and o are in the
form (see [5, 6])
] 30 _ku ( [/ 36
o (r, 8 5cos~ cos— —58 m +3sm———
0= 44/ 2w ( 4\/ 2rr 2

+T00520+-—!\/:(3cos—+cos—)
4 21 2 2

- p ‘
+@\/L (3 sing+5sin5—) +0(r), (54)
4 27 2 2
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k 0 k
age(r, 6) =4\/2L_ (3 cos§+cos —~) \/L( 3Slng— 3sin 320)
+Ts1n20+—\/‘(5cos——cos—)
j\/:(S sin — — 5 sin §Q) + 0(r),
2n 2 2
k 9 360 k [/ 0
ar(r,0) = \/21_(sm P + sin —) + 4\/1_ cos —+ 3 cos 32)

—Tsmﬂcos@-!——-\/»(smﬁ—sm——-
b r
+—4/— —cos—+5<:os— + O(r).

(Cont.)

Substituting (54) into (51)—(53) and making the approximation for
small § (in fact 8 is of second order as discussed in the text), we arrive
at

ky  k
L, ko

§+T+b1'»\/i
2rx 2 2w

Ore (2, 0) =~

27x

+b1\/:—bn\/—( + O(x),
27

k
Jyy(xy 0) =~ \/_2—71‘_—;

ki B ki \/7
X 10 o - -
7y (%, 0) \/27rx2+ 27rx T6=br 27 2
+bn\/z+ O(x). (55)
2
OOy
oy (x,0) = ( T Zx)

by bn (1
* vV 27x (Z) V2rx (2) +00),

2752 (1, 0) o 2k (i)J' 2 ﬁ)
ay Vorx \2x]  /2wx \dx
b1 (1) bu (75)
- = - + 0(1). (56
272 \2]  V2mx \4 (1). (56)
OZ(J'm(x’O)z _ k1 i + ki .i@
oy? 2mx \dx? 27x \8x2
b1 3) b (gﬁ)
+ =)+ == + 0,
Vomx x| /27x \8x =7
02g,, (x, 0) ~ k1 (i) ki 3@) _ (_;l_)
v T /2mx \dx? x \8x2  /27x \dx
bn (7ﬂ)
- !+ 0(x~1),
Vorx \8x (==
b O'xy( 0) k] %)_ kn (_g-_)
oy? \/27rx Sx? 27x \4x?

—-2T—§-—L(3— b

3
=2 -1
%2 \/27x \8x 27 x (4x) +0GTH. (67)
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Based on the maximum energy-release-rate criterion, kinking from a straight crack is in-

vestigated under the plane strain condition. Solutions are obtained by the method that
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models a kink as a continuous distribution of edge dislocations. The energy-release rate
is expressed as a quadratic form of the stress-intensity factors thdt exist prior to the onset
of kinking, and the coefficients of this quadratic form are tabulated for various values of

the kink angle. The examination of the results shows that Irwin’s formula for the energy-
release rate remains valid for any kink angle provided that the stress-intensity factors
in the formula are taken equal to those existing at the tip of a vanishingly small kink.

Introduction

Crack kinking is of considerable importance in fracture mechanics,
and many attempts have been made to study this phenomenon, be-
ginning with the work of Erdogan and Sih [1], who used the maximum
stress criterion. Sih [2] also proposed an approach known as the
minimum strain-energy-density criterion. The predictions obtained
from these two criteria are based on the near crack-tip field that exists
prior to the onset of kinking. Besides these, there is the maximum
energy-release-rate criterion which is a generalization of Griffith’s
original energy-release-rate criterion {3, 4], and which seems to stem
from the fundamental mechanics principle of minimum potential
energy. There are several analytical studies of the mixed mode frac-
ture, that employ the maximum energy-release-rate criterion; i.e., the
works of Hussain, Pu, and Underwood [5], Palaniswamy and Knauss
16}, Gupta [7], and Wu [8-10]. Detailed discussions of [5, 6] are pre-
sented in [8]. Among these, the results in [10] are rather complete.
Recently, closed-form expressions for the energy-release rate have
been obtained by Wu [11], and Hayashi and Nemat-Nasser [12], as-
suming small kink angles.

The objective of this work is to investigate the kinking from a
straight crack, on the basis of the maximum energy-release-rate cri-
terion. To calculate the energy-release rate at the onset of kinking,
the problem of a kinked crack with an infinitesimally small kink
length is first solved by the method that models the kink as a con-
tinuous distribution of edge dislocations. This method is similar to
that of Lo [13], and Karihaloo, Keer, and Nemat-Nasser [14], and is
the same as that in [12]. Once the density functions of edge disloca-

1 On leave from Department of Mechanical Engineering, Tohoku University,
Sendai 980, Japan.
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tions are obtained, the energy-release rate is readily determined with
the aid of the near-tip stress field that exists prior to the onset of
kinking.

Simple expressions are obtained, which relate the stress-intensity
factors and the energy-release rate, where the expressions for the
stress-intensity factors are linear combinations of those of the main
crack, and therefore are identical to the expressions presented by
Bilby.and Cardew [15]. The energy-release rate is given by a quadratic
form in stress-intensity factors of the main crack. Coefficients of these
expressions are tabulated as functions of the kink angle. Once the
crack problem without a kink is solved, then the stress-intensity
factors and the energy-release rate can readily be evaluated for an
infinitesimally small kink with the aid of the expressions presented
here. The examination of these results shows that Irwin’s formula for
the energy-release rate is valid even at the inception of kinking for
any kink angle, provided that the stress-intensity factors in the for-
mula are taken to be those that exist at the tip of a vanishingly small
kink. This fact was first suggested by Hussain, Pu, and Underwood
in [5], but apparently had not been completely accepted [10], so that
the validity of Irwin’s formula had remained an unsettled question.
The present work, therefore, should make it clear that Irwin’s formula
indeed holds at the inception of kinking for all kink angles; it clearly
applies after kinking has taken place.

Statement of Problem and Basic Equations

Consider an elastic body with a kinked crack. The body is isotropic
and in the state of plane strain under a set of uniform stresses applied
far from the crack. The lengths of the main crack and the kink are
denoted by 2a and [, respectively. The fixed rectangular Cartesian
coordinate system x,, shown in Fig. 1, is used; throughout this work
Greek indices take on values 1, 2, and, unless otherwise stated, the
usual summation convention is employed. A supplementary Cartesian
coordinate system {, is also used, as shown in Fig. 1. In what follows,
the superscript 0 identifies functions in the supplementary coordinate
system. The stress tensor at infinity, referred to the x ,-axes, is denoted

© by o5

The boundary conditions of the problem are as follows:
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1 The surfaces of the main crack are free from tractions.
2 The surfaces of the kink are free from tractions.
3 The uniform stresses are given at infinity.

The kink is modeled as a continuous distribution of edge disloca-
tions with Burgers’ vector b,({1) referred to the {,-axes. The elastic
potential functions ®(z) and ¥(z) of z(= x1 + ix2) [16], which satisfy
Conditions 1 and 3, and the requirement for the single-valuedness of
the displacement (for a circuit taken around the kinked crack) are
given by [12]

+ w
Bz )~"“4"22+ ®(z )+L>\f Bls)e™ 4 +f B}z, 5)ds,

slw

V() = 2L +ioh + Vi) — i
TB)e _ sB(s)
f lz —sei (2 _sem)2] s+ f Wiz, s)ds, (1)
where
®(2) = 05— 10Ty X@)z+a)—1], @)
i) =~ 2 |Beei 1 X@ 1
Dy(z,8) = 5 [ﬁ(s)e L Taeia T Csemie  X(si) 7 — soie

X(Z) 1 Bl)p —iw —ie — piw
_ oo se“"“’} + B(s)e " “s(e elv)
N { 1 _ X(z).
(z —se~iw)2  X(seiv)
a+ se~ie 1 X 1 1 3)
se~iw(se™iv + 2a) z —se—i¢  X(se~i®) (z — se~i)2J[’
¥i(z) = —®1(z) + P1(E) — 291 '(2), 4)
iz, 8) = = @32, 5) + 3z, 5) — 283 (2, 5), (5)
X(z) = 1/vVz(z + 2a), 6)
E

A= SrTE—— : )
B = b1 + lb2 (8)

Here, E is Young’s modulus, and » Poisson’s ratio. The branch of X (z)
is taken such that X (z) — 1/z as |z} — «. An overbar is used to in-
dicate the complex conjugate. o

The density function 8({1) is related to the displacement-discon-
tinuities across the kink,

B = 2 (] + ifug), ©

oy

where

fug] = u2|§2»0+ - ug|§2—>0—~ (10)

Here, 1% denotes the displacement vector referred to the {,-axes.

Singular Integral Equations
The elastic potential functions given by (1) satisfy Conditions 1 and
3, and the requirement of the single-valuedness of the displacement.
-Only Condition 2 remains to be satisfied, and this leads to a system
of singular integral equations whose unknown functions are the
density functions bo({1).
The following nondimensional notation is introduced:

l 5}

l=-, E==, r=£, tgﬁ_—aﬁ
a a a gc
aﬂ a(g‘l)
tag=— B 11
= «(§) = /N (11)

where ¢34 is the stress tensor referred to the {.-axes and 0. is a rep-
resentative stress for the system. Furthermore, set
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L)
&
i w
—2a - 0 *1
Fig. 1 Geometry and coordinate systems
£ r
2=/t dal) = Vr Bo(r). (12)
For | « a, the basic infegral equations then are?
1
S Qaate, t @)pl)dt = Pop(@ll, + Vi(tF; ~ tE)Ru(w),
0<x <1, (13)
where
1
Pap(w) = 5\7—5 {Clp(w) + C2p(w) - Co(p(w)} (14)
k1 = 51/0'0\/ wTa = t§2, k2 = EZ/O‘C\/ ma = t?z, (15)
1 1
Ri(w) = — Zsin 2w, Ro(w)= —2-sin2 w, (16)

and %, are the stress-intensity factors existing prior to kinking. The
quantity C.g(w) denotes the coefficients of the singular terms in the
asymptotic expansion of the near-tip stress field of a straight crack,
and is identical to those in the Irwin-Williams solution [17]:

1

Ci = " (3 cos w/2 + cos 3w/2),
3 . .

Cig = — Z (sin 3w/2 + sin w/2),

1
Cor = n (sin 3w/2 + sin w/2),

1
Cop = n (3 cos 3w/2 + cos w/2). amn
The kernels Qgq are given by
Opec | Opa
Qe =—"—+—"—"—+— k (X, £ ©), (18)
e x—t x+¢ ?
where
. d, dy xeied d
ko(l + lkaz = "——1 + N 2 T o8 -a4
x+t xeldt (xelwdt)2 xe o4t
xe-—iwd x2e—2iwd
: b i ab , (19)
(xe~ @ +t)2  (xe~ i@+ )3
and
di1=—2, dig=—cosw—2sinw, diz=1sinw,
dis = e~ i¥(—cos 2w + I sin w cos w),
dis = —e ™ gin w(4 sin @ + { cos w),
dig = 2e v gin? w, do1=—2i, dog=—1cosw, dgs=sinuw,
dos = e~ (sin w cos w — i), dg5 = —e ™" sin w(cos w + 2i sin w),
dze = 2ie"iv gin2 @ (20)

2For [ « a, v {1/2a X(51ei9), V/5/2a X (seiv), and v/5/2a X (se~) in the
kernels of the integral equations can be expanded into the power series of {1/2a
or s/2a. Neglecting terms of the order higher than 0({1/2a) and 0(s/2e) and
taking into account (11) and (12), one arrives at (13).

SEPTEMBER 1981, VOL. 48 / 521

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



It can be proved that the last term of the right-hand side of (13)
makes no contribution to the solution as { — 0.3 Therefore, (13) can
be reduced to two systems of integral equations,

j; " Qpal, t; ) opa(t) dt = Par(w), 0 < x <1, @1
j;l Qpalx, t; w)pa(t)dt = Pyo(w), 0 <x <1. (22)

The solution of (13) is given by
da(x) = Rpdp,(x). (23)

The second and third terms of the kernel Qg, in (18), are un-
bounded as x and ¢ approach zero simultaneously, and the singular
behavior of the solution at £ = 0 may no longer be described by 1/+/E.
In order to study the singular behavior, it is necessary to examine the
behavior of the integrals in (13) (or (21) and (22)) by the method
proposed by Erdogan [18]. However, this examination is very tedious
in the present case, so that here the singular behavior is estimated by
using the asymptotic results presented by Bogy [19] for the fields
associated with the vertex of a stress-free wedge, which, according to
[19], behave as 1/d¢ for a wedge angle larger than 7 and less than 2w,
where d measures distance from the vertex and € < 1/2. In view of (9),
this implies that B,(£) is of the form,

B8
EVI-F
with a bounded function B%(£). From (11), (12), (23), and (24), it is
concluded that

Ba(£) = €<1/2, 24)

koa,(x)
V1I=zx%

where Yq,(x) are bounded on the kink.

dalx) = (25)

Stress-Intensity Factors and Energy-Release Rate
The stresses near {; = [ on the {;-axis, but not on the kink, are given
by

zz(B1 + th)
— it~ f

{koW1p(1) + ik o, (1)) (26)

27
VE-I
The stress-intensity factors at the tip of the kink are defined as

Ki+iKg= glirlr!" WV2m(E = 1) (¢3; + it1d) g=ol, (27)

where the stress-intensity factors are nondimensionalized with respect
to 0.4/ wa. Then, for an infinitesimally small kink, it follows that

K+ iKn = =27/ 2wlkpWa,(1) + thy iy (1} (28)

When a kink starts from the tip of a main crack under the plane
strain condition, the change of the potential energy, AP, measured
per unit thickness of the elastic body, is given by

AP=1f
2 Jas

where AS denotes the newly created area by kinking, o3 are the
stresses acting on AS before the onset of kinking and referred to the
{a-axes, Aul are the displacement increments due to kinking, and nd
is the outward unit normal vector of AS, From (29), the energy-release
rate, G, is given by

d(AP)
al

o Aulnids, (29)

- [ T = > lulldsy, 30
-0 l~+0

3 Solution (13) can be expressed as the sum of two solutions. The first solution
is determined from the first term of the right-hand side of (13) and is inde-
pendent of {. The second solution is determined from the second term of the
right-hand side of (18) and is proportional to /1.
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Fig. 2 A crack under unldirectional tension

where

Ta(= [ olds, (31)
In deriving (30), the following conditions are used:
Tos @ =0, [ullem1=0 (32)

Employing the Irwin-Williams expression for ¢,3, and using (9), (11),
(12), (25), and (30), we arrive at

G
G*= = =32k kPga(w)g,(w), (33)
ma(l—»?)
E °°
where
Ig,(w) = j; Vao(t) ﬁdt, (34)

Results and Discussion

The two sets of integral equations (21) and (22) are solved by the
method developed by Gupta and Erdogan [20]. The discretized forms
of (21) and (22) are

T 2 Qe b @Wt) = Paa(o) (35)
T n
P—— El Qpalxj, ti; w)Wpa(ti) = Paslw), (36)
-where
t,=cos,(2l_1 ), i=12, n
4n + 2 ’
wj
%j = cos (2n " 1) j=1,2,...n (37)

Equation (35) (or (36)) provides a system of 2n equations for the de-
termination of the 2n-values ¥41(¢;) (or Yga(t;)).

For the numerical calculations, two cases, i.e., n = 60 and n = 90,
have heen examined. The discrepancy between the resulting two sets
of stress-intensity factors (or the energy-release rate) becomes larger
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Table 1 Maximum energy-release rate for unidirectional tension
(~;— -y w./w G* K L xiﬂ(il
0.025 -0.41169 0.00989 0.09942 0.00193 0.00989
0.050 ~0.40269 0.04114 0.20279 0.00361 0.04114
0.750 -0.39367 0.09482 0.30788 0.00474 0.09462
0.100 -0.38442 0.17015 0.41242 0.00539 0.17012
0.125 -0.37453 0.26444 0.51423 0.00605 0.26647
0.150 -0.36411 0.37342 0.61106 0.00625 0.37343
0.175 ~0.35317 0.49142 0.70096 0.00592 0.49139
0.200 ~0.34141 0.61194 0.78220 0.00529 0.61186
0.225 -0.32835 0.72824 0.85338 0.00508 0.72828
0.250 -0.31414 0.83396 0.91318 0.00414 0.83392
0.275 -0.29825 0.92357 0.96106 0.00345 0.92365
0.300 -0.28022 0.99319 0.99659 0.00256 0.99319
0.325 =0.25970 1.04062 1.020L4 0.00185 1.04070
0.350 -0.23598 1.06603 1.03248 0.00101 1.06602
0.375 ~0.20836 1.07165 1,03522 0,00067 1.07168
0.400 ~0.17620 1.06192 1.03051 0.00037 1.06196
0.425 -0,13894 1.04301 1.02129 0.00019 1.04304
0.450 -0.09645 1.02206 1.01098 0.00013 1.02207
0.475 -0,04938 1.00598 1.00298 0.00014 1.00597
Table 2 Maximum energy-release rate for crack-parallel shear
u/m G* Ky LI Ki-ﬂ(il
-0.42080 1.51692 1.23119 0.02661 1.51655

as w approaches =. However, this discrepancy is at most 1 percent for
w = 0.87. The results presented next are obtained with n = 90.

In Tables 1 and 2, the critical kink angle, w., the stress-intensity
factors, and the energy-release rate are presented for the case of a
unidirectional tension defined in Fig. 2 and for the case of a simple
‘shear parallel to the main crack. The results in Table 1 agree well with
those in [10]. The critical kink angle for the case of a simple shear
parallel to the main crack is —75.8°. This value coincides with that
predicted in [15], but is slightly at variance with the results in [6,
10).

From (28), the stress-intensity factors for an infinitesimally small
kink are expressed as linear combinations of k,, i.e., the stress-in-
tensity factors existing prior to kinking,

Ki=Kieka, Ku= Kiteka, (38)

where

KIar = "2\/57(' \pZa(I)» KIIa = —2\/571' wla(l)- (39)

In Table 3, K1, and K11, are presented.
From (33), the energy-release rate is expressed as a quadratic form
of kg,

G* = Cgnik} + Caizkiks + Caask, (40)
where
Cg11 = —32Pplp1,
Cgi2 = —32(Pg1lge + Ppalp1), Caoz = —32Pgalpo. (41)
Now, consider the following formula:
G* = K} + K. (42)

This formula is formally the same as Irwin’s formula in which k; and
kg are used instead of K1 and K1 From (38) and (39),

G* = Cgi1k} + Ckizkiks + Craks, (43)
where
Cr11 = 872, (,1(1), Criz = 1672¢,1(1,e(1),
Ciza = 872 pa(Dpa(1). (44)
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Table 3 Coefficients of (38); K||1(w) = "K||1(“(|)), K||2(w) = K||2(—(A)),
Ki{w) = Kiy(—w), Kin(w) = —Kp(—w)

uln K K X K12

0.0 0.0 1.0 1.0 0.0

-0.06 -0.06251 0.98772 0.99410 0.18770
-0.08 -0.12320 0.95131 0.97655 0.37069
-0.12 -0.18029 0.89211 0.94794 0.56441
-0.16 -0.23219 0.81224 0.90913 0.70469
-0.20 -0.27751 0.71460 0.86127 0.84784
-0.24 -0.31514 0.60262 0.80579 0.97083
-0.28 -0.34430 0.48016 0.74427 1.07134
-0.32 -0.36449 0.35137 0.67837 1.14784
-0.36 -0.37560 0.22048 0.60981 1.19960
~0.40 -0.37782 0.09165 0.54024 1.22672
~0.44 -0.37159 -0.03116 0.47126 1.22996
-0.48 -0.35768 -0.14440 0.40626 1.21082
-0.52 -0.33705 -0.24495 0.34049 1.17129
-0.56 -0.31080 -0.33023 0.28095 1.11390
-0.60 -0.28024 -0.39818 0.22632 1.04149
-0.64 -0.24697 -0.44724 0.17664 0.95746
-0.68 -0.21803 -0.47259 0.12248 0.87185
-0.72 -0.17069 -0.49145 0.10537 0.75787
~0.76 -0.13673 -0.48255 0.07269 0.65584
-0.80 -0.10410 -0.45761 0.04716 0.55040

Table 4 Coefficients of the quadratic forms (40) and (43); Cxq1(w) =
Cx11(—w), Cx12(w) = —Cx1z2(—w), Cxz2{w) = Cizz(~w), Coi1{w) =
Ce11{—w), Ca12{w) = ~Cgi2(—w), Caz(w) = Cazz(—w)

u/® Sl Ck12 Craz Co11 Ca12 Cen
0.0 1.0 0.0 1.0 1.0 0.0 1.0
-0.06 0.99215 0.24979 1.01081 0.99215 9.26970 1.01081
-0.08 0.96884 0.48959 1.04238 0.96884 0.48959 1.04238
-0.12 0.93111 0.71044 1.09224 0.93111 0.71044 1.09224
-0.16 0.88043 0.90409 1.15633 0.88043 0.90409 1.15633
-0.20 0.81882 1.06381 1.22949 0.81882 1.06381 1.22949
-0.26 0.74864 1.18476 1.30565 0.74864 1.18476 1.30565
-0.28 0.67249 1.26411 1.37831 0.67249 1.26411 1.37831
-0.32 0.59304 1.30118 1.44099 0.59304 1.30118 1.44099
-0.36 0.51293 1.29745 1.48767 0.51293 1.29745 1.48767
~0.40 0.43461 1.25620 1.51321 0.43461 1.25620 1.51321
-0.44 0.36015 1.18240 1.51378 0.36015 1.18240 1.51378
-0.48 0.29135 1.08228 1.48692 0.29135 1.08228 1.48692
-0.52 0.22952 0.96274 1.43194 0.22952 0.96277 1.4319
-0.56 0.17552 0.83117 1.34982 0.17552 0.83117 1.34982
-0.60 0.12975 0.69461 1.24329 0.12975 0.69461 1.24329
-0.64 0.09221 0.55917 1.11674 0.09221 0.55920 1.11674
-0.68 0.06255 0.41965 0.98348 0.06227 0.42013 0.98329
-0.72 0.04024 0.32748 0.81587 0.04021 0.32748 0.81587
-0.76 0.02397 0.22729 0.66297 0.02397 0.22729 0.66297
-0.80 0.01307 0.14718 0.51236 0.01307 0.14718 0.51233
Table 5 Energy-release rate for crack-parallel shear
w' Wy [10, Table 1] Present Result
0.2 1.2294 1.2294
0.4 1.5117 1.5132
0.6 1.2302 1.2433
0.8 0.4945 0.5123

The numerical results of (41) and (44) are gi\}en in Table 4. The
coefficients Cgi1, Cg12, and Cgag are exactly the same as Ck11, Cx1s,
and Cgas. Therefore, these data suggest that Irwin’s formula remains
valid for a large kink angle and for any in-plane loading, provided that
the stress-intensity factors in the formula are taken to be those at the
tip of an infinitesimally small kink. In [5] it has been suggested that
(42) is valid for any kink angle but this has not been completely ac-
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cepted; [10]. The results obtained in the present work, therefore,
should remove any doubt that may have existed regarding the validity
of Irwin’s formula.

-In Table 5, the energy-release rate for various kink angles under
a shear parallel to the main crack is given together with those reported
in [10], showing excellent agreement.

Based on the foregoing results, it is clear that, when k,’s are known,
then the critical kink angle, the energy-release rate, and the stress-
intensity factors can be evaluated using the data in Tables 3 and 4
without needing any additional information on the corresponding
kinked crack problem. )

Finally, it must be noted that the present results are not applicable
to a loading condition which brings the surfaces of the main crack into
contact. Under such a loading, the length of the contact zone changes
due to kinking, and the formulation in the section, “Statement of
Problem and Basic Equations,” no longer holds. One possible ap-
proach to such a problem is to model the main crack together with the
kink as a continuous distribution of edge dislocations. Then the
problem is reduced to determining the density functions of edge
dislocations and the length of the contact zone.
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the sense of the well-known J integral (= J1) parallel to the plane of the crack. The rela-
tion between the energy-release rate for rotation L and the integral J is established. It
is finally suggested that the integrals L and M may provide a more natural description

of energy-release rates (or forces) for plane cracks, rather than the integrals J, and Jo.

Introduction

The by-now well-known J-integral of elastic fracture mechanics
[1-8] has been related to potential energy-release rates associated with
crack extension and has proved to be of great value in fracture testing.
For a plane crack subjected to both far-field extension and in-plane
shear, i.e., combined opening (Mode I) and sliding (Mode II), the dJ-
integral, around the right crack tip, in terms of the stress-intensity
factors Ky for Mode I and K711 for Mode 11, is

J= (K} + Kh)/E (1)

for plane stress. For plane strain, Young’s modulus E has to be divided
by (1 — v2), where v is Poisson’s ratio.

Actually the aforementioned expression for J is the component of
avector J; (I = 1, 2) in the plane of the crack (say J = J;).

One can also quite easily calculate Jg, the component of J; normal
to the crack plane, which was found to be (cf. e.g., [4, 5]) for the same
crack tip

Jg = —2K1Kyw/E 2

for plane stress, with a corresponding modification for plane strain
as for J.

The J-integral (i.e., J1) has been given a precise and clear physical
significance as the rate of total potential energy-release per unit
crack-tip advance. It is thus identical to Irwin’s crack extension force.
Attempts have been made to supply analogous physical interpreta-
tions for J2 [4, 6] by postulating that the crack will skew and the tip
advance either in the direction of the vector J, or by claiming that if
the crack has advanced under an angle ¢ with respect to its plane, the
energy release will be

G(¢) = J1cos ¢ + Jasin ¢
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It is the purpose of this paper to examine energy-release rates of
a single, plane, finite crack with traction-free surfaces in an infinite
linearly elastic, uniformly stressed medium and to establish the role
which Jg, as just given, plays in this connection. It will be shown, in
particular, that Jg, as given by (2), is not path-independent and, in
fact, is a function of the length of the crack enclosed by the line inte-
gral.

Only for some special applied stress fields, to be discussed in the
sequel, does Jz retain its value given by (2) and is path-independent
in the sense of J1. In that case, J2 is connected to the L-integral in the
same manner as J; is related to the M -integral, this latter result having
been discussed recently by Freund [7]. (Here L and M-integrals refer
to conservation laws found independently by Ginther [8] and
Knowles and Sternberg [9], which were interpreted as energy-release
rates for a cavity by Budiansky and Rice [10].) The special results
previously mentioned will follow from more general considerations
in which a general homogeneous stress field is applied and a contour
enclosing the crack completely is introduced.

Conservation Laws

Congider a two-dimensional deformation field referred to Cartesian
coordinates x1, x2 described by the displacement u; = u;(x1, x2). The
J-integral has been defined as [1, 3]

J= f; (Wdxs — Tiu; 1dl) 3)
where C is a closed curve in the x1, x5 plane surrounding a crack tip,
W is the strain-energy density and 7} is the traction (stress vector)

acting on the outer side of C. As already mentioned, J is the x1-com-
ponent of the vector

Jr = j‘c (Wnp = Taip)dl k=12 ()
where n; is the unit outward normal vector to C in the x4, x plane.

Other path-independent integrals established in [8, 9] in two di-
mensions are

Ly=L = ﬁ egij(ijn,- - Tjuj - Tkuk,,-xj) dl (5)

and
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Fig. 2 Path enclosing the crack completely
M= j; (Wxin; — Trup,ix;) dl (6)

where e;;, is the alternating tensor.!

The foregoing expressions, as taken from Budiansky and Rice [10],
actually imply different definitions of the contour C. The path C of
the J (J1) integral has been introduced originally as one surrounding
a crack tip and is path-independent as long as it does not enclose any
other singularity, such as for instance the other tip of the same plane
crack, while the contours in L and M are considered in the same paper
[10] as surrounding the whole defect, i.e., crack, and not just a crack
tip. As regards Jy, its value around a crack tip is to be calculated by
expression (4), but its path-independence for cracks has, to authors’
knowledge, never been established.

As mentioned, our aim here is to investigate the properties of J; and
L in the presence of a plane crack by considering different contours.
To avoid confusion, we will retain the notation Jj, for contours around
a crack tip, while if the integral (4) is taken around the complete crack,
we shall call the corresponding value of the integral Fy.

We proceed to evaluate these integrals in the presence of a crack
of length 2a placed as in Fig. 1 with respect to a system of coordinates
0, 21, x2 and subjected to far-field applied stresses ofy, oty ofh. We
choose the paths indicated in Figs. 1 and 2. To carry out the integra-
tion along circular paths of small radius r around crack tips, we can
make use of the singular fields near crack tips (see, e.g., (1.

The singular stress field and the singular displacement field near
the right crack tip are of the form

ot = Ko 2mr) 12f7(0) }i,j =12

u? = (Kn/2E)r/2w)Y2fP(0) Jm =L 11

The specific dependence on # is not relevant here, except the feature

that all functions are either even or odd in 6, namely, fs, f11, 3y, f}, and

1 ave even in 0, while f;, /1L, /3, 5, and £\ are odd in §. We recall that
for plane stress

14+
2 2, (8)

1 (
W=—(ch+oh—-2
2E( 11+ 03 — 2v0y1092) +

1 Tt is unfortunate that the foregoing definition, taken by Budiansky and Rice .

{10] from [9], implies the definition of a moment M of a force Pas P X, rather
than the more customary r X P, which has been introduced in {8].
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(7).

Further

x1=a+rcosf dx,=-—rsinfdf

x9=rsinf dxe=r cos b df ©)
ny = cosf dl=rdf
ng =sinf
and
Ui = Ui, cost — H Ui gsin @
i (10)

. 1
ui2 = Uiy sinf +—u;pcos b
r

In constructing the integrand, we have to be mindful of the fact that
the total stress has contributions from Mode I and Mode II, while the
regular stress field o4, is negligible. Thus

oy = o + ol (11a)
Similarly
ui =ul+ufl (11b)

In noting the odd-even property of all functions involved, the integral
(in 0) over a small circle with radius r, can now be easily evaluated
from —m to .

The results for J; of the crack tip x1 = a are, as already noted in the
Introduction

Ji= (K} + KD/E; Ki=ot/ma
Jo= —2K{Kn/E; Ku= ofhv/ma

For the crack tip x1 = —a the sign of J; and J is reversed.

We next consider possible contributions to 'y and F'g from the part
of the contour along crack faces. We note that the term with 7; will
not contribute to either integral, since the erack faces are traction-free.
Thus the only possible contribution will be due to the term with W.
From equation (4) we see that for k = 1 along crack facesny = 0 and
thus there will be no contribution to Fy. As regards F, the integral
along the upper crack face in the ~x direction and along the lower
crack face in the x; direction, to avoid misunderstandings, shall be
denoted by Fo,. Thus

Foo = f Whodl + f Wnadl
C+ Cc—

= o -woan= 7 Wan

where W4 — W- = [W] is found to be, by means of complex repre-
sentation, and (8),

(12)

[W] = —dofy(ofy — of)x1(a® — xH~12/E (13)
It is observed that [W] is an odd function of x1, such that
a
Fao = f [W]dx1 = 0 (14)
~-a

We note, thus, that the integral (4), taken along the closed path
enclosing the crack completely, as in Fig. 2, leads to

Fy =0 Fy;=0 (15)

We postpone the discussion of the results obtained and proceed to
evaluate the L-integral (as given by equation (5)) along the closed path
of Fig. 2. Let us note that along circular paths the product T;u; isin-
dependent of the radius; but d! is proportional to r and as r — 0, the
integral vanishes. Thus the only terms which contribute to L along
circular paths are the same as those we had to consider in evaluating
Fy, except that each is multiplied by x;. We denote by Lz, Ly, the
contributions to L along the right and the left circular paths, re-
spectively. We thus have, with J; given by equation (12)

LR + LL = —Zan
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Fig. 3 Path to show path-dependence of J;

Along crack faces the terms with T; vanish and ny = 0, such that the
only contribution to L, denoted by Lg,, is

Lo =~ _z [W]x1dxy = 20fy(oty — of)ma/E (16)

or

Log = Jaa + 204h0fiwa?/E
The total L is

L=Lg+Ly+ Laa = 20%(0% + of)ma?/E {an

or
L = —aJs + 206%047a?/E = 2Ku(K1 + ofyv/wa)a/E  (18)

or
L = —2aJy + 20%(at; — ob)mwa2/E (19)

We are now ready to discuss the results obtained for the integrals
Jo, Fy, and L. From expression (13) it is obvious that J9 is not path-
independent in the sense of J1; namely, if we consider a path enclosing
the crack tip, but not infinitesimal, the result will depend on the path
selected. Thus J; as given by equation (12) holds only for infinitesimal
paths surrounding the crack tip. Only if there would be no contribu-
tions to Jo along crack faces, i.e., if [W] = 0, will J2 become path-in-
dependent in the sense of J;. From expression (13) we observe that
this will be the case if 64 = o4, or if o = 0. The latter case, however,
is of no interest to us in this study because J3 and L vanish identically
for 04, = 0 (as can be seen from (12) and (17)).

As is known, J; is insensitive to the presence of ¢f}. By contrast,
from the foregoing discussion we see that J is strongly affected by
o4y, It is noteworthy that o#, = 0 does not correspond to the case of
Jg being path-independent. From expression (19) we observe that L
cannot be expressed through J» completely, again because of the
contribution to L along the crack faces. Thus, as Jo, L is not path-
independent if a path is chosen as in Fig. 3.

We note, however, that for special applied stress fields just men-
tioned, namely,

ofy = oy (20)
Ly, will vanish and thus in this special case
= —2ady (21)
This result is analogous to the relation
M = 2ady (22)

‘which holds for all homogeneous stress fields and which has been
discussed in [7]. Let us emphasize that equation (22) formally ex-
presses the equivalence of J; and M, i.e., the physical interpretation
of one can be given in terms of the other. The translation of both crack
tips in opposite directions described by Ji for each crack tip is
equivalent to self-similar expansion of the whole crack described by
M. By contrast, the validity of equation (21) is restricted by condition
(20) and in general L and Jo are not equivalent. Thus their physical
meaning must be different.

Journal of Applied Mechanics
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Fig. 4 Crack at angle o

Crack Energies and Energy-Release Rates
Consider again a plane homogeneous stress field in an infinite body
specified by components of stress o4y, 6%y, and ¢4, with respect to a
Cartesian system of coordinates 0, x1, £9. A plane crack of length 2a
with traction-free surfaces is placed into the field along the x1-axis
with its center at the origin 0. The insertion of the crack into the field
induces a change U of total energy in the body which, as is known, is
given by
1 e
=— f o9 Au;(x1) dxy (23)
2 J-a
where Au;(x1) is the discontinuity in displacement across the crack
and summation over j is implied. The evaluation of this integral yields,
for plane stress

U=Ur+ U Ur=na2(c4)¥E, Un=wa2(cH)E (24)

For short, U may be referred to as the crack energy.

Let us assume next that, instead of being placed along the x;-axis,
the crack, with its center still at 0, is inserted at a small angle o with
respect to x1. The relevant system of coordinates is now 0, x1 x5 (see
Fig. 4) and the stress field referred to this system is

’ : . .
611 = 011 cos? o + 2012 8in @ €08 @ + 020 8in? @
o1y = — 011 8in o cos & + o12(cos? o — sin? @) + g9 sin @ cos «
099 = o4y 8in? @ — 2012 8in & cos & + g9 cos? a (25)

To evaluate U’ we need to know only o, and o35, which, for small &
are

Gap = O2g — 200012 (26)
012 = 012 + ooz — 011)
Thus, since
U’ = wa2(ogh + 6)/E 27)
we obtain ’
U’ = ma?[o}y + o}y — 2a015(011 + 022))/E (28)

Now let us consider the difference U’ — U-and divide it by ¢, which
is to be interpreted as the energy release of a crack of length 2a per
unit crack rotation. Thus (U’ — U)/a = Gp is the rotational energy-
release rate, given by

Gr = =200ty + ob)mwa?/E (29)

We recall that for a single plane crack in an infinite body the applied
components of stress o4, and o4, are related to the stress-intensity
factors K and K7ip of the singular stress field near the crack tips as

Kj Kn

oh=—=, ol =—= (30)
2 Vmd P Vra
We may thus write Gg also as
Gg = —2Ku(K1 + ofiv/7a)e/E (31)
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This result can be readily generalized for an arbitrary angle ¢ with
respect to the x;-axis. The energy of a crack of length 2 in this con-
figuration is

2 2 :
wa wa .
U=— (0} + ok =—|[c}hsin? ¢ + a3y cos? ¢

+ o12(012 = 2 sin ¢ cos ¢p{o11 + 092))]  (82)

and its derivative with respect to ¢ is

2
. Gy= = [sin 2¢(a%; — 0%2) — 2 cos 2pa19(o1s + 029)]  (33)
¢ E
The aforementioned expression for the rotational energy-release rate
indeed reduces for ¢ = 0 to Gr given by equation (29), which, up to
the sign, is identical to L given by equation (17). This shows that L
represents the rotational energy-release rate. This equivalence of L
and G holds for any uniform stress field into which a crack is placed.
Thus the relations between L and J; discussed in the previous section
apply now to Gg and Jo.

Finally, we would like to express our results with respect to principal
axes. If both the applied stress field and the crack (at angle v), see Fig.
5, are referred to the principal axes x%, x8, then

wa? .
U =" [(of)?sin? y + (af)? cos? 7] 34)

and

dU Ta .,
— =G, = — sin 2v[(ef))? — (52)%]
ady E
We hence recognize the rotational energy-release rate Gr to be the
sum of 2 additive contributions, namely,

Gr =(Ja — QKHO"fn/ wa/E)a

Thus the rotational energy-release rate Gg is identical to the value
of the integral L, except for a change in sign, the latter having to do
with the definition of L. Examining the rotational energy-release rate
Gg (or L) in the form of equation (19), we remark again that J; con-
tributes to this rate.

(35)

(36)

Concluding Remarks

On the basis of the foregoing analysis, it may be concluded that the
integrals L and M provide a more natural description of energy-re-
lease rates (or forces) associated with plane cracks than the integrals
J1 (=J) and Js. If one considers a contour enclosing the whole crack
completely, then in the case studied here (uniform applied stress field
in the absence of the crack) both J; and J; vanish. If one considers a
contour enclosing only one crack tip, then Jy is not path-independent.
Only for special applied fields for which ¢f; = o4;, does J3 become
path-independent in the same sense as J;.

It is noted further that the energy release rate for rotation Gg may
be used experimentally in a capacity analogous to J. Instead of fol-
lowing the standard procedure of changing the crack length in com-
pliance tests, experiments could be performed by rotating the applied
stress field with respect to the crack plane, keeping the crack length
constant. Thus the procedure would be clearly nondestructive and

528 / VOL. 48, SEPTEMBER 1981

Ke

Fig. 5 Crack referred to principal axes

would supply valuable information. This novel testing method will
be discussed in a separate paper.
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On Branched, Interface Cracks

The problem of branched, external cracks in the interface between two elastic materials
is considered under the plane strain condition. A small interface contact region is intro-
duced in the vicinity of each crack tip in order to remove oscillatory singularities. The

branches are replaced by continuous distribution of edge dislocations, and, with the aid
of Muskhelishvili’s potential method, the problem is reduced to a system of singular inte-
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gral equations which are defined on the branches and the perfectly bonded region of the
interface. The unknown functions of these integral equations are the shear stress acting
on the bonded region, and the density functions of the edge dislocations. Stress-intensity

factors of the interface cracks and branches are obtained numerically for several branch
angles and branch lengths. Finally, the question of kinking from a tip of an interface crack
is discussed with the aid of the results.

Introduction

The problem of a branched crack in a homogeneous material has
received considerable attention in recent years; see, for example, Lo
[1} who obtains the stress-intensity factor at the tip of a branched
crack and also gives some account of other related work. The problem
of a branched crack at the interface of two dissimilar materials, on
the other hand, does not seem to have been addressed.

It is well known that the conventional formulation of interface
cracks generally leads to oscillatory singularities that imply material
overlap in the vicinity of the crack tips, as has been pointed out by
England {2], and by Malyshev and Salganik [3]. This essential diffi-
culty was first resolved by Comninou [4] who observed that the in-
troduction of a very small region of frictionless contact at the neigh-
borhood of each crack tip, removes the oscillatory singularity. Com-
ninow’s solution has since been successfully applied to a variety of
interface problems; see, e.g., [5—10]. It has been shown by Achenbach,
Keer, Khetan, and Chen [11}, that the introduction of a small cohesive
zone of a certain characteristic in the vicinity of the crack tip also
serves to remove the corresponding oscillatory singularity; this is a
generalization of the Dugdale-Barrenblatt model for application to
interface crack problems.

The present paper deals with the problem of branched, external,
interface cracks between two dissimilar half planes which are
subjected to tensile loads applied perpendicularly to the interface far
from the crack. The oscillatory singularities are removed by the in-

1 On leave from: Department of Mechanical Engineering, Tohoku University,
Sendai 980, Japan.
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troduction of frictionless contact regions near the tips of the interface
crack. Each branch is replaced by a continuous distribution of edge
dislocations, and the solution for an elastic half plane subjected to a
point force is used in order to arrive at a system of singular integral
equations whose unknown functions are the shear stress acting on the
bonded region in the interface, and the density of edge dislocations
on the branches, Numerical results for stress-intensity factors are
obtained by the method of Erdogan, et al. [12], and Gupta and Er-
dogan [13], and the results are tabulated for several branch angles and
branch lengths. Kinking of an interface crack is also discussed with
the aid of these numerical results.

Statement of Problem

Let the elastic upper half plane S+, with moduli g; and »1, be
bonded over a part, L1, to the elastic lower half plane S—, with moduli
itz and vy, where pu, and v, p = 1, 2, denote the shear modulus and the
Poisson ratio, respectively. In addition, let Ly and Ly be two edge
cracks extending into the lower half plane from certain points on the
unbonded parts of the interface; see Fig. 1. Tensile loads of total
magnitude N are applied at infinity, perpendicular to the interface,
and, since N is assumed finite, the corresponding stresses vanish far
away from the bonded part of the interface. Upon the load application,
the external interface cracks open, except for small intervals, Ly and
L3, near the ends where frictionless contacts are assumed in order to
avoid oscillatory singularities. A fixed rectangular Cartesian coordi-
nate system, with coordinate axes x,, is used; Fig. 1. Throughout this
work, Greek indices take on values 1, 2, and, unless otherwise stated,
the usual summation convention on repeated indices is employed. A
supplementary rectangular Cartesian coordinate system, (,, is also "
used, as shown in Fig. 1. In what follows, the superscript 0 identifies
functions in the {,-coordinate system.

The boundary conditions of the problem are expressed in terms of
the stress tensor, ¢4, and the displacement vector, v, referred to the
x o-coordinate system, as follows:

(a) Tractions and displacements are continuous across L;(]x1|
<)
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Fig. 1 Geometry and coordinate systems
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(b) Two half planes are in frictionless contact over Ly and Lyl
<|x1] <ak

9=t =0, =1t ®)
tH <o, ¥ <o, (4)
ufl = uff). ®)
(¢) Tractions vanish along La(|x+| > @):
=t =0, tH=tH=0. (8)

(d) Tractions vanish on the surfaces of the branches L4(0 < {3
<1y) and Ly

P =0, 9P =0 (7

(e) The resultant of the tractions along L1 + Lo + L5 is given:

§ tda= [ e =N, (8)
! !
j‘—l t{dx, = j:l tBdx; = 0. 9)

Here, superscripté 1 and 2 in parentheses denote functions defined
in S* and S, respectively. The comma followed by an index denotes
partial differentiation with respect to the corresponding coordi-
nate.

Singular Integral Equations

The method of Green’s function and two basic solutions for an
elastic half plane, are employed; these are: the stress and displacement
fields induced by a force which acts at a point on the free surface; and
the fields induced by an interior edge dislocation.

When an elastic lower half plane is subjected to a force,? p,, which
is parallel to the x ,-axis and passes through point (x; = £, x2 = 0), the
corresponding elastic potential functions, ®(z) and ¥(z), of z = x;
+ ix g, [14], are given by {15},

pe—ip; 1

8} = 2ni z-§

(10

2 Since plane strain is assumed, p, Ineasures force per unit thickness normal
to the plane.

530 / VOL. 48, SEPTEMBER 1981

(10
{Cont.)

1 +P2—ip1 z
omi (-7

On the surface of the half plane, the x;-displacement gradient is

V(z) =22

wTz—§

pe—ipifek+1 1

4[1. i X1~ E (11)

U1, + iu2,1 = + (K - 1)5(351 - E) ,
where u is the shear modulus, x = 3 — 4, v is Poisson’s ratio, and
8(x1 — £) denotes the Dirac delta function.

Consider next, an interior edge dislocation line running perpen-
dicular to the z-plane through a point, z = &, in an elastic lower half
plane. The Burgers vector of this edge dislocation makes an angle
with the positive direction of the x1-axis, and its magnitude is b. The
corresponding elastic potential functions are

; it i =
B(z) = iub { e _ el a-a e“”’},
Tk+1)lz—a z—a (z-—a)?
; —i8 i —it if
V() = — iub fe C_ ae_ _ e we
7r(l<+1)lz—a z-a)Y? z-—a (-oa)P
o —o in 2c (o — @) —io} 19
+(z——a)2 (z——oz)3e ' (12)

The branched, interface crack system of Fig. 1 will now be formu-
lated in terms of solutions (10)—(12). To this end, assume that the
bimaterial is cut along the x1-axis over Ly, and apply the necessary
tractions as follows: For S+, apply normal tractions —po(£) on Ly +
L2+ Ly and shear tractions ~p1(£) on L1, and for S~, apply the same
tractions but with opposite signs. Furthermore, on Ly and Lj, dis-
tribute edge dislocations in such a manner as to preserve the sym-
metry with respect to the x-axis, and let b,({7) denote the Burgers
vector of the edge dislocations on L4 referred to the {,-coordinate
system.

The unknown functions, p.(£) and b.({1), @ = 1, 2, must be such
that the displacement continuity conditions (2) and (5), and the
stress-free conditions (7) are satisfied. These requirements lead to
the following integral equations:

pl(f)
Bpalx1) +— f e x1
1 1+2A
f balpVoulzs, p)dp =0, || <1, (13)
1 ;
Bpre0H Gy -+ (22 g
wJd-aE—x;
1+
f ba(pMialxy, p)dx1 =0, |xif <d, (14)
To b, (p)
£ o - g—l dp - f bﬂ(p)hwﬁ g‘l: P)dp
a !
+ty fﬁ p2ADgua($y, HdE + v f:  P1(O)gu($, Dk
=0, 0<{1<ly, (15)
where
_1tk _[1 for |xq] <1
Y dpg ) {0 for [x4] >4 (16)
A and 3 are Dundurs’ parameters,
_talka + 1) = palks + 1) _ ke — 1) = pa(ky — 1) an

polks + 1) +urlke + 1) T palky + 1) + palke + 1)

functions f.g(x1, p), 8ap({1, £), and h ({1, p) are given in Appendix
A.

Equation (14) can be viewed as a Cauchy singular equation for the
unknown function pa(x1). It can be solved formally by treating p1(x1)
and b,({1) as known functions, with p;(x;) assumed singular at x1 =
+! so that po(x1) is also singular at these points. Since it is assumed
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that the two bodies are in the frictionless contact along Lo and L,
pa(x1) must be bounded at x; = £4d, and the solution of (14) is

w(xl) f ba(p)Fulx1, p)dp

pu(§)
w( l)flu(&_)(s_ ds,

where w(x;) is the characteristic function of this singular integral
equation, i.e.,

palxy) =

(18)

wlxy) =+/a%— 7.

The functions F(x1, p), « = 1, 2, are given in Appendix B.
The solution (18) must comply with the following consistency
condition [16]:

I py(§) 1+ ’0{ @ fra(&.p) ]
Fat LT IR =
~t w(k) ¢ 4y 0 belp) j:a w(é) dfjdp =0

(19)

L]
(20)

which is satisfied automatically, because, in view of symmetry, f1.(£,
p) and p1(£) are odd with respect to £.
Now, consider the following nondimensional notation:

a=§7 10=E1 x=x1y t=§7 =lg) S=_1-By
l l l l lo 1 lo !
palxi) pilxy) ba($1)
P(x) = 2221 = =
(x) N Qx) NI () YN/ (21)
and from (18) obtain
1+ A 1
P@) == Wy [ Buls)Fuls, os)ds
B Q(t)
W( ) fl W)t —x) dt, (22)
where
W(x) =+va? - x2. (23)

Substituting from (18) into (13) and (15), and using (21), one arrives
at

QW B
J‘-1t—xdt+1—,32.f—1{l
1+>\

_62)
B.
fo (s)ds—lo f Bi(s)Sus(loy, los)ds

s—y

W(x)} Q) dt
W) t—x
-1<x <1,

1
lo f Bu(s)R4(x, los)ds = 0 (24)
0

+ f Q)T (loy, t)dt =0, 0<y<1. (25)
-1

tQ(?)

The complementary condition (8) becomes
——dt =1.

L+
zof By(s)Galos)ds = 8 We

The condition (9) is satisfied automatically because of the symmetry
of py(x1) with respect to x1. Functions R (x1, p), Sap($1s ), Tol$1, £),
and G (p) are given in Appendix B.

Therefore, the problem has been reduced to solving the system of
singular integral equations (24) and (25), compatible with condition
(26).

(26)

Singular Behavior of Solutions

The integral equation (24) for the shear stress, @(x), is of the first
kind. With the shear stress assumed unbounded at the end points,
x = +1, the characteristic function, R(x), is chosen as

Rix) = (27)

1
V1-—x2 '

Set
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Y(x)
V1 —x2
where Y(x) (|x| < 1) is bounded. Near the left end, x = —1, the shear
stress @(x) is

Qx) = (28)

Y(=1)
Qx) = ——= as x— —1%, 29
V21 + x) (29)
and the stress-intensity factor, Ky g, of the interface crack is
. N
Kps= 11m+{\/ 2(1 +x1)P1(x1)l=§\/72\//(—1)- (30)
x1—>—!

The singularity of the normal stress, P(x), near the ends of the bonded
region results from the singular behavior of the second integral in (22)
(or (18)), and, in view of (28), near the left end,

-1
P(x) = —ﬁ—‘l/(————_# as x — —1-, (31)
V2(-1-x)
Hence, near x = —1 the normal stress is related to the shear stress in
such a manner that
lim {\/—P( 1 —e)} =-8 hm WeR(—1 + €)). (32)
0t

This feature was fll‘St predicted by Comninou [4], in connection with
an interior, interface crack.

As is shown in Appendix B, the kernels, S.g(loy, lgs), in (25) are
unbounded as y and ¢ approach zero simultaneously, and, hence, the
singular behavior of B,(y) at y = 0 can not be described by 1/+/y .
Here, this singular behavior is estimated with the aid of the results
obtained by the asymptotic expansion approach near the vertex of
a stress-free wedge; Bogy [17]. For a stress-free wedge with a wedge
angle less than m, the stresses are regular at the vertex. Therefore,
taking into account that the density functions of the edge dislocations
are the derivatives of the crack-opening displacements with respect
to {1, set

Paly)
Vi-y

where the functions ¢,.(y) (0 <y < 1) are bounded. The stresses near

B y) = (33)

{1 = 1 on the {1 — axis, but not on the branch, are given by

ity L (B I
12 Py Ty

‘ N (1) +i¢y(1)

SURASY) . S ILL AL

2l 0 2({1_0)

The stress-intensity factors at the tip of the branch are defined as

(34)

Ki—iKy = (hm V205 — To) (195 — it30) | gyl (35)
1 0
and are given by
N
— iKu == VI lga(D) + ida (D)} (36)

Numerical Solution and Discussion

The set of integral equations (24) and (25), subject to the condition
(26), is solved by the method of Erdogan, et al. [12], and Gupta and
Erdogan {13]. Since @(x) is an odd function, the discretized forms of

(24)-(26) are
B2 Wx,)
— [1 - 62{1 B W(t;;)H

1+ A lo

1
— Z \l/(tk)

2N k=n+1

QO . ,Zl dolsi)Rolxr, losy) = 0, (37)
1
;k_z YT o (oyj, tr) — Tolloyi, — i)}
1 m e\ Si {
bulst) Lo Z Pp(si)Saplloy), losi) =0, (38)

2m+1li=1si—~y; 2m+ 15
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Flg. 2 Pressure distribution on the left contact region

i+ lp m T W tpp(te)
— o(8:)G o (losi} — B — ——=1, (39)
4T 2m+1i§1d} ! l 6”k-‘=n+1 W(tr)
where
2k — 1
ty = cos m, (k=n+1,n+2...,2n),
4n
r
X, = €08 — T, r=n,n+1,...,2n-1),
2n
20 -1 R
S; = CO8 x, ((=12,...,m),
am + 2
J .
i = CO8 T, =1,2...,m). (40)
Vi 2m + 1 v

Equations (37)-(39) provide a system of n + 2m + 1 equations for the
determination of the n-values of y(t), the 2m-values of ¢.(s;), and
a. These equations are highly nonlinear in a and, here, have been
solved by the usual inversion technique for a system of linear equa-
tions together with the Newton-Raphson method with n = 90 and
m = 50, where condition (4) has been used as a guide in-order to de-
termine the solution.

According to the results of an asymptotic expansion approach
presented in {4], the hoop stress around the tip of a two-dimensional
crack in a flat interface of two materials is negative in the material
with larger u/(k — 1). Only in the material with smaller u/(x ~ 1), can
the hoop stress be positive, reaching a maximum value at the direction
which makes an angle between 64° and 71° with the interface. Hence,
in performing the numerical calculation, w is set equal to 60°, 70°, and
80°. As to the material properties, fairly extreme values of Dundurs’
parameters are used; i.e., A = 0.98 and 8 = 0.48, which include the case
v1 = vo = 0, uy/ug = 100,

In Table 1, the length of the contact region, (@ — {)/l, and the
stress-intensity factors are presented for various lengths of the branch.
In Fig. 2, the pressure distribution on the contact region is shown for
w = 60° and [o/l = (d — 1)/l = 0.04. It is seen that the stress-intensity
factor for the opening mode at the branch tip increases as the length
of the branch becomes smaller. In the range of w for which the cal-
culation has been performed, the stress-intensity factor for the shear
mode is always very small compared with that for the opening mode.
It is also revealed that the stress-intensity factor of the interface crack,
K11 s, decreases drastically, once a branch is formed near its tip.

Finally, let us discuss the phenomenon of kinking from an interface
crack. If kinking from the tip of an interface crack is assumed, an os-
cillatory singularity occurs at the point of intersection of the kink and
the interface [17]. Although the oscillatory singularity may have no
influence on the overall stress field, since kinking is a local phenom-
enon, such a singularity must be eliminated somehow in order to be
able to study the kinking process. Here, as a fentative measure, a small
region of frictionless contact at the tip of the interface crack is in-
troduced, where the length of this region is assumed to be of the order
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Table 1 Stress-intensity factors, Kjs = Kys/IVIN/(@2D; K =
Kelv/To NI(21)); K3 = Kt/ ToN/(21))
-, A= * * *
w Ly/e (4-1)/2 (@-2)/1% KE K K&
- - - 0.639 x 1077 0.723 - -
0.10  0.10 0.138 x 107> 0.299 1.646  -0.175
0.10  0.07 1.6405 x 1073 0.094 1.681  ~0.233
.
80 0.05  0.05 0.381 x 1070 0.235 2,517 -0.131
0,04  0.04 0.663 x 1070 0.220 2,873 -0.112
0.10  0.10 0.146 x 1070 0,373 1,531 -0,297
0.10  0.07 0.165 x 1072 0.189 1.586  -0.393
® -
7 0.05  0.05 0.25 x 1073 o311 2.390  ~0.361
0.06  0.06 0.336 x 1070 0.293 2,745 ~0.380
0.10  0.10 0.170 x 107 0.440 1.385  -0.403
0.10  0.07 0.132 x 1070 0.287 1,447  ~0.507
. -
8o 0.05  0.05 0.231 x 1070 0.383 2,206 -0.547
" 0.04 0.04 0.274 ¥ 107> 0,366 2.547  ~0.600

of the kink length during the initial growth stage. By setting (d — {)/I
equal to lo/l and applying the Lagrange interpolation formula to the
data in Table 1, one can estimate the limiting values of Kij as [p/l —
0 for each branch angle, w = 60°, 70°, 80°. From these limiting values
one can calculate the kink angle, w,, for which K} at [o/l = 0 vanishes,
and hence obtain the corresponding stress-intensity factor for the
opening mode, Ki ¢c. The results are w, = 60° and K{¢ = 4.9. If the
criterion of local symmetry is postulated to apply to an interface crack,
then w, and Kj ¢ are the critical kink angle and the stress-intensity
factor at the onset of kinking.
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APPENDIX A R =+ Lutey [ LED_ g

Expressions for the functions f.s(x1, p), £as($1, £) and hp($1, o), w{E)E — x1)
a, B =1, 2, are given here, where an overbar is used to indicate the _ B8 . —
complex conjugate, and = faalx1, p) + o; wlo{F(x1, p) = Folxs, p)}

a=—d+peiv, p=—d+ el Expressions for S.s({1, p):

1+ A
472

Expressions for fg(x1, p):

Saplit,0) = haslfs 0) =5 guats, Ow(E)

faolx1, p) + if12(x1, p) = e~¥fi(x1, p) + e™f3(x1, p),

. & figlxy, p)
far(x, p) + if11lxa, p) = le~if (x4, p) — Le*“f3(x1, p), X f_& wl) @ — §) di1dg

1 1 2ip sin w

Cen ) = = _ B
filx1, ) xl—&+x1—-a Gta?’ = hap({1, p) 5 {Sas($1, p) + S5 ($1, )4,
" 1 1 2ip sin w . 1
falxy, p) = — - + T rE e Saal{s, p) = EAaﬂAlBaﬁ#rM(a: )]
Expressions for g.4({3, £): = Bagrau (@, M}, (o, 8 mot summed),
. . 1 1 2i{1 sin we”“’} 1 Y(a,n) 1+«
822§, &) +igra($y, £) = 14— L ) ) =— .
2 D+ il O =0 T T T e n = Y@ X @Y
. 1 1 —2e2i®  2i{ sin weZiv
g21($1, &) +ignl$, &) = — - - - z { 1 Y(a,7) 1 o
— _ — ) =(a+d -
n—¢& 7—¢& @-8 railo, n) = (a + d) TR X@ ntaX@r

Expressions for h ({1, p):

Lo _ a(n + a) }
has($1, ) + iha(§1, p) = — 1—,%2—; +hiltn, p) + Ry, p), X(@)2Y(a, N)Z(a, 1)’

risla, 1) = (1 + d) { L Yen 1 __n
ha1($1, p) + ihai(§y, p) = thi(§1, p) — iha({1, ), nt+a)? X(@ n+aX@Xm)
. e iw 2ip sinwcosw  2i({1—p)psinw _ a%n + o) }’
hi(f,p) =— 2= ) - -2 G —@? ’ X)X Y(e, Z(e, m)
+ e_w( e rasle, 1) = (a+ d)(n + d) [‘ : 3Y—(a'l)
2 \i+a 7+a (@+a? (n+ ) X(a)
eio 1 + 1 Z(a, ) a%(n + o) I
e [(ﬁ +@)? 617)2} (1 + )2 X(@2X(m) X (22X (@) Y(e, ?Z(c, m)]
. ipsinweiv ({1 — ple?iv ip sin 2wee Y(a,n) = X(a) + X(m),
hz({l:ﬁ)= 2 — 5 + — 5
(n—a) 2(n — @) o+ a) Z(oy, 1) = aX(n) + nX (),
ﬂ’( 1 1 ) 3 2ip(n + o) sin wede Azop = Arap
2 mt+a nta @+ a)? )
ediv| 1 1 By;1 =B121=0, Briz= By = —e *sinw,
T(ﬁ+ a_ﬁ+&)' Bo11 = Bga1 =1, Baig = Bagy = ie i gin w.
Expressions for T ({3, £):
APPENDIX B ' 1 e
Expressions for functions Fo(x1, p), Ra(®1, p), Sas($1, ), Tall1, £), Tol$1, ) = gar({1, §) + - ;}-25 ____%.L dx;
and G (p) are presented here, where the same notation as in Appendix 8 1 ¢ x1=§
A is employed. = golly, ) + & —— (1 — T
Expressions for Fa(x1, p): garl{n, &) 2iw(£)( 61,8 (61, )
= a fla(E;P) - 1 * RN T"(g‘ , ) =9 [ [ 1 77(77 + d) _ (n + d)X('ﬂ)}
Falar) = s ey 4 g et s) ~ ool (6,0 = 27 sin o | T2 -
1 1 * 1 . ; . 77(77 + d)
e ) = - T<§,>=————{zx + 2igiv -——]
F(x1, p) X@ Aja (x1 oy a) 2(§1, & oy () + 2ie~i sin @ Xt
1 1 iy e Xy +d)
+ 2ie v sin o — P2
+ 24 109(a + d) [(x1 —a)? + o a)2], le "' sin w =
E i for G.{p):
Ap=sinw + ﬂg—-’:d?) sinw, Aiz=—sinw, xpressions for (p). . )
o —a a a 1(x1, p
A Galp) = | w() | ——————dxid¢
A1 =cosw + i a_(éoiﬂ sinw, Aige = —i sinw, J:a —aw(x)(x — &)
e =T 1620 - Golo)
X(e) = Va3, | 2il (o «())s
Here, the branch of X () is taken such that X (a) — a as |a} — . Giip) =4 {1 - __“_]{Alal _ Amﬂ :
Expression for R ,(x1, p): (o) X(a)
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Transient Response of a Finite
Crack in a Half Plane Under

Impact Load

Analytical investigation of a half plane weakened by a finite crack is considered. The
crack is placed perpendicularly to the stress-free boundary of the half plane. The surfaces
of the crack are loaded by a uniform pressure with Heaviside-function time dependence.
In the Laplace transform domain, Fourier transformations are utilized to reduce the
problem to the solution of a pair of dual integral equations which are solved by using the
series expansion method. The Laplace inversion of the dynamic stress-intensity factors
is carried out numerically.

1 Introduction

Recently, dynamic crack problems have received much attention.
This is due to the fact that dynamic stress-intensity factors are of
considerable importance not only in designing the various parts of
a machine but also in the field of the development of terrestrial heat
which closely concerns to the destruction of the earth’s crust. Many
investigations have been done for the dynamic crack problems. A

" recent book by Sih contains good reviews of a number of subjects [1].
However, most of the studies have been concerned mamly with a
single crack in an infinite elastic medium.

In contrast to the foregoing works, analytical approaches to the
transient crack problems including the effects of the boundaries were
performed by Chen for an infinite strip with a centrally located crack
[2, 3]. The dynamic response of a layered composite under normal and
shear impact is also analyzed by assuming that the composite contains
an initial flow in the matrix material [4]. Later, the same problem
which was treated by Chen [3] is reworked by using a somewhat dif-
ferent approach [5]. The dynamic solutions of these problems are
complicated by the presence of the other surface of the medium in
addition to the crack surfaces. For this reason, such researches have
generally been limited to the case that a crack is situated so as to
achieve a geometrical symmetry with respect to the center line which
intersects at a right angle to the crack surfaces. When a crack has not
such a symmetry, the dynamic crack problem involves more dif-
ficulties in an analytical treatment.

In the present paper, the transient dynamic stress field in the vi-
cinity of a Griffith crack in a half plane is determined. The crack is
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placed perpendicularly to the free surface of the half plane and is
opened by internal pressure with the Heaviside-function time de-
pendence. Fourier and Laplace transforms are applied and the
problem is reduced to that of solving dual integral equations in the
Laplace transform domain. T'o solve the equations, the crack surface
displacement is expanded in a series of Jacobi polynomials. The un-
known coefficients accompanied in that series are solved with the aid
of the Schmidt method. The dynamic stress-intensity factors are
defined in the transformed domain and are inverted numerically in
the physical space with the method which is developed in reference
[6] and used in references [2-5]. Numerical results are compared with
those of the corresponding static values given by Isida [7].

2 Fundamental Equation

Consider an elastic half plane bounded in the x, y-plane by the line
x = h and a finite crack located along the x-axis from —a to +a as
shown in Fig. 1.

When there are no body forces, we introduce two potentials ¢ and
y for the Lamé solution of the equation of motion so that the com-
ponents of displacement are given by

u= ¢,x - ‘p,y:
v=¢,+ Yy, (1)

where u and v are defined as the x and y-components of the dis-
placement, respectively, and the indices following a comma indicate
the partial differentiation with respect to the variable, e.g., ¢, =
o¢p/dx.

The equations of motion in the plane state of strain are reduced to
the forms

1
d’,xx + ¢,yy = [ 37
CL
1
Ver + ¥y == Yot (2)
cT
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Fig. 1 Geometry and coordinate system

where the medium is assumed to be homogeneous and isotropic and
cr, = {(\ + 2u)/p}1/2, e = (u/p)Y/2 are the dilatational and shear wave
velocities with X and u being the Lamé constants, p being the density
of the material. The dynamic stress components are written in terms
of ¢ and Y as

Tyl (2p) = =G ux + 362 uz + byy) + Yoy
Tanl (21) = =y + 32 (Dex + 939) — Yyays
Tya/ (20) = Gy + Yoox — 5 (W + ¥50), 3)
with
k%= (cr/er)?, (4)

where elastic constant k2 takes the value 2(1 — »)/(1 — 2») with » de-
noting Poisson’s ratio.

Equation (2) is to be solved subjected to zero initial conditions and
the following boundary conditions: ’

Tyy =—=PH({), for y=0, —a ”<x <a,

v=0, for y=0, —o<x<-a, a<x=h,
Tyx =0, for y=0, —o<xs=sh, (5
Tzx = Tye =0, for x=h, ly| < =, (6)

where P is a constant and H(t) is the Heaviside unit step function.
Because of the symmetry conditions in equations (5) and (6), it is
possible to consider only the problem for the half plane, y = 0.

3 Analysis
The Laplace transform of f(t) is defined by the integral

) = j; exp (~st)f(t)d. (1)
The inverse Laplace transform is

1
0= fB exp (st)f*(5)ds, @®)

where the integral is over the Bromwich path. Applying equation (7)
to equation (2) results in

2
s
¢,*xx + d’:yy = C_z_ %,
L

2
s
’#;:x + lp,*yy = m l,b* (9)
cr
In the Laplace transform domain, equations (5) and (6) become

Tyy = —P/s, for y =0, —a<x<a, (10a)

Journal of Applied Mechanics

v¥*=0, for y=0, —wo<x<-a, a<x=h, (10b)
T;,x =0, for y=0, —o<x=h, (10¢)
Tw =713, =0, for x=h, |y]<e. (10d)

The solutions of equation (9) which are suitable for the present pur-
pose have the forms

*=9 J;m {A$(s,E) cos (£x) + AS(s,£) sin (£x)} exp (—y1y)dE
+2 f ” Ba(s,9) exp (Bux) cos ({y)ds,
0

V=2 [ 71436,8) sin (Ex) + A3(6,) cos (§)] expl—yay)dE

+2 j;mBz(s,i') exp (Bax) sin ({y)d{, (11)
with
V1= (8% +5%/c})12,
vz = (£ + k2%%c])12,
Br = ({2 + s%ct)1?,
Bz = (§2 + k2s%/c] )12, (12)

where A{(s,£), Ai(s,£), A%(s,8), A§(s,8), Bi(s,{), and By(s,{) are the
unknown coefficients and to be determined from the boundary con-
ditions.

The boundary conditions equation (10c) is satisfied by setting

8s.) = Ev1 ALGE/(E + b 2s2/ch),
A5(s.8) = ~Ey1 AL, £)/(E2 + B k%)), (13)

and equation (10d) can be satisfied if we choose B(s,{) and Bs(s,{)
to be such that )

By(s,{) = —% 5.7 1456.D ladka(6) cos (k) ~askas) sin (ER/D
+A5(s,EMask1(s) sin (ER) + agko(s) cos (Eh)}/D)dE,
Bayfs,f) = — ;ZF 2 1566 askals) sin (§h) = agka(s) cos (ERYD
—~A3(s5,8) lasks(s) cos (Eh) + agks(s) sin (ER)Y/D]dE, (14)
with
ar = ({2 + 322/c}) exp (B1h),
ag = —f2§ exp (B2h),
a3 = —f:{exp (B1h),
as = (822 — % k25%/c}) exp (B2h),

D=aa4— aoa3,
ki(s) = {E2v1v3(vI + £ + y1i(vE + {D(ER + L k2s¥/ed) (=}
+ BE/DI + $(rd + (D + B st

ka(s) = £by1(vE ~ YDAGT + D (vE + (D).

Now, we divide the Laplace transformed surface displacement v*°
into two parts

(15)

(16)

v*0 =30 4 pd, 17

where 1. and vg? are even and odd functions of the x variable, and the
superscript means that the values with it are those at y = 0. Equation
(17) can be expressed by use of the Fourier transform as

w0=2 (750 2 ;o
v 0’ r‘f; 0 cos (Ex)d.§+7rj; 530 sin (Ex)dE,  (18)
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with

v30 cos (Ex)dx,

v sin (£x)dx. (19)

Then, with the help of equation (18), we can represent A§(s,£) and
Ai(s,§) by

A§(s,§) = 2uq(s,5)D7°,
Ai(s,E) = 2uq(s,8)T", (20)
with
q(s,8) = —(£2 + §x2%/c})/BrPrs?y1/ci). (21)

Finally, it can be easily shown that the mixed boundary values
equation (10) yields to the following integral equations:

E;‘O[h(f) cos (£x) + cos (£h) J;m q(s,0)g1(E,0dE
+sin (gh) [ q(s,é)g2(£,s“)d§}dg
o
+4u f —*o{h(f) sin (£x) + sin (£h) f q(s,0)g1(£,0d ¢

— cos (th) fo - q(s,agzts,wf]ds = — PJs,

for —a<zx<a, (22a)
p*0 = 7% f7 w0 cos (gnrag += f 530 sin (Ex)dE = 0,
for —w<x<-a, a<x=h, (22b)
with
FE) = —H(E2 + 3 257/e})? — Eyrydll(h mstyifed),
£1(69) = = 216+ 3e257eD) exp (Budas
— B2 exp (Box)aslki(s)/D,
£a(6:0) = 2 (=B + Be25%/eD) exp (Biwes
— B2 {exp (Bex)a) ka(s)/D.  (23)

To solve equation (22), we expand the even and odd components
of the surface displacement by the following series, respectively,

20 = 3 e PHEY? (x/a)(1 — x2/a2)172,
m=1 ’

2u vy = Z d, P32V (x/a)(1 — x2/a?)12, for —a <x <a,

vl =pP=0, for —o<x<-a, a<x=h, (24)

where ¢, and d,, are the unknown coefficients to be determined and
P22y is a Jacobi polynomial. Substituting equation (24) into
equation (19), we obtain

2ut;° = Z m VA=) 1 T@m = B om— (Ea)/{(2m — 2)E),

2uvy’ = ; dn V7 (1)1 T2 + s, (Ea)/i2n — DIE,  (25)

where I'(x) and J,, () are Gamma and Bessel functions, respectively.
Therefore, we arrive at the system of equation by which the coeffi-
cients ¢, and d,, can be obtained
T = Z emr(m,x) + 22 dps(nx) =V—P/s, for —a<x<a,
m=1 n=1 :

(26)

536 / VOL. 48, SEPTEMBER 1981

with
I‘(Zm
N [ f F1(8)/ET a1 (Ea)cos (Ex)dE
+f m{l/&Jz,n_l(Ea)cos @ " m(e,odr]ds
¥ J; ”ll/gJQm_l (£a) sin (£h) f mhz(E,f)df}df,
snx) = 24/7 (=)= lm“l;’[ f (E)/E Tan (o) sin (£x)dE
+f ”[1/5J2n<sa> sin ) . h1<s,s°>d§}d£
-f m[ungn(sa) cos (¢h) ] mha(E,s“)ds“]dE], @)
Q (4]
and
hl(g’f) = Q(S»E)gl(gig‘)/Qy
hak,1) = q(s,DealE, /2. (28)

The semi-infinite integrals in equation (27) with respect to variable
¢ can be easily evaluated numerically because the integrands almost
all decrease exponentially. The integrands put into braces { | decay
with order of £-35 because the function A1(£,{) and ha(£,{) behave as
for a large value of £

hi(£,0) — 0(¢79),
ha(§,$) — 0(£72).

Thereby, the double semi-infinite integrals in equation (27) can be
evaluated numerically. The other integrals in equation (27) are re-
written as

j;wfl(ﬁ)/‘f Jom—1(&a) cos (Ex)dE

(29)

= . (@ ~ 1OV am1(a) cos (Ex)d

+£1(8)/{6(a? — x2)1/2} cos {(2m — 1) sin~! (x/a),

fo " F1(B)/E Jan (E) sin (Ex)dE

= . VL@ = F10)/8) Jan () sin (En)a

+£1(8)/16(a? — x2)%} sin (21 sin~! (x/a)}, (30)

with

f1(8)/6 = Elim f1(E)/E = —(k? — D)/(7x?). (31)
The function {f1(E)/£ ~ f1(6)/6} behaves as £~2 for a large £, so that the
integrands in equation (30) decay with the order of £725 as £ is in-
creased and the integrals can be also evaluated numerically.

Thus equation (26) can be solved for coefficients ¢,, and d,, by the
Schmidt method [8]. For brevity, we rewrite equation (26) as

kil apEr(x) = =v(x), for —a <zx <a, (32)
with
@i = C(k-1)/2-1,
Ep(x)=ritk —1)/2—-1,x}, for k=1,3,5,17,...,
ap =dps,
Er(x) =s(k/2,x), for k=24,6,..., (33)
and
v(x) = P/s. (34)
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A set of functions Q) (x) which satisfy the orthogonality condi-
tion

a a
[l a@awds =N, M= [ Qhwds,  65)
can be constructed from the function, Ep(x), such that
kM.
Qulx) = & “EEi), (36)
i=1 Mpp,
where M;;, is the cofactor of the element d;, of Dy, defined as
diidig. .. .duwk
d a
Dy = | | de= [ B@B@d @7
di1. v drr
Using equations (32) and (36), Wé obtain
© My
ap = Z q; (38)
="
with
-1 a
== v@ewadx. (39)
N; J-a

4 Stress-Intensity Factor

The coefficients ¢,,,, d,, are obtainable, so that the dynamic stress
field is given. However, in fracture mechanics, it is of importance to
determine stress 7,y in the vicinity of the crack’s tip. The stress along
the line of the crack is given by the first equality in equation (26). The
stress singularities at the tip of the crack come from the behavior of
the integrands as the integration variable £ has an infinite value.
Therefore, in the Laplace transform domain, we can easily define the
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stress-intensity factors for crack tip points (a,0) and (—a,0) by the
formulas

I{ﬁ_ = m 7';8: |x—>a+

_ 2k2—1) [ = . o
———-KZ\/E {): em I' 2m — $/(2m — 2)!

m=1
+ i dn T (2n + H/(2n — 1)!},
n=1
Ki_=+/2x(—x —a) T;g,‘x—¢—a_
22—~ 1) [ =
= 775—[ Y om I' @m —§)/(2m — 2)!

m=1
Y d, T (2n + 3/(2n — 1)!].
n=1

(40)

The Laplace inverse transformations in equation (40) are carried
out by the numerical method given by Miller and Guy [6]. When the
Laplace transform f*(s) can be evaluated at discrete points given
by

s=B+1+0D, 1=0,1,2,... (41)

we determine coefficients C,, from the following set of equations:
l
FfMBH+1+D¥ = C, MU +B+1)I+B+2)
. m=0

L UFBFIEmU~-m)), (42)

where ¢’ > 0 and 8 > —1.0. If coefficients are calculated up to Cy—1,
an approximate value of f(¢) can be found as
N-1
ft)y =3 C PP {2 exp (- &'t) - 1}, (43)
m=0
where PO (x) is a Jacobi polynomial and N is the number of terms

employed. The parameters &', 3, and N are selected such that f(¢) can
be best described within a particular range of time ¢.

5 Numerical Example and Results

Numerical calculations are done for Poisson’s ratio v = 0.25. The
semi-infinite numerical integrations in equation (27) with respect to
the variable { and those with respect to the variable £ are evaluated
easily by using Simpson’s method and Filon’s method [9], respectively.
To perform the Schmidt procedure, we adopt the first seven terms
of the infinite series in equation (32). For a check of the accuracy, the
values of 2]_; arEy(x)/(Pajcr) and —v(x)/(a/cy) are given in Table
1 for the case of sa/c;, = 0.6 and a/k = 0.7. From this it is clear that
the Schmidt method is carried out satisfactorily. Using the values of
8 =0.0,8 =02, N =17, we inverte the Laplace transforms numeri-
cally.

In Figs. 2 and 3, the results of K;+ and Kj.. are plotted versus cz.t/a,
in which the broken lines are the corresponding static values given
by Isida [7]. The curve for a/h = 0.0 is omitted because, for the scale
shown, the results for a/h = 0.0 and a/h = 0.2 are indistinguishable.
In Fig. 4, the ratios of the peak values of K14 and K- to the corre-
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Table 1 Values of 2L1 axEx(x)/ (Pa/cy ) and —v(x)/(alc_)for sa/cL =
0.6 and a/h = 0.7
x/a i a,E, (x)/(Pa/c,) =v(x)/(a/cL)
k=i :
=1,00000 ~1.6664
~0,92857 =1,.6666
0,00000 -1.6668 ~1.6667
0.92857 =1,6662
1,00000 -1,6668

sponding static values, namely, KIt/K3{; and KT*/K{. are shown
graphically, where the slender broken line shows the result for a
centrally located crack in an infinite strip [5].

The maximum values of K1+ and K are quite different, and K}
is considerably larger than K{*. However the value K}/K3, is well
coincident with that of K*/K{_ for the whole range of a/h = 0.0 ~0.8.
Both of the ratios have the maximum for a/h = 0.0 and decrease ac-
cording as the a/h ratio is increased. This means that the effect of
inertia is predominant in the region of a small value of a/h, while the
stress-intensity factors are more affected by the presence of the

538 / VOL. 48, SEPTEMBER 1981

stress-free surface in the region of a larger value of a/h. Another useful
result is that the values of K{}/K§, and K /Kj_ fall within the limits
from 1.1 to 1.3 for a/h = 0.0 ~ 0.8.
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Elastodynamic Stress-Intensity
Factors for a Crack Near a
Free Surface

Elastodynamic Mode I and Mode II stress-intensity factors are presented for a subsurface

crack in an elastic half space. The plane of the crack is normal to the surface of the half
space. The half space is subjected to normal and tangential time-harmonic surface trac-
tions. Numerical results show the variation of Ky and Ky at both crack tips, with the di-
mensionless frequency and the ratio a/b, where a and b are the distances to the surface
from the near and the far crack tips, respectively. The results are compared with corre-
sponding results for a crack in an unbounded solid.

Introduction

An homogeneous, isotropic, linearly elastic half space contains a
subsurface crack perpendicular to the surface, as shown in Fig. 1. In
this paper we examine the elastodynamic response of the cracked half
space to the application at the surface of a uniform traction that varies
harmonically with time. Attention will be directed toward the quan-
tities that are of interest in fracture mechanics contexts, namely, the
stress-intensity factors at the crack tips. We also compare the results
with those for a Griffith crack in an unbounded medium subjected
to the same incident wave motion.

In an earlier paper [1] the authors have considered the two-di-
mensional scattering of Rayleigh waves by a subsurface crack. There,
the boundary-value problem for the scattered field was stated in
mathematical terms and an integral representation for its solution
derived. The problem was then reduced by standard methods to the
solution of an uncoupled system of strongly singular integral equations
which were solved numerically using a method due to Erdogan and
Gupta [2]. Formulas were given for the far-field amplitudes of the
waves in the scattered field and for the near-field quantities that we
are concerned with here. The data in the integral equations were the
values taken at the location of the crack by the stress components of
the incident field, that is the elastodynamic solution in the absence
of the crack. Thus the method described in [1] can be applied to the
problem of this paper as well: the only modification required is to use
the appropriate incident field. So in what follows only brief details
of the equations which need to be solved will be given.
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Fig. 1 Subsurface crack in prestressed half space

It is assumed that the faces of the crack do not interact with each
other. This is a realistic assumption if the crack is actually a thin slit
of finite width, or if a sufficiently large static prestress is applied which
holds the crack in an open position as shown in Fig. 1.

Governing Equations
If the boundary conditions on the surface of the half space are
(1a,b)

Oxy = _Toe—lwl, Oyy = __o.oe—twt’

then the stress components of the incident field are calculated to
be

%) = o0(2k} — kBIkT® exp (ikry) (2
o) = =70 exp (ikry), (3)
where ‘
kg=w/cg for B=L,T (4)
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et =\+2u)p, ch=ypulp, (5a, b)

and A, u are the Lamé cohstants, and p is the mass density. Now, it
can be shown that, if the density functions, d.(y) and d, (y) satisfy
the integral equations

. b
~ol@(y) = 5 f dydy ()T 222 (0, ¥3 0, ) (6)
T a
5] Lk b ,
_o'xly(y/) = ﬁ f dydy(y)rx’y’;xy(oy ¥ 0,y ) (7)
T a

together with the side conditions
b
{aydiy) =0 for i=xy ®
a

Di(y) = di(y)(b — y)2(y — a)}/2 is continuous in {a, b], (9)

then the elastodynamic field generated by the usual integral repre-
sentation, equations (3.4a, b) of reference [1], satisfies all the required
conditions and is the solution to the boundary-value problem we are
seeking. Existence and uniqueness of the functions d. (y) and d, (y)
can be proved, but these questions are not discussed here. The func-
tions can be shown to have the physical interpretation of dislocation
densities. The kernels of the integral equations are given by

Curyry = — L dkeit' =) E(£, y)

o APapare” - (282 — k32 oy
2w R(§)

+ f dE(eit0—y) 4 oiE+¥)
@

452aLaTe—u1,|x—x’| - (252 - k%‘)Z e—ar|x—x’|

10
dwifar (10)
and
Tyarx = — f dEeit&—) F(£, y)
e
N 2a} + kE)(28% — kY)e—oy' — 4E20p e —oTY
2wR(§)
- f dE (e 0=y 4 gitt+y)
@
2 o h2V20—ar|x—x'| — 4£2 —ar|x—x’|
y (282 — k%)% . 48205 are Cay
dmitay,
where
E(ty) = 4821y — (2£2 — k})? apPe Ty (12)
F(&,y) = 20} + k3)(282 — k})af? e—oLy — 42—y (13)
R(E) = (282 - k})? — 482arar (14)
ag= (2 —kPV2 for B=1L,T (15)

The integrands have poles at £ = +kg, where kg = w/cg and cp is the
velocity of Rayleigh waves, and the branches are chosen so that Re
(aeg) =2 0for B =L, T,and £ € @. The contour @ in the complex plane
is along the real axis and is indented above the pole and branch points
in the left half plane and below those in the right, in order to satisfy
the radiation condition.

The integral equations (6) and (7) together with the side conditions
can be solved by standard methods, but the numerical evaluation of
the kernels presents some difficulty. The expressions for the kernels
involve terms which must be computed using a quadrature scheme
on a deformed contour in the complex plane. For details we refer to
[3, 2, and 1]. The displacement discontinuity [u;](y"),i = x, y, and the

stress-intensity factors can be calculated from the solutions to the -

discretized integral equations thus

[w]() = f " dydi(y), i=1x,y, (16)
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Fig.2 Mode | and Mode Il stress-intensity factors; - - - upper crack tip; —

lower crack tip; ¥ = 3 quasi-static approximation from [4]: ©, *; corresponding
Griffith crack results: X, O

and
pky — k})
Kl=——"—2>-|D,(e)|, e=a,b,
® —a)l/Zk%«l ()], e=a an
k3 — k2
U = BT RL) |Dy(e)|, e=a,b. (18)

(b — a) /23

In the numerical computations Poisson’s ratio was taken as v = %, and
the two independent parameters were chosen to be kgb = wb/cg and
a/b.

Discussion of the Results

Deformations that are symmetric about the plane of the crack and
those that are antisymmetric are independent of each other. In the
present problem symmetric and antisymmetric deformations are
induced by applied tractions that are normal and tangential, re-
spectively, to the surface. Thus Mode II stress-intensity factors are
generated by the shear tractions defined by equation (1a), and Mode
I stress-intensity factors by the normal tractions defined by equation
(15).

Fig. 2 shows the variation of the Mode I and Mode II stress-inten-
sity factors with the normalized frequencies wb/c;, and wb/cy, re-
spectively, for three different crack configurations. The curves all
show an increase to a peak and then an oscillatory decay as the fre-
quency increases. In the limit wb/cg — 0 the near field can be ap-
proximated by the quasi-static field, and the incident field becomes
uniform, i.e., o and zrfy) are constant on the crack. Cook and Erdogan
[4] have presented results for the static problem of a subsurface crack
opened by a constant pressure. They obtained these results from the
solution of an integral equation which is actually the limit of equation
(6) as wb/c;, — 0. If the kernels of each of our equations (6) and (7)
are examined, it can be shown that the limits are identical,

lim k;zrx’x’,xx (01 Vs 0: y,)
wblep,—0
R s et & W
b-¥)  +yP -y

= lim k ;'2Fx’y';xy (Oy Y 01 y/)'
wb/eT—>0

(19)

For static problems the results for the subsurface crack, opened by
equal and opposite constant shear tractions acting on the two faces
of the crack, can therefore be derived from the results for constant
pressure. This is not true for dynamic problems. The stress-intensity
factors presented in [4] are defined differently and are normalized
with respect to different quantities, but they were multiplied by the
appropriate factors and plotted as the symbols on the vertical axes
in Fig. 2. The excellent agreement between the low frequency ap-
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proximations and the results computed for small wb/cg, provides a
check on the solution of the integral equations and on the reliability
of the evaluation of the kernels at low frequencies.

Figs. 3 and 4 show the variation of the stress-intensity factors with
the nondimensional parameter a/b, for three fixed values of wb/cy,
in the Mode I case and of wb/ct in the Mode II case. The graphs show
that the stress-intensity factors at the upper tip of a crack, that is
gradually propagating towards a surface under the influence of vi-
brations excited at the free surface, suffer a sharp increase when the
crack has almost broken the surface.

An example of the variation of the components of displacement
discontinuity along the crack is given in Fig. 5. The profile is distorted

Journal of Applied Mechanics
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Fig. 5 Crack-opening displacements; tangential surface traction: ]E,] =
0, and |@,| for wb/cy = 2 (—), wb/cr = 6 (- - -), and wb/cy = 10
(----- )i ldy| = w|[uy]]/70b; normal surface traction: |@,| = 0 and |a, |
for wbic, = 1 (—), wblcy = 3 (- --), and wbic, = 5 (---); |i] =
wllu]l/o0b
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Flg. 6 Stress-intensity factors versus the dimensionless crack length for three
values of a/b: — a/b = 0.1,----a/b =0.2,and - - - a/b = 1 (crack In
unbounded solid); uct = upper crack tip, lct = lower crack tip

from a symmetrical elliptic one, by the proximity of the free surface
and the wave character of the incident field. At low frequency (long
waves), i.e.,at kb = 1 and krb = 2, the crack-opening displacement
is almost elliptical for all three values of a/b.

It may be expected that the effect of the free surface diminishes as
the crack moves away from it, i.e., as kga = 2mwa/Ag (where Ag =
wavelength) becomes larger and/or a/b approaches unity. The
stress-intensity factors should then approach the values for grazing:
incidence of L and T waves on a crack in an unbounded medium.
Results for this problem can be obtained by noting that the kernels
can be viewed as the sum of a source term and a term, which corre-
sponds to its reflection in the free surface on which a condition of zero
traction holds. If only the former term is retained and the integral’
equations are solved as before, then points which are indicated by
symbols in Figs. 2-4, are obtained. The new integral equation is es-
sentially that derived by Tan [5] for the treatment of normal incidence
of elastic waves on a Griffith crack, but the numerical method of so-
lution we use is different in that it preserves the correct form of the
singularities of the solution at the crack tips.

To determine more precisely in what circumstances the effect of
the free surface is negligible, the graphs of the stress-intensity factors
of a Griffith erack in an unbounded medium were compared to those
for subsurface cracks with various values of a/b. The Griffith crack
is the limit of a subsurface crack as kga — « but kg(b — o) remains
constant, or equivalently a/b — 1 with kg(b — a) fixed. The results
shown in Fig. 6 have therefore been plotted against and normalized
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with respect to the crack length (b ~ a). We expect that the subsurface
crack curves will lie close to each other and to the Griffith crack curve,
when the distance from the upper tip to the surface is large compared
to either the crack length or the wavelength of the incident field. It
appears that the condition, either that a/b > 0.5, or kra > 0.25 in the
case of symmetric deformations and kra > 0.5 in the case of an-
tisymmetric deformations, is sufficient to insure that the results do
not depend greatly on the distance from the free surface to the nearest
crack tip.

Tt is evident from Fig. 6 that the oscillations of the subsurface crack
results about the curve for the Griffith crack are greater and persist
for longer in the Mode 11 cases than the Mode I cases. It may be as-
sumed that the oscillations about the infinite body curve are due
primarily to the reflection of a diffracted body wave from the free
surface. This body wave is primarily a longitudinal wave in the Mode
1 case and a transverse wave in the Mode 11 case, and so it seems that
the latter is more significant.
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A numerical method is developed for the determination of the contact pressure that arises
when two elastic bodies with closely conforming non-Hertzian frictionless surfaces are
pressed together. The method is a generalization of that recently developed by the au-
thors for the case of antiformal contact, and includes a technique for automatically gener-
ating meshes that overlay the changing (load-dependent) contact patches. The method
has been implemented in a computer program called CONFORM, and has been applied
to problems of wheel and rail contact. The resulis have been verified by comparison with
those generated by an independent program for the special case of relatively light wheel
loading, where the contact is known a priori to be essentially counterformal. The results
given herein for a relatively heavy (but realistic) wheel loading on the throat of the flange
represent the first known solution for conformal contact between a railroad wheel and
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rail.

1 Introduction
Elastic contact stress problems are classified as Hertzian if they
satisfy the following five conditions:

1 The bodies are homogeneous, isotropic, obey Hooke’s law, and
experience small strains and rotations (i.e., the linear theory of elas-
ticity applies).

2 'The contacting surfaces are frictionless.

3 The dimensions of the deformed contact patch remain small
compared to the principal radii of the undeformed surfaces.

4 The deformations are related to the stresses in the contact zones
as predicted by the linear theory of elasticity for half spaces
(Boussinesq’s influence functions are valid).

5 The contacting surfaces are continuous, and may be represented
by second-degree polynomials (quadratic surfaces) prior to defor-
mation.

Contact stress problems are also classified as follows:

(a) Antiformal (or counterformal), if Condition 3 is satisfied,
or
(b) Conformal, if Condition 3 is violated.

Excellent surveys of recent research in the field of contact stresses
have been provided by Kalker [1, 2]. From these surveys it will be seen
that the vast bulk of such work starts from the assumption that the
contact region is the ellipse predicted by Hertzian analysis. Even in

1 Now Assistant Professor at Abadan Institute of Technology, Abadan,
Iran.
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Kalker’s studies of the effects of friction on rolling creepage, both the
contact pressure and the contact region are elliptical; i.e., the “contact
pressure” problem is treated as Hertzian.

Until recently, there existed no general way of handling any non-
Hertzian contact pressure problems. However, Singh and Paul [3]
showed how to solve antiformal non-Hertzian problems using the
so-called Simply Discretized (S.D.) method. This method was applied
by them to relatively simple geometries. Later, Woodward and Paul
[4] extended the S.D. method to the case of conformal problems, but
Paul and Hashemi [5] developed a modification of the 8.D. method
by means of which they were able to solve antiformal contact problems
for virtually arbitrary geometries. By means of a computer program
COUNTACT [6] they found the first known solutions for realistic rail
and wheel profiles in antiformal contact.

The present work represents an extension of the modified S.D.
method to conformal problems with quite general geometries—in-
cluding that of wheels and rails in closely conforming regions of the
flange throat. Based upon this analysis, a computer program (called
CONFORM) has been developed [7] and made available to the general
public. ‘

Additional references on related literature will be found in [3-5,
8}. .
In the next section, we formulate the integral equation governing
conformal contact stress problems, and in Section 3, we show how the
Modified Simply Discretized Method can be used to solve the integral
equation. In Section 4 the determination of the initial candidate
contact boundary is discussed. This is a necessary preliminary for the
numerical method being used. In Section 5, methods are developed
for mesh generation and true contact boundary determination which
are more general and efficient than those used in the previously cited .
references. Section 6 discusses the influence functions used, and
Section 7 briefly explains the organization of computer programs
developed for this work., Examples are given in Section 8 and Con-
clusions are stated in Section 9.
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(a)

X
(b} :
§=-6%
/O’J [
M L}
2
Fig. 1 The two bodies in contact under rigid body translation 8. (a) Curved

{ines are inlersections of given surfaces with a plane through the z-axis. The
line M, M, Is parallel to the z-axis, prior to deformation; (b) Enlargement
of region near My and M,, showing the process of deformation.

2 Formulation of the Governing Integral Equation

Let two bodies of general, but closely conforming, shape be denoted
as body 1 and body 2. Cartesian coordinate axes are set up with the
initial contact point as common origin. Axes (x, y) lie in the tangent
plane of the two surfaces at the initial contact point with the z-axis
pointing into body 2.

The initial separation of points on the two bodies with common
(x, y) coordinates is given by the known surface functions, z; and zs,
as (see Fig. 1):

flx,y) = 22(x, ¥) — 21(x, 3) (1)

After the bodies are pressed together, the total displacement can
be represented by a rigid-body motion plus a superposed deformation
which decays rapidly with distance from the region of contact. In
general, the rigid-body motion of body 2 relative to body 1 is defined
by six parameters. For simplicity, we assume, at this point, that the
rigid-body motion of body 2 relative to body 1 consists of a transiation
through distance 0 in the negative direction of axis z. The quantity
6 is called the rigid-body approach.

Let us consider two points M1 and Mg on the surfaces of bodies 1
and 2 with common coordinates (x, y) as in Fig. 1. The initial sepa-
ration vector between the two points will be

s1=f(x,y)2 2)

where s; is the initial separation between point M; and Mo. 2 is the
unit normal vector in the z-direction, and f(x, y) is given by (1).
After deformation occurs, points M1 and M3 move to M} and My,

If wy and wy represent the elastic displacement vectors of the points
M, and M, then the separation vector after deformation becomes
(see Fig. 1(b))

sf=s; + wy— wy — 02 (3)

For closely conforming surfaces, the normals to the two surfaces
(at M, and M) differ very slightly in direction, and either of the two’
initial surfaces represents a good approximation to the deformed
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Pressure
Distribution
P{x,y)

Fig. 2 Forces applied to body 1

surface on which contact occurs. We will therefore assume that the
contact patch lies on surface 1, and its unit normal vector n will be
approximated by ny, the unit outward normal to surface 1.

Within the contact patch (by definition of contact), the component
of separation sy in the normal direction vanishes, i.e.,

s;rn={(fztw—w—02)-n=0 (4)
or
wh +wh = (6 — f) n, (withing contact patch) (5)
where
wh = —wyeng
wh = —wgang=wo-ng

are the components of w, and wy along the inward normals to surfaces
1 and 2; note that ng = ny, and n, is the z-component of ny.

We consider the case of frictionless surfaces which develop a purely
normal surface pressure p over the contact region ¢. The displacement
w? for body i is related to the pressure on body ¢ by the expression

Wl (1) = f Gilsv) p (¢) do’ )

where the influence function G; (r; ¥') is the normal displacement of
point r due to a unit normal force on body i at r'.2 Denoting the pro-
jection of area element d¢’ on the x — y plane by

dA’=n,do¢’ (7
where n, is the z-component of n), we may write (6) in the form
' dA’
w0 = f Gilar) pt) = ®
o n,

where €2, the projection of ¢ on the x — y plane, will henceforth be
called the contact region.
Therefore, equation (5) becomes

dA’
—=(0—f)n. (9)
n

fn (G1+ G p ()

z

For indentors of finite curvature, a physically meaningful solution
requires that

p(x,y) =0 within Q

(10)
plx,y)=0 onC

where C is the boundary of the contact region €.

Equation (9) and condition (10) govern the conformal contact
problem; they can be solved for p(x, y) and C, if a value of § is speci-
fied.

2 The vector r(r') locates a field (source) point. Quantities evaluated at a
source point will be marked by primes: e.g., p’ = p(r'), but p = p(r).
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Fig. 3 Two bodies In conformal contact; (a) prior to deformation; (b)
fictitious interpenetration; {¢) initial candidate contact region

The resultant force F®) and moment M) (due to the pressure on
body 1), may be found (see Fig. 2) from the expressions

FP) = — f pndo
)

M(P)=—-erpnd¢r
2

(11)

(12)

wherer = (x,y, 2), and do = dA/n,. Thus the applied external force

F = —F® and moment M = —M®) are given by
dA
‘Fx;Fnyz}=— fp{nx,n_yynzl_ (13)
Q Nz
dA
M, = f (yn, —zny) p—
Q N,
dA
M, = f (—xn, +zng) p—
Q n,
dA
M. = { (ny = yni)p== (14)
Q n.

3 Discretization of the Integral Equation
For a given rigid-body approach 8, equation (9) could be solved for
the pressure field p(x, y) if the region of integration Q were known.
We will begin by assuming a candidate contact region §2. The pro-
Jjection, on the x ~— y plane, of the intersection curve which would arise
if surface 1 were displaced relative to surface 2, along the z-axis by
distance §, is called the interpenetration curve and is given (see Fig.
3) by
flx,y) = za(x, y) — 21(x, ) =0 (15)

If the region bounded by the interpenetration curve is chosen as the

Journal of Applied Mechanics

initial candidate region, equation (9) becomes an integral equation
of the first kind, which we shall solve by the modified simply discre-
tized method [5]. Let us discretize the region  of the integral equation
into n subregions {1y, Qy, . . .,{2,,, where the subregion §J; is called “cell
J.” Then, equation (9) reduces to

/dAI /dAl
j;(clwz)", +J; (G1+ G 255
1 : 2

n, n,

= [6 = f(x, ¥)In.(x,y) (16)

/dAI
+ @+t
Qn n

z

If cell j is small enough so that p(x’, y’_ }and n,(x’, y’) over that cell
can be considered as constants p; and nJ, then equation (16) reduces

to
/dAI
fﬂ (G + Go) B

"P}
~ s G+ Gg)dA’
) ,_ﬁj( 1+ Go)

j=1n;

~ 6 — flx, )] na(x,y) (A7)

The term (G + G2) will be singular within certain cells and must
therefore be kept under the integral sign, at least for such cells.

To find the unknown values of p; we select n field points (x;, ;)
and write equation (17), for each of these points, in the form

_nzlbijpj =d; (=1,...n) (18)
i
where
1
b = j;j (G1 + Gy) dA (19)
d; = [6 = flxi, y)l{n2); (20)

If matrix [b;;] is nonsingular, equations (18) may be solved for the
candidate pressures p;. If these values of p; do not satisfy conditions
(10) we must modify the assumed contact region boundary C. The
method used to choose and modify the boundary of  will be described
in Section 5.

The influence functions used for the specific examples of rail and
wheel considered in this paper are described in Section 6; for further
discussion see [8].

The applied force and moment are obtained from equations (13)
and (14) as

n n.
Fo= ¥ p; (—)
j=1 " \nzli
n n.
Fy=% pj ('l) 4
Jj=1 Nty
n
F, =3 pj 4; (21)
j=1
n n
M, =3 pj[y_z—y 4A;
j=1 n:li
n
M, =3 pj[——x +z——] Aj
j=1 nziJ
n
M = 3 p; [(xny — yn)/n.}; A; (22)
Jj=1

where A; is the area of cell j (in the x, y-plane).

4 Initial Candidate Contact Boundary

The initial candidate contact region will be chosen as the region
insde the “interpenetration curve” defined in Section 3. General
procedures for finding this curve are given in [9].

It was shown in [5] that for antiformal (but not necessarily Hertz-
ian) contact, the actual contact region lies inside the interpenetration
curve associated with a fixed approach. Similar reasoning shows [8]
that, in the case of conformal contact problems, the true contact patch
lies inside the interpenetration curve, provided that the influence
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Fig. 4 WMesh arrangement for sample interpenetration curve. Bands are shown separated by heavy vertical lines. Band 1 is subdivided
into 5 strips, band 2 into 4 strips, band 3 into 5 strips. Note that the x-axis is a line of symmetry, and only half of the contact patch is

shown.

functions used for both bodies are unidirectional® over the initial
candidate contact patch. Experience to date suggests that the inter-
penetration curve is a good candidate for the initial contact patch, for
both conformal and antiformal contact.

5 Mesh Generation and Contact Boundary
Determination :

The method described in [5] for the mesh generation and boundary
determination of antiformal problems has been improved and ex-
tended to the conformal problem. In the following, rectangular cells,
with sides parallel to the x and y-axis are utilized, and the contact
region is assumed to be symmetric about the x-axis (as it would be for
a wheel axis parallel to the x-axis, and a rail axis parallel to the y-axis);
consequently, only half of the contact region (see Fig. 4) needs to be
discussed. Both the field points and source points will be chosen to
lie at the centroids of the rectangular cells. The scheme of subdivision
for a candidate contact region is as follows:

The x-diameter, which has known length a, may be divided into
any number (ns) of segments called Bands. A typical band (¢) will be
further divided into n,; segments called strips. Then the “horizontal”
length h,; of cells in band i will be given by

hyi = a;/ng (23)

where
a; =ra (24)

and r; is a fixed positive ratio (less than 1) associated with band i, such
that Cow

Zri=1.
i

If we divide each half-strip j into a number of cells m;, the “vertical”
length h, of each cell in that strip will be determined as

hyi = Ymax j/m; (25)

where Ymay; is the y-coordinate of the point on the boundary curve

corresponding to the center line of half-stripj (see Fig. 4).
If it is desired to have a field point on the x-axis, then we let
hyj = ymaxj/(mj - ]2') (26)

The x-coordinate of the field points of all cells in the first strip will
be obtained as :

3 An influence function will be described as unidirectional over a surface if
a normal force applied to a point on the surface produces displacements at all
points of the surface whose components in the direction of the applied force
have the same sign everywhere.
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. hy1
xy=ap+-—
! 2
where ay, is the left-x -intercept of the boundary curve. Then the %-

coordinate of the cell centroid in strip j becomes (for band 1):

@7

25 = xj—1 + hyj (28)
A similar procedure is followed for all subsequent bands.

Having unambiguously defined the cell arrangement, we may use
equations (19) and (20) to evaluate b;; and d;. Then the unknowns p;
may be found by solving the linear equations (18).

‘If the current pressures p; do not satisfy conditions (10), the di-
ameter ¢ and the ordinates ymax; are redefined by quadratic inter-
polation as described in [5], thereby determining a new candidate
contact boundary C. The whole process is repeated until the condi-
tions (10) are fully satisfied. This procedure has been tested on nu-
merous cases (e.g., railroad wheels and rails, crowned rollers, cams,
etc.)'and has always terminated satisfactorily within approximately
five iterations. As will be seen next, the geometry of a wheel-rail in-
terface is about as complicated a case as one might find in any prac-
tical situation.

6 Influence Functions for Rail and Wheel Surface-

One of the major difficulties in the solution of any contact problem
is the determination of suitable Green’s functions for the surfaces in
contact. These “influence functions” relate the elastic displacements
at a given point to a unit applied force at some other point. In contact
problems, we are concerned with the elastic displacements of surface
points due to a unit load applied anywhere on the surface .of a
body.

In antiformal contact of rail and wheel, the contact area is ap-
proximated by a plane, making it appropriate to use Boussinesq’s
influence function [10] for all surfaces. However, in conformal contact
(where the contact surface is not approximately plane), it is generally
necessary to find more individualized influence functions for each of
the two surfaces in contact. For many realistic surfaces, the exact
influence functions annot be found analytically; therefore, they must
be generated numerically as in [4], or else be approximated by some
convenient mathematical expressions.

A study of various exact and approximate influence functions has
been described in [8]. Although, in principle, one may generate ac-
curate influence functions for arbitrary surface geometries with the
aid of three-dimensional finite-element programs, these studies in-
dicate that the costs of such an approach for rail and wheel geometries
are prohibitive at this time. The only exact solution (known to the
authors) for the effects of a point load on a curved surface is that of
Sternberg and Rosenthal [11]. This solution together with some fi-
nite-element solutions using the well-known program ANSYS pro-
vided benchmarks for the testing of various approximate influence
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functions. The results of this testing program are too copious to dis-
cuss here, but the overall conclusions are summarized next. It was
found in [8] that for surfaces of negative Gaussian curvature (saddle
surfaces) such as at point C in the rail-vehicle wheel of Fig. 5, the
following expression gives a reasonable approximation to the normal
displacement w,, at a surface point (x, ¥, 2) due to a unit normal force
at the surface point (x’, y’, 2’):

_ (1-v)/7E (29)

[(x =202+ (y = y)2+ (2 = 2/)]/2
where E and » are Young’s modulus and Poisson’s ratio.

For surfaces of positive Gaussian curvature (e.g., the sphere), it was
found in {8] that some improvements could be made on the foregoing
expression, but on balance equation (29) represents a reasonable
compromise between accuracy and simplicity.

Wn

7 Computer Program “CONFORM”

The procedures just described have been incorporated into a
FORTRAN computer program called CONFORM which stands for
“CONFORMal contact.” The program can treat all contact problems
with one axis of symmetry in its contact patch. In rail-wheel problems
there will always be at least one axis of symmetry (parallel to the wheel
axis) for wheelsets at zero yaw angle. Complete information on the
program is given in the User’s Manual [7]. Additional background on
the computational procedures used will be found in [8, 9].

8 Examples

To illustrate the method, we consider a problem of great practical
interest; namely, the contact of the wheel of a metroliner railroad
coach with a standard (140 Ib per yard) rail. Both wheel and rail are
made of steel with an elastic modulus of E = 30 X 10° psi (2.068 X 101!
Pa) and Poisson’s ratio of v = 0.3.

It is assumed that initial contact occurs at the point C in Fig. 5
where both the wheel and the rail profiles undergo jumps in curvature.
The rail profile is described initially (from manufacturer’s drawings)
by a set of mutually tangent circular arc segments referred to Carte-
sian axes (%, z,) fixed in the rail. Similarly, the segments of the wheel
profile are referred to axes (x,, 2,,) fixed in the wheel. Complete di-
mensional data for the system are given in [7], but the circular arc
segments on either side of point C (for both the rail and the wheel)
which are needed for the present examples are specified as follows
(dimensions in in.):

Body Radius Coordinates of arc center

rail 1.250 x, = 01612, 2,=-12715
rail 0.375 x, =1.0588, 2z, =-0.5188
wheel 1.280 xp = 1.0495, 2z, = —1.3299
wheel 0.378 X, = 1.5218, z, = —0.5611

The foregoing information is sufficient to uniquely define the wheel
and rail profile referred to the local (£, {) coordinate system shown
in Fig, 5, where the { axis is aligned with the common normal to wheel
and rail at the initial contact point C. Details are given in [9] of geo-
metric analysis needed to express the initial separation ({wheet = $rail)
as a function of the orthogonal coordinates (£, 1) in the common
tangent plane at C.

For the contact point illustrated in Fig. 5, the problem could be
either antiformal or conformal depending upon the magnitude of the
applied load. In the first example, the applied load is relatively small
so that the contact patch is antiformal and the accuracy and reliability
of the program CONFORM can be verified versus program COUN-
TACT (see Fig. 6). In the second example, the load is so high that the
problem is highly conformal and the deviation between the two pro-
grams is significant (see Fig. 7). The force component F and the
normal approach § mentioned later are measured in the direction of
the {-axis. Complete input and output data are given in [7], but the
major results are summarized as follows.

Example 1. Antiformal Case of Rail and Wheel Contact
Stresses. Let the initial point of contact of rail and wheel be point
C shown in Fig. 5. For 6 = 0.0005 in. the numerical solution was found
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Fig. 5 Example of rail and wheel in conformal confact (unioaded case
shown) Numerical data is for 140RE rail (AREA designation) and for SIG
Metroliner wheel (SIG = Schweltzerische Industrie-Gesellschaft); dimensions
in inches.
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e CONFORM
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Fig. 6 Comparison of programs CONFORM and COUNTACT for § = 0.0005
in. (1.27 X 10~5m). The corresponding forces are: F = 1413 Ib (6.285 N)
[CONFORM)] F = 1434 Ib (6.378 N) [COUNTACT|(a) Pressure distribution,
(b) Contact patch.

-0.2

-0.1 0.0 0.1

by using the computer program “COUNTACT-1” [counterformal
contact; see (6)] and also by program “CONFORM” (conformal
contact). The contact region of Fig. 6(b) was divided into 42 cells.

The program CONFORM requires, as part of the input, the rigid-
body approach 6, an initial candidate contact region, and the desired
initial mesh arrangement. The output includes: pressure distribution,
load (force and moment), and boundary of contact region.

A plot of pressure distribution along the &-axis is given in Fig. 6(a),
and the upper half of the contact region is shown in Fig. 6(b) for both
programs. Note that for the very light load applied (1413 1b), the
contact patch is small and the problem is antiformal (but non-
Hertzian). The excellent agreement between the predictions of pro-
grams COUNTACT and CONFORM, represents a validation of the
latter program.
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Fig. 7 Comparison of programs CONFORM and COUNTACT for § = 0.003

in, (7.62 X 107%m); F = 20550 Ib (91400 N) [COUNTACT}; F = 19000 Ib

(84510 N) [CONFORM), (a) Pressure distribution, (b) Contact patch
v

Example 2. Conformal Case of Rail and Wheel Contact
Stresses. For the same initial point of contact as in example 1, but
for a higher load, the problems becomes conformal, and again the
numerical solution of the problem was obtained by both CONFORM
and COUNTACT, for § = 0.003 in. The plot of pressure distribution
along the £-axis is shown in Fig. 7(a). The contact patch, shown in Fig.
7(b), was divided into 80 cells.

9 Conclusions

The modified simply discretized method of Paul and Hashemi {5]
has been extended to conformal problems. Methods for automatic
mesh generation and contact patch boundary determination have also
been extended to conformal contact problems.

Computer program CONFORM, based on these ideas, has been
described and numerical results were presented for selected exam-
ples.
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The first numerical example demonstrates the accuracy of program
CONFORM for the special case of non-Hertzian antiformal contact
problems. The accuracy of program CONFORM for this class of
problems was checked against the more specialized program
COUNTACT, which is limited to strictly antiformal problems. Fig.
6 illustrates the validity of program CONFORM for this verifiable
case.

The second example presents the first known solution to the con-
formal contact stress problem for geometry as complex as that of a
realistic railhead and wheel making contact on the throat of the
flange.

Fig. 7(a) illustrates how important it is to use program CONFORM
for truly conformal cases, and that practical cases of conformal
problems occur which cannot be adequately approximated by a pro-
cedure designed for antiformal cases.
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The paper discusses the planar Hertz contact problem when the bodies are not only
pressed together but also exchange heat by conduction. The nature of the problem and
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Introduction

The common boundary conditions for thermoelastic contact are
based on the ideas of perfect contact and perfect insulation. The first
idea implies that the interface offers no resistance to heat flow in the
regions with solid to solid contact. It is equivalent to an assumption
that temperature is continuous across the contact interface. The
second idea presumes that no heat is exchanged between the bodies
in the separation zones where the solids are out of contact, or that the
normal derivative of temperature vanishes in these zones. It is now
known, however, that these boundary conditions may lead to math-
ematical dilemmas for steady-state heat conduction involving contact
between bodies with geometrically smooth surfaces. The nature of
the difficulties depends on the direction of heat flow: lack of existence
for heat flowing into the material with the smaller distortivity (see
the list of symbols for definition), and possible lack of uniqueness if
heat flows into the material with the larger distortivity.

The difficulty with heat flowing into the material with the smaller
distortivity was first noted by Barber [1] in treating the indentation
of an elastic half space by a rigid sphere. If the sphere is cold, the
contact tractions become tensile near the periphery of the contact
region. It was subsequently proven by Barber [2] that the situation
cannot be rectified by assuming a concentric array of contact and
separation zones. Tensile contact tractions were also encountered by
Panek and Dundurs [3] in analyzing the thermoelastic contact be-
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tradictions, but the difficulties can be overcome by introducing a zone of imperfect con-
tact. The formulation is based on a suitable Green’s function, and the problem is reduced
to a singular integral equation which must be solved numerically.

tween bodies with wavy surfaces. It should be noted that the difficulty
is not merely due to an insufficiency of the solution method, but that
it is inherent to the problem. Thus Comninou and Dundurs [4] have
shown by an asymptotic analysis that a direct transition from perfect
contact to separation unavoidably leads to tensile contact tractions,
as well as interpenetration of material.

It was conjectured by Dundurs and Comninou [5] on basis of a
one-dimensional model that the lack of existence of solutions could
be remedied by introducing a pressure-dependent resistance to heat
flow in the contact zones. Indeed, it has recently been shown by Du-
vaut [6] that solutions satisfying the appropriate inequalities (negative
normal tractions in the contact zones, and positive gaps in the sepa-
ration zones) exist for physically realistic laws of the interface resis-
tance. All contact problems are nonlinear because of the inequalities,
but a pressure-dependent resistance makes the nonlinearities much
stronger.

A modification of the idealized boundary conditions for heat flowing
into the material with the smaller distortivity has been proposed by
Barber [7]. It pays a penalty in that a new zone (imperfect contact)
is needed, but avoids the strong nonlinearities that arise from a
pressure-dependent resistance. Accordingly, the contact zone consists
of two parts: a zone of perfect contact in which the common as-
sumption of no thermal resistance holds, and a zone of imperfect

.contact in which the contact pressure vanishes and the contact in-

terface offers some resistance to heat flow. One is led to these
boundary conditions by considering a certain limit in the interface
resistance, which must be a monotonically decreasing function of
pressure [7]. An asymptotic analysis has revealed [4] that the ine-
qualities are not violated at the transition from perfect to imperfect
contact if heat flows into the material with the smaller distortivity.

The mathematical difficulties appear to be of the opposite nature
when heat flows into the material with the larger distortivity. There
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is evidence that, in such a case, the solutions are not necessarily
unique. Thus, if two solids with flat surfaces are pressed together and
prevented from bending away from each other globally, one possible
steady state of heat conduction corresponds to the solids remaining
in contact along the entire interface. It has recently been shown by
Comninou and Dundurs [8] that it is also possible to construct solu-
tions involving localized separation zones. A similar conclusion is also
implicit in some of the previous results by Dundurs and Panek [9].
Moreover, a particularly simple demonstration of nonuniqueness has
been given by Comninou and Dundurs [10] using the Aldo model [11].
Recent work by the authors [12] indicates, however, that it may not
generally be possible to achieve uniqueness by introducing a resistance
that depends on the pressure in the contact zones and on the gap size
in the separation zones.

The situation when one of the contacting bodies has a sharp corner
also has been studied [13], but the results are of no immediate interest
for the Hertz contact considered, and the subject is mentioned merely
for the sake of reference.

The indentation of an elastic half space by a rigid sphere has been
treated by Barber for both cases when the sphere is hot and a direct
transition from perfect contact to separation is possible [1], and when
the sphere is cold and an intermediate zone of imperfect contact is
necessary [7]. The same methods could be used to extend this work
to two elastic spheres. The present article investigates the planar case
of two elastic cylinders. This problem is of interest in its own right,
but the main motivation is to provide more detailed results than is
feasible in the three-dimensional case.

Mathematical Preliminaries
As it is customary in contact problems of the Hertz type, the geo-
metric profiles of the bodies are approximated in the vicinity of the
initial contact as surfaces of second degree, and the boundary con-
ditions are written on their common tangent plane. In other words,
the contacting solids are viewed as two elastic half spaces, except that
their approximated shapes are incorporated in the boundary condi-
tions to be imposed in the contact region and its immediate vicinity.
In two dimensions, the bodies are parabolic cylinders that touch in
the undeformed state along the line x = 2 = 0. The initial gap between
the bodies, measured along the normal to the tangent plane y = 0,
is
golx) = 3(K; + Kp)x? (1)

where K1 and K are the curvatures of the cylinders reckoned positive
for convexity to the outside. Therefore,

dgo(x)/dx = Kx (2)
with
K= K1 + K2 (3)

being the mismatch in curvatures.

The formulation that enforces the required conformity between
the bodies in their deformed states is based on a Green’s function for
interior thermoelastic contact [14]. It consists of a thermoelastic field
(heat source and sink) and a purely elastic field (pair of concentrated

Nomenclature

forces). The advantage of this approach is that most of the boundary
conditions pertaining to the problem are satisfied automatically, and
that there only remains to find the source-sink and force-pair distri-
butions which enforce a few remaining requirements in the contact
zones. The boundary conditions that are automatically embedded in
the formulation are continuity of heat flux, continuity of normal
tractions, and vanishing shearing tractions at the interface. The full
expressions for the field quantities associated with the Green’s
function are given in reference [14], and we repeat only the relations
of immediate interest.

An isolated heat source-sink combination of strength A acting at
the point (£, 0) leads to the following quantities at the interface:
Rate of Change of the Temperature Jump:

T - L 1,0 - T, 0] = TR g
Heat Flux Through the Interface:
q(x) = ¢y V(x, 0) = g,P(x, 0) = No(x — §) (5)
Derivative of the Gap:
dex) _ d

luy D(x, 0) — uy@(x, 0)] = A(d; — d2)H(x — §) (6)
dx dx

Normal Tractions:
N(x) = 0y, P(x, 0) = 05y @(x,0) =0 7

where 6( ) and H( ) denote the Dirac and Heaviside functions. If a
source-sink combination with the density A(x) is distributed over a
part of the contact interface, the corresponding relations follow from
integration with respect to £, and

dr(x) _lkit+ks - A(E)dE
de 7 kike ‘f—“’ x =& ®
q(x) = A(x) 9
dg(x) %
S GRS NG (10)
N(x) =0 \ 11)

A pair of concentrated normal forces of magnitude fy applied to
each of the solids in a tensile direction gives [14]

% =gx)=0 (12)
%
g _ fy 1

dx 2rMx — & (13)
N(x) = f,0(x = §) (14)

Integration with respect to £ generates a distribution of interface
normal tractions of intensity Fy (£), and

a = half length of perfect contact

b = half length of total contact

F,(x) = density of a force-pair distribution
fy = magnitude of a discrete force pair
g(x) = gap between the bodies

go(x) = initial gap between the bodies unit thickness)
H( ) = Heaviside step function
K = mismatch in curvatures
K1, K9 = curvatures of the bodies
k = conductivity

T = temperature’

550 / VOL. 48, SEPTEMBER 1981

g(x) = heat flux through the interface
gy = component of heat flux

uy = component of displacement

dr(x)
——=q{x)=0 (15)
dx
M = 2u1p9/[pa (kg + 1) + palky + 1)) x,y = coordinates
N(x) = normal tractions 8 = a(l + v)/k = distortivity
O = order symbol 6( ) = Dirac delta function
P = force transmitted between the bodies k=3 —4y
(per unit thickness) _ . . -
Q = rate of heat flow between the bodies (per A(:i()); density of heat source-sink distribu

X = strength of a discrete source-sink
v = Poisson’s ratio
. £ = integration variable
7 = temperature jump across the interface
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Fig. 1 Geometry of the contacting bodies

dglx) 1
dx arM
N(x) = Fy(x)

= Fy()dE

By (16)

(17

Heat Flowing Into the Material With the Larger
Distortivity

If heat flows into the material with the larger distortivity (6, > d5),
the central zone of perfect contact can be bordered directly by zones
of separation. The corresponding situation is indicated in Fig. 1(a),
where the zone of perfect contact extends over the interval (—a, a).
The total force pressing the bodies together is denoted by P and the
rate at which heat flows through the contact interval by @ (@ > 0).
Both quantities are reckoned per unit thickness normal to the rep-
resentative lamina.

As mentioned before, the boundary conditions of continuous heat
flux, continuous normal tractions, and vanishing shearing tractions
on —e < x < o are automatically incorporated in the formulation by
use of the Green’s function [14]. If the source-sink and force-pair
distributions are restricted to the interval —a < x < a, the separation
zones | x| < a are also insulated and free of normal tractions. Conse-
quently, the remaining boundary conditions must only enforce that
there be no temperature jump across the interface and the bodies must
conform geometrically in the zone of perfect contact, or that

dr(x)

=0, —a<x<a (18)
dx
d,
86) o, —a<x<a (19)
dx

The last condition must only be enforced within an arbitrary con-
stant.

In view of (8), the first boundary condition (18) yields the Cauchy
singular integral equation

CABLE 0 ci<a (20)
—-a E - X

with the auxiliary condition
S Awag=q, @>o0 @1)

in which the total heat flux @ is considered as specified. The second
boundary condition (19) leads on basis of (2), (10), and (16) to the
integral equation
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e Fy(Hd§ x
j‘_a _~—£ S 2wM [A + Kx + (81 — 09) j‘_a A(E)dgl,

—a<x<a (22)

where A is an arbitrary constant. The integral equation (22) must be
supplemented with the condition
a
f Fy(£)di=—P, P>0 (23)
—a .

specifying the total force P transmitted between the bodies. Moreover,
the inequalities

N(x) <0, |x|<a (24)

g(x)>0, a<|x| (25)

must be obeyed by the solution to bé constructed.
The solution of the first integral equation (20) together with the
auxiliary condition (21) is well known [15]. Thus
Alx) = e (a2 — x2)~172 (26)
T
and the heat flux is square-root singular as predicted by the asymp-
totic analysis of the transition from perfect contact to separation
[4]. .
Substituting (26) into (22)

_: %(—f)‘j—g = 2rM ,A +Kx+ -‘7% (81 = 62) (sin—l z + ’Er)}
= f(x), —a<x<a 27
Since Fy(x) must be bounded, the consistency condition [15]
f_ Z (azf—(f)gﬁ =0 (28)
must be satisfied. This yields
(29)

A+ 361—68)@ =0
The solution of (27) is ‘

Fy(x) =~ -2—M(a2 — x2)1/2 [Kx + 9 (81 — dg)
w s
a  sin~? (E/a)dE
X j:a ————-———(az gy U(E = x)]’ —a<x<a (30)

Applying the auxiliary condition (23) on (30), we obtain after some
elementary integrations '

P 4Q(51 — 89)
=7+
MKa? Ka
The singular integral in (30) can be evaluated by the Lobatto-
Chebyshev quadrature, as extended to Cauchy integrals by Theocaris

and Ioakimidis [16]. Equation (30) is first put in a dimensionless form
by the change of variables )

(31)

E=ar, x=as

The aforementioned quadrature then yields

__Fy(s")=._3(1—si2)1/2{7r+Q(51_52) 12 MesinTlr
MKa T Ka n—1k=1 rp—s;
(32)
where
Lk=1n
)\ = 2y > 33
k {1,k=2,...,n—1 (83)
2t —1
si=cosu, =1...,n—1 (34)
2(n~1)
k—1
rk=cos£———)—7—r, k=1,...,n (35)
n—1
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The results obtained on this basis are discussed in a later section.

Heat Flowing Into the Material With the Smaller
Distortivity

If heat flows into the material with the smaller distortivity (6; <
82), the central zone of perfect contact must be bordered by zones of
imperfect contact [4, 7} as indicated in Fig. 1(b). The zone of perfect
contact is the interval |x| < a, the zones of imperfect contact occupy
the intervals a < |x} < b. The boundary conditions that must be im-
posed beyond those satisfied automatically because of the Green’s
function approach are the same as for heat flow into the material with
the larger distortivity, except that they apply to different intervals.
Thus

d

—71{2=0, —a<x<a (36)
dx

d

£0) o p<x<n 37
dx

As before, the boundary conditions must be supplemented with
auxiliary conditions pertaining to the total rate of heat flow between
the bodies and to the force pressing the bodies together. It should also
be noted that now the source-sink distribution extends over the in-
terval —b < x < b, while the force-pair distribution is restricted to the
interval —a <x < a,

The boundary condition (36) yields

b d
f AQE i ci<a (38)
-6 £ —-x
and the associated auxiliary condition is
b
S awae=q @>o (39)
The other boundary condition (37) gives
a Fo(§)d
f %@—g = 27rM{A + Kx + (31— 89)
—a - X
X 3} -
j:b A(g)dg], b<x<b (40)
while
f_ Fy(H)dt =~P, P>0 (41)
The solution must also satisfy the inequalities [4, 7]
N(x) <0, lx}<a (42)
Adx)7(x) >0, a<lx| <b (43)
g(x) >0, b < x| (44)

The essential task is to put the system of integral relations (38)—(41)
into a form that is suitable for numerical evaluation. Consider first
the Cauchy integral in (40). Integrating by parts

o Fy(£)dE
-a E— X

t=a

= Fy(£) log |& — x|

E=—a
—ﬂFy(&)loglf—xld& (45)

It is known from the asymptotic analysis of the transition from perfect
to imperfect contact that [4]

Fy(® = 0@~ &), 1¢ >a- o)
and consequently
a Fy(§)d a
- Eff - [ m@ugle-xlag @D

Substituting (47) into (40) and differentiating the resulting expression
with respect to x, yields the integral equation
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f_“ FE(E)::E 2xM (K + (b — 8)A()l, —b<x<b (48)

which then replaces (40).
From (48)
1 1 a Fy/(HdE _

Ax) 51—62|27rM P K], b<x<b (49

and putting (49) into (38)
Fy/ ()

27erb£—xfan— dndé — K

—a<x<a (50)

Using the Poincaré-Bertrand formula [15], the double integral in (50)
becomes

Fy) ,

fbg—xfan g

F/ dn — w2F,’
- L (")fus— - 1T T

_ Fy'(£) b-x)b+§) 2R )
f_a PR ey ‘dé @ 6D
Thus (50) reduces to
SFS® . |b-0GrH] .,
J:a fox log bk -5 ldf w2F, (x)
= 2wrMK log z;z s —a<x<a (52)

which is a Fredholm integral equation of the second kind.
Once F,/(x) is determined, A is obtamed from (49), and on basis
of (8),

, a<|x]

dr(x) __ 1hki+ke fb A©)dg )

dx 7 kiko -b £—x

We need d7(x)/dx in the interval a < |x| < b to check the inequality.
In terms of F,/(x)

dT(x) 1k1+k2 1 { b—x
=— K log
dx 7w kiks 61— 02 b+x
1 aFy,/(§) b—E)b+x)
d
27M J—a £ —x b+ Eb -x) S}, a<[x|<b (54)
and

1k1+k2 1 [ b+ 1+x
7 kika 01— 6 * og( b)

- (b—x)log(l——g)+ (b—a)log(l—%)+ (b+a)log(1+g~)]
REEACII
27rM f ‘f—a n— S dfd‘n},
(55)

a<x<b
In the interval ~b < x < —a, 7(x) follows from symmetry, while Fy(x)
is verified (numerically) to be even in x.

T(x) = —

(b +8G -
(b—Eb+n)

Finally
- f_ - or/@a (56)
and
! , bt+¢
Q=;— 52{2TM f V(E) log ~ dg—sz} (57)

In order to avoid iterations, we take a and b as given and compute the
required values of P and Q.
Observing for the kernel in (52) that
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Fig. 2 Comparison of the normalized pressure distributions E, = F,/MKa
for heat flow in different directions with @ = Q(8, — §1)/Ka

lim { ! log (b= x)(b + E)] = ! + L (58)
s—glE—x b+x)b—£)) b—F b+¢§

we use the same collocation (x) and integration points (£) to solve (52)
numerically. The Lobatto quadrature {17} is conveniernt for the
discretization. The discretized form of (52) according to this quad-
rature becomes

1-Ar;

nt2
W, rj)Y(rj) =2n 1 , i=1,...,n+2 (59
.El (ri, ) Y(r;) = 27 log e n (59)
-where Y(£) = Fy,'(§)/MK, r = {/a, A = a/b and
W(r;, I‘j): Wj* o (1—)\I‘i)(1+)\rj) fori = j
[ 1 14+ A1 — Ar;
ri—rj 2( ri)( r;) @
=Wj-= fori =j
4
Wi = Wass = ’
P S T n T D+ 2)
2
Wit = Wypg* = ————— (61
' i (n+1)(n+2) D
2XA; ; .
i1 T, Wip¥=———, i=1,...,
W +1 (1 _ Ziz)(l — >\2zi2) +1 1— zi2 i n

(62)

Furthermore, z; are the roots of the Jacobi polynomial P, @1 (z;)
= (), A; the corresponding coefficients and

rier=zi,(i=1...,n), ri=1, rppe=-1 (63)

The roots z; and the coefficients A; are readily obtained by the For-

- tran program given in reference [18]. It may be noted that the Lobatto
quadrature has the advantage of including the end points of the in-
terval in the collocation points. The numerical calculations were
performed with double precision, and n = 40 was used to obtain
enough points for a graphical representation of the results.

The numerical evaluation of A{x) requires the computation of an
integral which is of the Cauchy type (singular) in the interval |x| <
a. Although the Lobatto quadrature can still be applied in this interval
as shown by Theocaris {19], we can no longer choose coinciding col-
location and integration points. For best accuracy, the collocation
points must be chosed as the roots of appropriate Legendre (or Jacobi)
functions of the second kind. Since n is large in our case, the numerical
scheme converges also well if we choose for collocation points the
midpoints between the integration points. This avoids the need to
calculate the zeroes of the aforementioned functions for which no
program is available. Convergence was checked in the calculations
by doubling n, and no difference was observed in the first eight digits
that were printed out. The density A(x) of the source-sink distribution
has logarithmic singularities at x = +a. Extracting these singularities
analytically before discretization did not affect the numerical results
significantly.
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Fig. 4 WNormalized pressure distributions F'y = F,/MKa for heat flowing into
the material with the smaller distortivity

The Lobbatto quadrature was also used for the evaluation of P, §
and the inner integral in 7(x). The ordinary trapezoidal rule was used

to calculate Fy (x) from F,’(x). The inequalities and symmetries were
also verified numerically.

Results

Typical pressure distributions for heat flowing in either direction
are shown in Fig. 2 where Q denotes Q(52 — 8,)/Ka and P = P/MKa?.
The pressure distribution for no heat flow is also included for com-
parison. It is seen from this figure that, in order to achieve the same
extent a of perfect contact, a larger force P must be applied when heat
flows into the material with the larger distortivity. It should be noted
that the contact pressure distribution has a vertical slope for heat
flowing into the material with the larger distortivity, but not for heat
flow in the opposite direction. This is in conformity with the results
from the asymptotic analysis [4].

Additional results for heat flowing into the material with the smaller
distortivity are shown in Figs. 3-6. The relation between a/b, the
applied force and total heat flow is shown in Fig. 3. The distribution
of the contact pressure is shown in Fig. 4 for different values of a/b.
The distribution of heat flux through the interface and the temper-
ature discontinuity in the zone of imperfect contact are given in Figs.
5 and 6 for a/b = 0.5. In these figures A = A(83 — 8;)/K and % =
whkika(do — 81)7/(k1 + ko) Ka. It should be recalled from the asymp-
totic analysis [4] that the heat flux has a logarithmic singularity at the
transition from perfect to imperfect contact.
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Stability of Thermoelastic Contact
for the Aldo Model

A perturbation method is used to investigate the stability of a simple one-dimensional
rod model of thermoelastic contact which exhibits multiple steady-state solutions. A ther-
mal contact resistance is postulated which is a continuous function of the contact- pres-
sure or separation. It is found that solutions involving substantial separation and/or con-
tact pressures are always stable, but these are separated by unstable “imperfect contact”
solutions in which one of the rods is very lightly loaded or has a very small separation. The
results can be expressed in terms of the minimization of a certain energy function.

Introduction

A number of recent treatments of thermoelastic contact problems
[1-8] have demonstrated that steady-state solutions are not neces-
sarily unique if the hotter body has the lower thermal distortivity 4,
defined by

o=oa(l+v)/K (1)

where a, v, K are, respectively, the coefficient of linear thermal ex-
pansion, Poisson’s ratio, and thermal conductivity.

In such cases, it is possible that some of the competing solutions
are unstable, but if more than one are stable, the situation realized
in practice will depend upon the history of heating and loading.

In an attempt to probe this question, Comninou and Dundurs [3]

have considered a simplified thermoelastic contact system which they |

call the “Aldo Model.” The three-dimensional contacting bodies are
replaced by a large number of thin rods arranged normally to the in-
terface and with frictionless and thermally insulated sides. This es-
sentially constrains heat flow and load transfer to the normal direc-
tion.

Although this system is very much simpler than a real contact sit-
uation, it is sufficiently realistic to permit multiple solutions for the
appropriate heat flow direction. Comninou and Dundurs have com-
puted the total mechanical energies for these solutions, but these
cannot be used to draw rigorous conclusions about stability, since the
system is inherently nonconservative.

In this paper, the stability of steady-state solutions for the Aldo
model will be investigated by an analysis of small transient pertur-
bations. This method has already been successfully applied to the
simpler problem of the one-dimensional rod confined between rigid
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walls at different temperatures [1] and leads to rigorous conclusions
about stability which can be formulated in terms of an energy func-
tion.

Description of the Model

Comninou and Dundurs show that the cross section of the Aldo rods
and the distribution of contacting and noncontacting rods over the
interface do not influence the permissible steady-state solutions. In
effect, a group of rods all in a similar state behaves as a single rod of
proportionately greater cross-sectional area.

The essence of the Aldo model is therefore preserved if we consider
the stability of a system of two rods of different cross-sectional areas
A1, Ag as shown in Fig. 1.

The rods, both of length [, are rigidly joined at the top, where the
temperature is maintained at zero. The other ends make contact with
arigid, perfectly conducting half space! at temperature T (>0). The
system is constrained so that only vertical displacements are per-
mitted and a compressive contact force F is applied as shown.

As in the previous paper [1], we postulate the existance of a thermal
contact reistance R; (p;, &) (¢ = 1, 2 for rods 1, 2, respectively) which
depends on the pressure p; between the rod and the half space, or on
the gap g; if the rod is not in contact. The stability of the system is not
affected by the precise nature of this resistance function.

Steady-State Solution
Writing @; for the steady-state heat flux along rod i, and T for the

temperature at the hot end, we have

_(To-Ty) AKT;

R ] (2)

Qi

and hence,
Ty

= 6]
(1 + A; KR;/l)

T;

1 Comninou and Dundurs treat the contact of two systems of rods of different
materials, but it is not anticipated that this more general case will introduce
any qualitatively new features.
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T=0

MU \\ AN

Rigid perfect conductor
T=T,

Fig. 1 The Aldo model

The unconstrained thermal expansion of the rod is therefore

w =%alT; = ufi (4)
where 1o = 3 [ 7' is the thermal expansion which would be devel-
oped if there were perfect thermal contact between the rod and the
plane and

!
T (+AKR)

This function tends to zero when the gap g; is large (R; — =) and to
unity when the contact pressure p; is large (R; — 0) as shown in Fig.
2. In general, ,the transition between these limits would be expected
to occur over a relatively small range of g;, p:.

Three possible contact states for the system can be distinguished
as follows:

(i) Reod 1in Contact

p2=0, p1=F/A;,

fi (5)

£1=0, £:>0,
and
&2 = uolf1 ~ fa) — FI/ALE (8)
(ii) Both Rods in Contact
puLp2 =0,
81=g3=0,
and .
uolfi — f2) = (p1 — p)U/E (7)
(iif) Rod 2 in Contact
p1=0, pa=F/A,,
82=0, £g1>0,
and
81 = uolfe~ f1) — FlI/AE (8

We now define a piecewise continuous function x by the rela-
tions

x =go+ FI/A(E; g2> 0, (97)
= (p1— pI/E; g1=82=0, (9i0)
= —g1— Fl/AE; g1>0 (9:i1)

In effect, x is the difference between the unconstrained thermal
expansion of the two rods (u1 — wg). It is easily verified that this
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gi ~—f— i

Fig. 2 Dependence of the function # on pressure (p;) and gap (g;)

function is continuous at the transitions between the foregoing contact
regimes. Furthermore, if equations (9:)—(9iii) are substituted intc
equations (6)—(8), respectively, the latter are all reduced to the
form

(fr—f2) = x/uo (10)

Stability Analysis
In order to investigate the stability of the various solutions of
equation (10), we examine the conditions under which a small per-
turbation from the steady state can grow exponentially with time.
The perturbation in temperature in the rods, AT;, must satisfy the
transient heat-conduction equation and the boundary condition

ATi(y)=0 at y=0 (11)

where y is measured from the cold end. The appropriate exponentially
growing solution is
AT;(y) = B; e®t sinh \y (12)
(see reference [1]), where
A = (a/k)1/2 (13)

a, B; are constants, ¢ is time, and & is the thermal diffusivity of the
material.
The corresponding perturbation in heat input to the rod is
oT;
AQ; = —Aik “a——' () = —B;A;K\ e® cosh Al (14)
Y
A second relationship between AT; and AQ; can be found by differ-
entiating equation (2) to obtain

(To — Ti) dR; AT ()
AQy=———"— Ay — 15
“ R dx R (s)
A; KTy dR; AT:(1)
= —— Ay — ——— (16)
I+ A; KR;))R; dx R;
from equation (3).
We now solve equation (5) for R;, obtaining
I {1
Ri=—|>-1 17
'AK ( ; ) an
and substitute into equation (16), from which
I [1 Todf;
— == 1] AQ; = —— Ax — AT;(]). 18
AiK(fi ) Q; £ dx X ; (1) (18)

The function x, defined by equations (9i)-(9iii) is the difference be-
tween the unconstrained thermal expansions of the two rods, (u; —
ug) and hence

. 2
Ax = Auy — Aug = fo {T1(y) — Toly)} dy

= a(B1 — Bz) et (cosh Al — 1)/A  (19)

from equation (12).
Two simultaneous equations can now be obtained by substituting
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{iii)Rod 2in contact (ii)Both rods in contact {JRod 1 in contact

Fig. 3 Graphical solution of equation (10)

for AQ;, AT;(l), Ax from equations (12), (14), (19) into equation (18),
ie.,

14
- B (l— 1)z2coshz =%uo—f1-
f1 1
X (By — Bg) (cosh z — 1) — Biz sinhz  (20)
and
1 4
— Bs (——— 1)z2coshz =2L—L—0&-
f2 f2
X (By~ By) (coshz —1) — Bgzsinhz (21)
where
z=AM (22)

Finally, B1,Bz can be eliminated between these equations to give
the characteristic equation for z (and hence a) which is

2uofy’ (coshz — 1)
(1 — f1)z? cosh z + f1z sinh z

_ 2uofs’ (cosh z ~ 1)
(1 — f2)z2 cosh z + foz sinh 2

The perturbation (12) is unstable if, and only if, equation (23) has
aroot for which a and hence 22 has a positive real part. This equation
is investigated in the Appendix, where it is shown that

=1 (23)

(i) There are no unstable complex roots and
(i) Unstable real roots occur if, and only if,

(f" = f2) > Lug

provided f1, fo are monotonic functions of x.

(24)

Discussion

The relationship between the stability condition (24) and the
steady-state solution equation (10) is illustrated graphically in Fig.
3.

The contact resistance is assumed to be continuous at the transition
between contact and noncontact and hence (f; — f3) is a continuous
function of x. This function is illustrated for the case in which the
transition from perfect thermal contact to perfect insulation occurs
over a small range of load or gap, in which case the curve passes nearly
horizontally through the origin. This is probably a realistic physical
assumption, but it is not necessary to the development of the argu-
ment.

Solutions of equation (10) are represented by the intersections
(ABCDE) between the curve (f1 — f2) and the straight line (x/uo).

Furthermore, the stability criterion (24) shows that those solutions
are stable for which the straight line crosses the curve from below
when x is increasing. In view of the limits imposed on (f; — f2), it fol-
lows that

Journal of Applied Mechanics

A

Fig. 4 Variation of contact resistance throughout the load range

(i) There must be an odd number of solutions.
(i) Stable and unstable solutions alternate with increasing x.
(iif) The outermost solutions are both stable.

The stable solutions ACE in Fig. 3 correspond to solutions in the
contact regimes described as (i), (ii), (iii), respectively, given previ-
ously in this section. However, there are also two intermediate un-
stable solutions BD at which one rod carries most of the load while
the other is either very lightly loaded or has a very small gap. We can
define a limit to the contact resistance function R; such that the
change from thermal insulation to perfect thermal contact occurs over
an infinitesimal range of gap or load. The function (f1 — f) will then
correspond to states in which one rod is in perfect contact, carrying
the total load F, while the other is in “imperfect contact” as defined
by a similar limiting process in the treatment of problems with the
reverse direction of heat flow [4]. The state of imperfect contact is
defined by the conditions

pi=0; g=0 0<f;<1 (25)

These results support the hypothesis [5] that imperfect contact
states are unstable when heat flows into the material of higher dis-
tortivity. ’

Fig. 3 has been drawn for a case in which all five intersections occur,
but it is clear that if the straight line had a sufficiently large slope—
corresponding to low values of ug and hence T'—the only intersection
would be C. In other words, when the temperature difference is small,
the only permissible steady-state solution is that involving contact
of both rods.

If the temperature is now increased, the slope of the straight line
is reduced and, at some critical temperature, a pair of additional so-
lutions such as AB—one stable, one unstable—will be introduced.
The function (f1 — f2) is not necessarily symmetrical about x = 0, since
Ay may differ from Ag. There will therefore generally be distinct-
temperature ranges with one, three and five solutions, respectively.

If the load F is increased, the two “steps” in (f1 — f2) are displaced
further from the origin. This has a similar effect to a reduction in
temperature.

Fig. 4 illustrates a more general situation in which the contact re-
sistances and hence (f1 — f2) vary significantly over the entire load
range, giving a nonzero slope near the origin (notice that (f; — fs) does
not necessarily pass through the origin).

As temperature is increased, the same behavior is observed as in
Fig. 3, with progression from one solution (line 1) to five solutions (line
2). However, with a further increase in temperature (line 3), the sys-
tem passes into a new regime with three solutions. One of these (B)
has both rods in contact but is unstable, whilst the other two (AC)
involve contact at one rod only and are stable. In effect, Fig. 3 repre-
sents the limiting situation in which the temperature difference
needed to initiate this new regime is very large.

Definition of an Energy Function
Following the same procedure as in reference [1], we can define an
energy function
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Fig. 5 Domain for unstable roots of equation (29)

(A + A9 E

Ulx) = 7 [S(f1 — fo) uodx — 427 (26)

The equation (10) for a steady-state solution can then be written

; dU/ox =0, @7
while the condition for instability (24) is
22U/ /ox2< 0 (28)

Thus U(x) is stationary at all steady-state solutions, being a maximum
if the solution is unstable and a minimum if it is stable.

The total mechanical energy for the system, calculated by Com-
ninou and Dundurs [3] is not related to the function U(x) and cannot
be used to determine which solutions are stable. Indeed the afore-
mentioned analysis shows that all the solutions which they con-
sider—being those involving only perfect contact and separation—are
stable. The only unstable solutions are those involving imperfect
contact. These can be thought of as interposing higher energy barriers
between the stable perfect contact/gap solutions.
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APPENDIX

It is required to determine the conditions under which the equa-

tion
2ug f1’ (coshz — 1)
(1 — f1)z2 cosh z + fyz sinh 2
2ug fo (coshz — 1)

(1 — f2)z2 cosh z + foz sinh 2

has roots corresponding to values of 22 with positive real part. In the

z-plane, the corresponding zeros of F(z) must liein the two sectors

shaded in Fig. 5 and bounded by the lines 2 = £(1 + ) w, the origin
being excluded.

F(z) =

~1=0 (29)

We first note that for the special case f1 = foa = 1; f1’ = fo' = 0, there’

are no such roots, since the only zeros of F(z) correspond to
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zsinhz =0 (30)

and hence

z=0xinm (31)

If we now allow /1, fo, f1’, f2’ to change continuously, the zeros will
move continuously about the z-plane and will only be able to enter
the unstable domain by crossing its boundaries.

(i) z=(1+ i)w. The first term in F(w + iw) can be written

2uofy'(A + iB) _ 2uof(A + iB) (C — iD)

F = 32
©="cri €+ D?) #2
where
A=ch-¢c—1; B=sh-s;
C=-2w2%1—-f1)sh-s + wfi(sh-c —ch-s);
(33)

D =202 —f1)ch-c+ wfi(sh-c+ch-s);

and s = sin w, ¢ = ¢0s w, sh = sinh w, ch = cosh w
If f1 is monotonic, uef1’ > 0 and the imaginary part of F1(w) has the
same sign as .
CB — AD = 20%(1 ~ f1) (—sh2s2 — ch2c2 + ch - ¢) + wf1(sh2cs
— s2%sheh — ¢2shch — ch?cs + sh-c +ch-s)
= (L = f1)(s? — sh? = (c — ch)?)
+ wf1 (s —sh)(ch —¢) <0, (w > 0);

0<fis1l (34)

By similar argument, it can be shown that the second term in F(«
+ iw) also has a negative imaginary part, since the function f2(x) must
satisfy fo <O0.

It follows that F(w + iw) has a negative (and hence nonzero)
imaginary part for all & > 0 and no roots of equation (29) can therefore
cross the linez = w + {w.

(ii) z= w+ i§. We next establish that no zeros can cross the
line z = w + i6, where 6 is small, and hence that all unstable roots are
real.

Since § « 1, the corresponding forms of the coefficients in equation
(32) are

A=ch—-1;, B={sh;
C = w?(1 = f1) ch + wfish;

D = 6(1 - f1) Quwch + w2sh) + 6f1(sh + wch) (35)
We therefore have
CB — AD = (1 — fiX(w?sh + 2wch — 2wch?)
+ 6f1 (sh — w)(1 — ch)
<0 (w>0) (86)

as can be demonstrated by expanding in powers of w.

A similar argument applied to the second term in F(w + {) enables
us to conclude that no zeros can cross z = w + i if 1’ > 0 and fy’ <
0.

The function F(z) is even in z and hence its zeros must be sym-
metrically disposed with respect to the real and imaginary axes. It is
not therefore necessary to prove corresponding results for the re-
maining boundaries.

(iif) 2z =06+ i0. The preceding arguments demonstrate that
zeros can only enter the domain from the origin along the real axis and
hence the stability boundary can be determined from the condition
forareal rootatz =6 + 10,6 « 1.

The function F(z) can then be expanded in the form

F(3 +i0) = uoft’ — uofs — 1+ 0(52) @7
and hence the stability boundary is defined by
uolfi’ —f2) =1 (38)

The system is known to be stable for i’ = fo’ = 0 and hence for in-
stability we must have

uolfr’ — fo') > 1. (39)
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The Stress Distribution in Orthotropic
Rotating Disks

The stress distribution in a rotating orthotropic disk of constant thickness with a central
“hole is obtained in closed form for the special case of a material satisfying a condition first

studied by Wolf|9]in 1935. A more general analytical solution, proposed in 1973, is close-
ly examined and distiissed. The solution proposed in this paper, although limited to a
particular kind of material, is successfully used to test the accuracy of the numerical pro-
cedures which solve a more generalized form of the problem.

Introduction

A closed-form solution for the stress distribution in cylindrically
orthotropic rotating disks is available in the literature, at least with
the plane-stress or plane-strain assumptions for simple disk shapes
[1-3].

However no analytical solution exists for disks with a central hole
and made from an orthotropic material, even for the case of constant
thickness.

The aim of this paper is to develop a particular closed-form solution
for the constant thickness disk with a central hole. Although this so-
lution holds only for materials whose stiffness matrices are of a par-
ticular form, it can be used to demonstrate that the results obtained
from an already existing analytical solution [4] are incorrect. It can
also be used to check the accuracy of numerical methods.

Analysis
A rotating orthotropic disk can be regarded as a cylindrical body
in which the stresses are constant in the direction of the generator.
In the case of a disk rotating about the z -axis, two stress functions
F and ¢ can be defined (5, 6], such that :

ox = (F)yy+U

oy =(Fxt U
Tay = —(F)zy

7o = (W)y

Ty = —(¥) s (1)

where the potential function of the body forces U is given by the fol-
lowing formula:

U=$pux?+y%) (2)
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and p and w are, respectively, the density of the material and the an-
gular velocity.

The stress functions defined in (1) satisfy the equilibrium condi-
tions

(o'x),x + (Txy),y - (U),x =0
(Txy),x + (O'y),y - (U)v)’ =0
(sz),x + (Tyz),y =0 (3)

In order to lead to compatible displacements, F and y must satisfy
a set of differential equations which, in the case of x and y-axes
coinciding with the material’s principal axes, reduce to:

ﬁZZ(F),xxxx + (2312 + ﬁGG)(F),xxyy + ﬂll(F),yyyy
= =Bz + B2 (U)xx — Brr + B12)(U)yy; (4)

644(‘1/),:0: + 655(\[/),)0/ =0 5)
Equation (5) holds for the case of no external loads applied to the end

_surfaces of the cylinder,

In equations (4) and (5) the plane-strain elastic compliances
Bij = Sij — (Siz - Sja/Sas3) 6)

are used to solve the problem in terms of generalized plane-strain
state. The elastic compliances S;; must be substituted for 8;; in the
case of plane stress in which equation (4) only applies.

The Airy stress function F and the stress function ¥ in equations
(4) and (5) can be solved separately.

The boundary conditions on the lateral surfaces, which are assumed
to be free from surface forces, are [5]

s d
(F)"‘=f —U—{ds+cl
0 ds

s dy
Fy= | —-U=2ds+
( ),y »f() Uds 8§ ()

¥ =ca. (7)

If the disk is circular, with inner and outer radii, respectively, r; and
re, equations (7) reduce to
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(F)x =% pwre?c + oy

(F)y =% pw?re2y + ca  (outer boundary)

V=c3 (7a)
(F)x =4 pwlriZc + ¢/
(F)y = 3 pw:2y + ¢y (inner boundary)

¥=cy (7b)

The constants ¢; and ¢;” are arbitrary and can be put equal to zero at
least on one boundary.
The function ¥ can be assumed to be of the form

Y=Clx2+y2—r.? (8)

which satisfies the boundary conditions, giving c3 = 0 and cg’ = C(r;?
— 12

The constant C can be evaluated from equation (5), yielding C =
0. It follows:

¥=0 9

and therefore also 7, and 7,, are both equal to 0.
The following is a particular solution of equation (4) [7]:

F = Ci(x2+ y?)2 (10)

Differentiating equation (10) the constant C can be calculated from
equation (4)

C1 = pa?(B11 + 2812 + B22)/[12(B11 + Boz) + 4(2B12 + Bee)]-

The problem of finding a general solution of the homogeneous
equation (4) is a difficult one. The authors found a solution for the
plane-stress problem, provided the elastic compliances of the material
satisfy the equation

811+ 82— 2S19— Ses =0

(11)

(12)

i.e., the material is of the type studied by De St. Venant [8] and Wolf
{9l. ;

Obviously in the case of plane-strain state, condition (12) be-
comes

B11 + Baz — 2812 — Bes = 0. (13)

Under condition (12) the solution of the homogeneous equation (4)
was found to be

F = Cy(x2 + y2) + C3In (x% + 32). (14)
The complete Airy funection F is therefore
F=Cix2+4 y2)2+ Cy(x2 + y2) + C3ln (x2 + y2). (15)

Constants Cq and C3 can be evaluated from the boundary condi-
tions (7a) and (7b) in which all constants ¢; and ¢;’ can be put equal
to zero, yielding

2
Cy= (%:’—— C1) (re?—ri%

2
Cs= (cl - %) re’ri? (16)

The stress state is therefore

0c = 201(8y2 + x2) + 205 + 2Ca(x2 — y2)/(x2 + y2)2
= pw(x?+y?)

oy = 2C108x2 + y?) + 2Cy + 2C3(y? — x2)/(x2 + y?)?
—pwix?+y?)

Ty = dxy[—C1 + C3/(x2% + y2)?]

Tye = Txz =0

(17)
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Fig. 1 Stress distribution in rotating disks with different values of the ratio

S22/ $14; the stress distribution is independent of angle 8 since equation (12)
is satisfied

o, can be calculated through the familiar equation

o, = —(S130x + Sa230,)/Sa3 (18)

for the plane-strain case, while it is obviously equal to zero for the
plane-stress case.

Transforming equation (17) into polar coordinates, and introducing
the ratios 8 = r;/r. and x = r/r., the complete stress distribution for
the plane-stress case is

or = pw?re2Ky{l + B2 — §%/x% = x?
o = pwlre K [1 + B2 + 82/x 7] — Kax¥

Tre =0 (19)
where
L= 2(S11 + Sa2) + Ses _ 3(S11 + Sgy) — 2519
6(S11 + Sg2) + 4512+ 2546 8(S11 + Sg9)
K, Ses — 4512 _S11+ 89— 681, 20)

" 6(S1y + Sg) + 4812 + 2516 T 8(Su + Ss)

If the material is isotropic, it follows that Sy; = Sy = 1/E, S12 =
—v/E; condition (12) is satisfied and the values of K; and K3 are

K1=(3+I/)/8

Ky=(1+30)/8 (21)

which give the usual stress distribution in isotropic constant thickness
disks [10].

The stress distribution expressed by equation (19) is independent
of angle 8. The nondimensional stress distribution in disks with a value
of 8 = 0.1, built from materials with different ratios E1/Ey, but all with
vy = 0.3 and all satisfying equation (12}, is plotted in Fig. 1.

The independence of the stress distribution from angle § for disks
without a central hole, this time valid for any orthotropic material,
was already proved by Chang [7, 11].

The maximum value of the circumferential stress

O¢ max = szreZgKl[Q + 62] - Kzﬁzi (22)

is found at the inner radius, and it is easy to check by comparing
equation (22) with equation (18) in {7], that for 8 — 0 the maximum
stress in the disk with a central hole is twice the value of the maximum
stress in the unpierced disk, which is exactly the same as if the ma-
terial were isotropic. It is also easy to check that with 8 — 0 the value
of ¢, at the outer edge is the same in the two cases.

The displacements u and v in the x and y-directions can be easily
calculated from equation (19) using the stiffness matrix of the ma-
terial:

Transactions of the ASME



2. 2GS — § 2
"= putx [K1’e ri%(S1 — S12) 2
x2 4 y2 3
+ Kuy?+ Ki(re? + 1) (S + 312)1
re2ri%(Sgs — Sia)
v = pwly | K|~ + Ksx?
o y{ 1 PN 5

2
+ Ks y? + Ki(re? + ;%) (Sez + Sm)} (23)

where
Ky = =2811(S11 + S2a) + 45152 — Ses(S11 + Si1g)
6(Sy1 + Sa9) + 4812 + 2866
_ —8811(S11 + Sgz) + 512(8S12 + S11 — Sea)
- 8(S11 + Sza)
Ki= 2512(S13 — S22) — Ses(S11 + S12)

6(S11 + Sa22) + 4512 + 2Ses
_ 3815(S11 — S22) — S11(Su1 + Saa) + 2849
8(S11 + S22)

_ 2812(S22 — Su1) — Ses(Sez + S12)

Ks
6(S11 + S22) + 4812 + 2866
_ 3812(822 = 811) — S22(S11 + Sap) + 28152
- 8(S11 + Szo)
Ko = —2899(S11 + Saa) + 48197 ~ Ses(Sag + Sio)

6(Sy1 + Sog) + 4S9 + 2566
- —3522(S11 + Sog) + S12(6S12 — S11 + Sa2)
8(S11 + Sa2)

(24)

1f 8 — 0, the displacements in the disk with and without central hole
coincide (equation (23) compared with equation (24) in [7]). In polar
coordinates (r,0) the expressions of the displacements in the radial
direction u, and in the circumferential direction u, are

U, = pw?re3x{K1(S11 cos? § + Sgg sin? § — Sy9)52/x 2
+ K (S1; cos? § + Sag sin? 8 + So){1 + ,32)
+ x2[K3 cos* /3 + (K4 + K5) cos? 0 + sin? § + Kg sin? §/3]}

U = pwiredx{K (See — S11)(1 + 82 + §2/x?)

+ x2[(K5 + Ka/3) cos? 0 + (Kg /3 = K4) sin? 8]} (25)

If the material is isotropic the first equation (25) gives the familiar
formula for u, [10], and the second gives u, = 0.

Comparison With a Previous Analytical Solution

In a previous paper, doubts where cast 6n an existing analytical
solution [4]; a comparison was made with results obtained via annular
finite elements in which the displacement field was described by
third-degree polynomials radially, and by trigonometric polynomials
circumferentially [13].

The argument is strengthened here by the present closed-form
solution. For a disk with 8 = 0.1 built in a grafite-epoxy composite (£
= 207 GN/m?, Ey = 5.17 GN/m?, G2 = 4,98 GN/m?, v12 = 0.25)
practically equal to the material referred to as M in [4], a case is ob-
tained which can be tested against the solution presented in [4] (Fig.
2).

The difference is evident, particularly because the solution in [4]
is dependent also on angle § while the present solution is not.

In Fig. 2 a numerical solution obtained with an improved version
of the method described in [12-14] was also plotted.

The curves obtained in this way for various values of § are all su-
perimposed and not distinguishable from the one obtained from the
present solution.

A possible explanation for the discrepancy between our results and
those of [4] is the fact that, using a polar reference system, all deriv-
atives of the elastic compliances S;’ related to the r and #-directions
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T 7 T T { T 1 T !
— Present analytical & numerical E

\t?

- ]

g\ solution (any ) ]
b} - - - - ~ Analytical solution ()] B

Fig.2 Comparison of the present analytical solution with the analytical so-
lution [4] and a numerical one; E1 = 207 GN/m?; Ez = 5.17 GN/m?; G2 = 4.98
GN/m?2, y4, = 0.25; the correct solution is independent of [/}

are there forgotten when the strains ¢, ¢., and 7, are differentiated
with respect to 6. This also explains why at each radius the solution
is identical to the solution relative to a cylindrically orthotropic ma-
terial having the same elastic parameters found at that radius.
The correct expressions of the coefficients of equation (10) in [4],
in reality should be
Fi =8y,
Fy=-28¢;
Fq=(n —1)(Ses’ + 2S12') — 3(S16") s
Fo=-3nSa¢" + (See) g + 2(S12) 45

Fio= =81t + n(S1’ + Sy’ + nSa9’) — (S16)p
— (S26") (1 + n) + (S12) 03

Fy = —-28y¢;
F5 =8y

F3 =S¢’ + 2812
Fe=2(n+1)Sg’ + (Sa6)
Fg=816(2 — n) + 2(Su')y

Fi1= 2815 — (n — 1)(n — 2)S2¢’ — (1 — n){(Ses) »
+ 2(S11")p ~ (S16) .00

F]2 = —(II. - I)SGG/ - (I‘L - 2)(811/ + SIZI - nSlQ/)
+ (S11) 0 + (S16D (8 — n);

Fi3= (1 —n)(S1y’ = nS12") — n(S1¢') 0 + (S11') ow;
F1a = (2 = n)(816' + Sae’ — nSas”) + (S16") 0 + (1 — n)(See) 1

Py = prhob"[ﬁsgg' - 2312, - 3(826’),3 + (SIZI),W]- (26)

This is necessary but not sufficient to obtain a solution, since major
difficulties can come from the evaluation of the derivatives of the
stress function (24) in [4], (¢) 0, (&) ru, (¢} 0, due to the fact that the
coefficients Cy, Cs, Cy, and C4 are unknown functions of 4.

It should be noted that, curiously enough, the formulas given in [4]
furnish the correct stress state, if the material satisfies condition (12),
at f/ = 45°, In this same case however, the solution for the displace-
ments doesn’t hold; in fact, the fourth of equations (36) in [4] gives
u. — =, except for the special case of isotropic material.

Generally Orthotropic Material }
If the elastic compliances of the material do not satisfy equation
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Fig. 3 Stress distribution in a constant thickness disk not satisfying equation
(12); numerical solution; E4 = 207 GN/m?; E» = 5.17 GN/m?; Gy, = 9.96
GN/mz, V4 = 0.25.

(12), a solution to equation (5) could be attempted by the method of
the characteristics [6]. Even if the characteristic equation is, in this
case, particularly simple and its roots are pure imaginary numbers,
the solution would involve anyway a considerable amount of effort
[5, 6].

The present authors believe that a much better approach is in this
case a numerical procedure, as the one already presented in [12-14];
in fact generally variable physical parameters, including thickness,
can then be taken into account in a simple and very general computer
program, that is conveniently tested against the analytical solution
described in the present paper.

The stress state in a disk equal to the disk studied in Fig. 2, but
having the value of elastic compliance S¢s halved, is shown in Fig. 3.
It can be seen now that, as the material does not satisfy equation (12),
the stresses depend also on angle § and the shear stresses are, there-
fore, not equal to zero.

Conclusion
While the analytical solution for the stress distribution of rotating
disks without a central hole with constant thickness, is relatively

562 / VOL. 48, SEPTEMBER 1981

simple {7, 11], in the case of pierced disks this leads to considerable
analytical complications.

Examining the existing literature on the subject, and criticizing also
some misleading conclusions [4], these authors have come to the
conclusion that specially developed numerical procedures perform
the task in a more efficient and general way [12-14).

Of course, the problem remains to evaluate the correctness of the
numerical results; this could be done in the present work by testing
them against the newly developed analytical solution which applies
only to a particular kind of orthotropic material.
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Stress Concentrations in Cylindrically
Orthotropic Composite Plates
With a Circular Hole

‘The equations governing the distribution of the stresses in a cylindrically orthotropic
plate with a circular hole are solved for the case when the plate is subjected to uniform
uniaxial traction. Closed-form solutions are given for the circumferential stresses along

the edge of the hole.

Introduction

The inherent advantage of fiber-reinforced plastics is the possibility
of arranging the fibers in such a manner as to optimize the load-
carrying capacity of the composite structure. This purpose may be
served by developing arrangements that reduce stress concentrations
along the edge of a circular hole in a composite plate. An arrangement
that may be capable of achieving this is one that results in a cylin-
drically symmetric plate with the origin of the system of coordinates
at the center of the hole. It is believed that such plates can be manu-
factured by laying up tape, by filament winding, and probably also
by weaving. The purpose of this paper is to calculate the stress-con-
centration factors for cylindrically symmetric plates with a central
circular hole.

The first calculation of the effect of a circular hole on the stress
concentration in a plate was published by Kirsch [1] in 1898. It dealt
with isotropic plates and resulted in a stress-concentration factor
(maximum circumferential stress along the edge of the hole divided
by the value of the uniform uniaxial tensile stress at a large distance
from the hole) of 3. This calculation can be found, for instance, in
Theory of Elasticity by Timoshenko and Goodier [2]. A detailed
summary of work dealing with stress concentrations along the edge
of a hole is given by Lekhnitskii [3] for plates orthotropic with respect
to a system of Cartesian coordinates. A concise report on the results
of these investigations can be found in a book by Jones [4].

1 This work was carried out under Grant No. NGL 33-018-003 awarded to
Rensselaer Polytechnic Institute by the Air Force Office of Scientific Research

and the National Aeronautics and Space Administration (NASA Technical’

Officer: Leonard A. Harris). )
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time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by the Applied Mechanics Division, De-
cember, 1980; final revision, February, 1981.
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Notation

Fig. 1

In the present analysis, as in the calculations presented by Ti-
moshenko and Goodier, a state of plane stress is assumed to prevail
in the plate. At the outer radius R uniformly distributed tractions are:
applied to the plate in the direction of the x-axis, as indicated in
Fig. 1.

Governing Equations
The conditions of equilibrium are satisfied if the stresses are derived
from a stress function ¢ in accordance with the equations

104 10%
rE=- T —
’ ror r2of? (1)
o2
Uo=g;; (1d)
0 [1lo¢
= ——{-— 1
Tro ar(r 60) (1e)

The constitutive equation can be written in the form
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€ S S O o
€ Yy =189 S 0 [ x{00 (2)
Yro 0. 0 Ses Tre
The compatibility condition can be given as
22062r—r%+ra%2(rea)—a—?-;—o(r’y,g)=T=0 3)
The boundary conditions are
o, =7 =0 when r=1 (4a, b)
ar = {(6/2)(1 + cos 26) when r=~R {4c)
7.9 = —(0/2) sin 26 when r=R (4d)
The last two expressions are in agreement with
6 =0 0y=T7y =0 when r=R (ba—c)

Solution of the Equations
First, the solution will be sought for the changed boundary condi-
tions

0 =T,9=0 when r=1 (6a, b)
or = (6/2) cos nf when r=R (6¢)
74 = —(06/2) sin nd when r=R » (6d)
The solution can be written in the form
¢ =rtcosnd @)
where t is a constant. Substitution yields
o = (t — nA)rt~2cos nf (8a)
gp=t(t — 1)rt=2cos nd (8b)
79 =n(t — Vrt~2sinnd (8¢)
The expressions for the strains become
& = [(t = n?)S,. + t(t — 1)S,s)rt—2cos nd (9a)
e = [(t — n2)S,g + t(t — 1)Spg]r¢—2 cos né (9b)
vro = n(t — 1)Sgert =2 sin nf 9¢c)

When these are substituted into the compatibility condition, the
result is

T = Sgert=2 cos ndft4 — 43 + (6 ~ S, — n28)t2—2(1 - S,
—nZ38)t + n?(n? - (S, +n28) — 1 -n2)28}=0 (10)

where

g = 2§r0 + Sse

Sab = San/Sse (11a, b)

The four roots of the equation

Nomenclature

t1~4t3 4+ (5~ 8, — n28)t2 —2(1 — S, — n2S)t

+n2(n2—2)(S,, + n28) — (1 - n?28) =0 (12)
can be written as
ti=1+a, t3=1+4,

to=1—q, t4=1"‘“ﬁ (18a—d)

With these roots, equation (12) can also be given in the form

(t—t)(t —td(t —ta)(t —tg) =0 (14)
Substitution from equations (13) results in
t4 - 4t3 4 [6 — (a2 + BH]t2 - 2[2 — (a2 + BA)]¢
+1-(a24+82+a26% =0 (15)
Equations (12) and (15) are identical if
1-5,-n28=2-(a?+ 2% (16a)
5—8,—n28=6~—(a2+ B2 (16b)

n2[(n2 —2)(S,, + n28) — (1 — n?)28] =1 — (a2 + B2) + o232
(16¢)

from which follow the expressions

2+ B=1+8,+n?8 a2f=(n2-1)%5, (i7a,bd)

The two equations can be solved for o and 2. The result is

a? = &)1 + S, + n28) + {GA + S + n25)2 — (n2 — 1)25,,)1/2
(18a)

82 = B)(1 + Spr + n28) — (DA + S + n28)2 — (n? — 1)25,,}1/2
(18b)

where the square root should be taken with the positive sign.
The four roots of equation (12) are real if

(1+5, +n285)2> 4(n? - 1)25,, (19a)

and

1+3,+n28>0 (19b)

If the “greater than” signs are replaced with “equal” signs, the second
equation represents a straight line, and the first one a curve with two
branches in the § — S, plane. They are shown in Fig. 2 for the case
whenn = 2,

If an equality sign held in (19a) we would have

S = (65— 1~5,) (19¢)

provided n = 2. The curve has zeros at S, = 0.0294 and 33.97, a ver-
tical tangent at S, = 0, a maximum of S = 2at S, = 9, and it is tan-
gent to the straight line S = 25,,. In agreement with inequalities (19a)
and (19b), points lying above the upper branch of the curve represent
plates for which the roots of equation (12) are real.

When inequalities (19) are satisfied, the following useful relations
hold:

A, B = integration constants in (64)

Ap = integration constants in (21) r = radial coordinate
!

D = denominator determinant given in Spq = compliance
(24)
1=+/—1
) in (11b)
n = integer

N, = numerator determinant defined in (11a)

(27)

564 / VOL. 48, SEPTEMBER 1981

p = exponent of r in stress function (55)
R = outer radius of circular plate

Spq = relative compliance defined in (11a)
S = second fundamental parameter defined

S,, = first fundamental parameter defined in

t = exponent of r in stress function (7)

u = radial displacement

a, 3 = defined in (13)

Yra = shear strain

€pq = strain component

# = circumferential coordinate
o = applied uniaxial stress

opq = stress component
7,9 = shear stress
¢ = stress function
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Fig. 2 Ranges of solution of equations for boundary conditions (6)

o®+B2=1+5,+n28>0 (20a)
o = 2 ={(1+5, +n25)? —4(n2 - 1)25,}V2>0 (20b)
af=(n2-1)/S,>0 (20¢)
(a+B8)2=1+5,+n28+2(n2-1)/S,>0 (20d)
(@—B)2=1+5,+n28 - 2(n2— 15, >0 (20e)

The values of « and 8 can be calculated from equations (18), or
from

20 = {1 + 8, + n28 + 2(n? — 1)/S )12
+{1+ 5, +n25 - 2(n2 - 1)y/S 12 (20f)

28=1{1+ S, + n28 + 2(n2 — 1)4/5,}1/2
~-{1+8,+n28-2(n2—1)/5.,2 (208)
It follows that

a>f3>0 (20h)

(20i)

It is noted that in (20c) the positive sign for the square root was
selected arbitrarily. The negative sign would be equally justified on
the basis of (17b). If in (20c) the sign were changed, in (20f) and (20g)
o would remain unchanged but 3 would become —f. This would still

a+f>a—-F>0

12

10

90°
[o1]
T

1,0

0'9/6 AT r
-

ISOTROPIC

e — - —

\ { 1
¢ 2 4 6 8 10

Fig. 3 Variations in stress-concentration factor with changing R and fiber
arrangement (at § = 90°) for boundary conditions (4)

These equations can be simplified by subtracting the members of the
second equation from those of the first, and the members of the fourth
equation from those of the third. Next, the common multipliers —3
and R~T can be factored out. The result is

A1+ As+ A3+ Ay=0

oAl —alas+ BAs—BAL=0
R®A,+ R~*As+ RBA3 + R~fA4 = —Ro/4
aR*A, — aR~*Ay + BRPA; — BR~BA, = —Ro/4 (23)

The equations can be solved with the aid of Cramer’s rule. The de-
nominator determinant is

1 1 1 1

p=* ™ £ F 24)
R(Y R'—ﬂ Rﬁ R_ﬂ
aR* —aR~« BR# —-BR™F

When evaluated, this becomes

D = 8af + (o — B)2R+ + R—(«+B)) — (a + B)2(ReF + R~(=H)

25
result in the same four roots as given in (13) except for their order. (@5)
or
Enforcement of the Boundary Conditions ,
The general expression for the stress function can be written as D = 8aff + 2(a — f)* cosh [(a + §) In ]
-2+ B)2cosh [((a—B)Inr] (26)
¢ ={Awrit+ Agrtz + Agris + Ayrt4 cos 20 (21)
The numerator determinants are
where 1, L9, t3, t4 are the four roots of equation (12) and A4, Ag, Aj,
Ay are constants of integration. The constants must be determined ~ V1 = (2801 + )R+ (1 = B)(a — B)RF
from boundary conditions (6). With n = 2 they give = 1+ B)a+ BRFI(—0oR/4) (27a)
(-3+ a)A, -8+ a)As + (=3 + B)Az —@B+PHAy = 0
ady —adq + BAs —BAy =
(22)
(=3 + a)R14; — (8 + a)R~U+al4, + (=3 + B)RA 145 -3+ BR-UHBA, = (¢/2)
aR*14, — qR-(+a) 4, + BRA-1A,4 —BR-U+PMA; = —(d/4)
Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 565
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Table 1 Table of constants for Figs. 2 and 3
Fiber arrangement Srr Sre 566 S o1 B Symbol
Fibers along r 0.068 -0.0204 2.6154  2.5746 3.3634 0.2326 133
Fibers along 6 14.7059 -0.3 38.4615 37.8615  12.8979 0.892 |1e
Fibers at +45° 1 -0.83 0.3684 -1,2916 0.8416 0.8416 +45Gr
(graphite epoxy) +11.5138 -11.5138
Fibers at 45° 1 -0.39 1.56 0.78 1.6673 1.6673 +45GR
(glass epoxy) +10.4690 -10.4690
Quasi-1isotropic 1 -0.3 2.6 2 3 1 ISOTR.

N2 =1{28(1 — )R® + (e + B)(8 — 1)R#
+ (@ =~ 31+ BRPFRa/4) (27b)

Ni={{a~ 81— a)R*+ (a+ B)(1+a)R~"

— 2a(1 + B)R~FY(Ro/4) (27c)
Ni=[-(1-a)a+BR*— (1+afa—BR™
+ 2a(1 — PRPFI(Ra/4) (27d)
The coefficients of the stress function in (21) are
A1=Ny/D Ay=Ny/D A3=N3/D A;=N4D (28)

The circumferential stress can be written as
ap = {Art1(ty — 1172 4+ Agto(ts — 1)rt2=2 + Agta(ts — 1)ris—2
+ Agtq(ty — 1)7‘“_2} cos 26 (29)

At r =1 the sum of the four contributions can be written in the fol-
lowing forms:

Doy,_, = (6R/2)(a? — BB ~ 0)R* — B(1 + a)R~¢
, — a(l — B)Rf+ a(l + B)RB} cos 20 (30a)
Day,_, = cR(a® — $?){B sinh (@ In R) — af cosh (a In R)
— asinh (BInR) + aff cosh (81n R)} cos 260 (30b)

h(a+i)lnRSinh(a~§)lnR

Dog,., = cR(a?— (%) {(a + ) cos

—(a—-ﬁ)sinh(a+i)lchosh(a_g) InR

(a+ B InR

—2af sinh sinh

ez 2) In R] cos 260 (30c)

Doty = (6R/4)(a = B + BIR(HOV2 4 R ()]

X [Rla=8/2 — R=(«=B)/2] — (o — B)[R(@*+8)/2 — R=(+)/2]
X [R@=B)/2 4 R—(a—8/2] — 9 B[R +B)/2 — R—(a+5)/2)

[Rla=M/2 — R=(«=B)/2]} cos 20  (30d)

In Fig. 3, values of the stress-concentration factor are plotted
against the outer radius R (note that the radius of the hole is unity)
for a number of fiber arrangements. Inequalities (19a) and (195) hold
when all the fibers run circumferentially (]|6) or radially (||r), and when
the material is isotropic (or quasi-isotropic). In these cases, therefore,
(25) and (30) are valid. However, the values of the ordinates in the
figure are not those computed from these equations; to the values
obtained from (25) and (30) have been added the circumferential
stresses calculated for the case of uniform radial tensile loads which
will be discussed later. )

One more question to be answered is how the stress-concentration
factor behaves as R approaches infinity. Because of inequalities (201),
equation (30d) becomes (« and (8 are real)

566 / VOL. 48, SEPTEMBER 1981

D
e/ — R(1/4)(a? — 2)28(1 — ®)R+B2R@-B/2 g5 R > w
o cos 20

(31)
and (25) becomes
D — (a—B)?Ro*8 asR — o (32)
The ratio of the two is
- 1- +
vy _BUAZDOED) by penk 1 (33)
ccos20 2 a—0
0 when f>1
—00’—=120~» —(1/2)(1+ @) when f=1 as R—w (34)
g cos © when <1
When 8 = 1, (20¢) yields (with n = 2)
a=3+/S, when fB=1 (35)
and the stress-concentration factor becomes
SO (1/2)(1+3/5,) when f=1 (36)
o cos 20
Because of (20a) the condition of this is
a?+32=98,+1=1+85, + 45 37
that is,
S =25, (38a)

It is to be remembered, however, that in the derivation of (31) it was
assumed that o > 8. This implies that

S, >1/9 (38b)

in consequence of (35). But the straight line is tangent to the upper
branch of the curve in Fig. 2. Hence, to the left of the point of tangency
the stress-concentration factor tends to infinity as R increases beyond
all bounds in the region of four real roots.

Equation (38a) is shown as a dotted straight line in Fig. 2. Above
the line the stress-concentration factor tends to infinity as R ap-
proaches infinity; and between the straight line and the upper branch
of the curve of Fig. 2 the stress-concentration factor tends to zero as
R approaches infinity.

a and B8 Are Complex Numbers
It has already been stated that between the two branches of the

curve of Fig. 2 the inequality holds
(1+ S, +45)2<4(n2 - 1)%5,, (39)

The quantities of & and 8 and their useful combinations can be given
in the form
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a2 = (1/2)(1 + S,» + n28) + i{(n2 — 1)25,,

- (/491 + 5, +n2Z8)%2  (40a)
B2 = (1/2)(1 + S, + n2S) — i{(n? — 1)25,,
' — (/81 + 5, + n?5)32  (40b)
a = (1/y/2H(n? = Dy/Syr + (UD(L + 5y + n25H2
+ (/D2 = DS — 1/ + S, + n25)2 (41a)
B = (/D2 —1)V/S,, + (1/2)(1 + 5, + n2T)2
- (l/ﬁ){(n2 - 1)\/ §rr -~ (1/2)(1 + grr + n2—S_)}1/2 (41b)
a+ B =202 = DSy + (1/20 + 5, + nD2  (4lc)
= ~ B =+/2{(n?% - 1)\/5; — (/21 + S, + n2S)/2  (41d)
13
(@+B)2=1+8,+n28+2(n2-1)/5,>0 (41e)
(@=P)2=1+8,+n28 -2(n2-1+/5,<0 (41f)
o2+ B32=1+8,+n28 ((41g)
a?— 32 o _ _
7 = 9(n2-1)%S,, — (1/4)(1 + S, + 02022 (41h)
13
aff = (n? = 1)+/Sw (41)

The expressions for the numerator and the denominator of the
stress-concentration factor are

Day,., _—oR o - {(a + B)[RHBV2 4 R=(+B)2)

cos 26 2 i

% sin (0‘ -8 h‘_@) _a=h [RletB/2 — R=(«tB)/2] cog (“ -8 l_n_@)
[ 2 i i 2

— 2af[R(*+P/2 — R—(a+B)/2] sin (“ i %“ (42)

a - 6)2[Ra+ﬁ + R~ («t8)]

D=8aﬁ—(

o —

- B In R) (43)
i

— 2(a + 3)% cos (

It is noted that all the combinations of & and 8 appearing in (42) and
(43) are real and positive.

Again, it is of interest to investigate the behavior of the stress-
concentration factor as R tends to infinity. In such a case the domi-
nant terms in (42) and (43) are RR (Y2 and R>*8, respectively, and
their ratio determines the behavior at infinity:

_Tml Ri-@tB)2 g5 R > (44)
o cos 20
The stress-concentration factor remains finite if
at+f=2 (45)
From (41e) the condition of this being true is
1+ S5, +45+64/S,=4 (46)
which can be solved for S to obtain
5= (1/4)3 = 5, — 64/Sy) 47

This equation is shown in Fig. 2 as a dotted line. Between this line and
the upper boundary of the region of conjugate complex roots the
stress-concentration factor tends to zero as R approaches infinity; and
between the line and the lower boundary of the region of complex
roots the stress-concentration factor increases beyond all bounds as
R approaches infinity.

o and 8 Are Pure Imaginary Numbers
In the region of Fig. 2 below the lower boundary of the region of
complex roots the following inequalities hold:

(1 + 5, +n28)2> 4(n? - 1)25,, (48)
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and

1+5,+n25<0 (49)

The expressions for @ and § are purely imaginary:

a =i|(1/2)1 + 8, + n2) + {(1/4)(1 + 5, + n23)2
_ ~ (n2 = 1)75,,]1/2|1/2  (50a)
B8 ==i[(1/2)(1 + S,, + n28) - {(1/4)(1 + S, + n25)?2
— (n2 - 1)2§rrll/2|1/2 (50b)

Thus the following useful combinations of @ and 3 can be given

a2+ 82=1+4+5,+n28<0 (51a)
a2 = B2={(1+8,+n28)2-4(n2-1)25,}2>0 (51b)
af=n2-1)/S,>0 (51¢)
(@+P)2=1+5,+n%8+2(n2-1)/5, <0 (51d)
(@—PB)2=1+85,+n28 - 2(n2-1)/5,<0 (51e)
a+B=—i|1+58, +n25+ 22— DS, |2 (51
a—B=i|1+58, +n%8 - 2(n? - 1)/5, |12 (51g)

Alternate expressions for o and § follow:

20 =—i|1+8, +n28+ 2(n2~ 1)/S |2 +i[1+5, -
+n28 - 2(n2 — 1)4/S,»| Y2 (51h)

28 = —i|1 + Sy + n2S + 2(n2 — )/S, | Y2~ |1 + 5,
+ n28 - 2(n2 — /S| V2 (51i)

Substitution into (30d) and (26) yields

Dow-y —(a? - 2R la—+—§ cos (a; B In R) sin (a — ﬁln R)
i i
- a_,ﬂsin(a—'-_ﬁlnR)cos(a—.ﬁlnR)
i 2i
— 2 sin (0‘ B R) sin (a —8 R)} cos 20 (52)
i i
D = 8af + 2(a — )% cos (a-f-ﬂlnR) — 2(a — B)2 cos (aTﬁInR)
i
(563)

Again, all the combinations of o and  are real. But trigonometric
functions of a real argument have values between —1 and +1; hence
the numerator tends to infinity as R while the denominator remains
finite when R approaches infinity. Consequently, the stress-concen-
tration factor tends to infinity as B approaches infinity.

Solution of the Axisymmetric Part of the Problem
To solve the problem set in (1)—(4) completely, the axisymmetric
part of the solution in which the boundary conditions are

(54a)
(54b)

when r=1

r=R

g =0
o ={c/2) when
is also needed in addition to the solution derived for the boundary
conditions given in (6). It is tempting to obtain the solution of this
axisymmetric part from the general solution already derived by simply

setting n = 0. When this is done, the following four expressions are
obtained for the exponents p of the stress function

(85)
(56)

d=rpP:
p1=1+V§rr p2=1-— grr p3=2 ps=0

The fourth expression corresponds to a trivial solution in which all
the stresses are identically zero. But there remain three solutions
whose integration constants must be determined from two boundary
conditions. This can be done in more than one way, implying that the
solution of the problem set is not unique.
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The explanation of this anomaly is that in the axisymmetric case
p = 2 is a spurious solution. Although it satisfies (12), it does not
satisfy the proper compatibility condition of the axisymmetric
problem. In the axisymmetric case

¢ = du/dr (57a, b)

where u is the displacement in the radial direction. For the existence
of a function u the condition must be satisfied

e = u/r
d

o= — 58

€ o (reg) (58)

which is the compatibility condition in terms of strains. In terms of
the stress function the strains are

1d¢ d2¢

& = S0y -+ Sppop = Srr;"&; + Sro _dI_Q (59a)
1d d?

€= Srgor + Spgog = Spe S + Sae K (59b)
rdr dr?

Substitution and differentiation yield the compatibility condition
for the stress function ¢:

d{ d% 1do
“ar (r drz) " dr (60)
Substitution of ¢ = r2 yields
Sﬂﬂ - Sr,~ = 0 (61)

which is true only for a restricted class of plates. In general, p = 2 is
not a solution of the problem.

When the assumption ¢ = rP is substituted into (60), the result
is

P[(P - 1)ZS00 - Srr‘] =0 (62)

The solution is
p1=1++/Sy pa=1-+/S, p3=0

Since p3 yields identically vanishing stresses, the complete solution
of the axisymmetric problem can be written as

(63)

b= Art+VBe 4 gri-vBe (64)
The two boundary conditions are
(1++/S)A+(1-+/5,)B=0 (65a)

1 ++/SOR- VA + (1~ /S, )R-1-V5nB = (5/2) (65b)
The solution of the two simultaneous equations is

1 aR/2

A= = = (66a)
14 +/5., RVSr — R=/S
-1 aR/2
B= — = (66b)
1- /5, RVSr — R~V
It follows then that
&’ _ je-ok Ve 4 p=/5mr ©n
gg=— = .
T ar? 2rR;S"—-R_;S"
At the edge of the hole in the plate
[ — R
T VRV R @3
Since /S, is positive,
G0,ei/0 = /SRS when R > 1 (69)
Consequently
0 when S, >1
. Op- _
lim == —>{ /S =1 when S, = (70)
R—w O - _
© when S, <1

At the outer edge of the circular plate
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S, RVS + R—5r

Tor=tt '
9 RVSs - R—VS» (7
In the limit as R approaches infinity,
lim (oq,.x/0) = /Si/2 (72)

R—w

Discussion of Results ,

One of the interesting results of this investigation is that the four
independent compliances S, Syg, Sus, and Sgg characterizing the
elastic behavior of the plate can be combined into two relative com-
pliance values S,, = S,./Sgs and S = (1/549)(2S,p + Segg) in such a
manner that the stress concentration at the edge of the hole depends
only on the two new parameters. This is advantageous both in the
computation and the presentation of the values of the stress-con-
centration factors.

A second interesting result is that a state of constant stress o, = gy
= (; cannot exist in a cylindrically orthotropic circular plate subjected
to constant uniaxial loading at its outer edge r = R, except in the
special case when S, = Sgg. Such a constant stress would give rise to
constant strains e, = (S, + S;9)C1 and ¢ = (Syg + Sgp)C1. But the
constant radial strain implies radial displacements u = ¢, + Cy from
which the circumferential strain follows as w/r = (S + Syg)C1 + Co/r.
This can be equal to the circumferential strain calculated before only
if Co = 0 and Sgy = S,,, which proves the statement.

Next, it is perhaps unexpected that the limiting process in which
R increases beyond all bounds can lead to vanishingly small or o in-
definitely large stress concentrations along the edge of the hole. This
is not so when the plate is orthotropic relative to a Cartesian system
of coordinates or when it is isotropic. As a matter of fact, Kirsch’s often
quoted solution states that the maximum tensile stress at the edge
of a hole in an isotropic plate has a value three times that of the ap-
plied stress at infinity.

An explanation of the unexpected behavior can be found in the
values of the exponents of the radius in the expressions for the radial
stresses. They are —1 + o, —1 — o, —1 + 8, and —1 — (3, when the load
terms include the factor cos 26 or sin 20. In the region where o and §
are real, they are positive by definition, and the second and fourth
exponents are always negative. When o < 1 or § < 1 the first and the
third exponents, respectively, are also negative. But because « > 83,
the condition of the simultaneous occurrence of three negative ex-
ponents can be given as § < 1.

When two exponents are positive and two negative in the general
expression for the radial stress, the two solutions with negative ex-
ponents can be used to satisfy the boundary conditions at the edge
of the hole (» = 1) and the two with positive exponents those at infinity
(r = R, with R — «) without any interaction between the two groups
of solutions. When the edge of the hole is unloaded, this implies
vanishing stresses at r = 1, and stresses of the order of magnitude of
o in a boundary layer near r = R. The stress-concentration factor for
the edge of the hole is then zero.

On the other hand, if there are at least three solutions with negative
exponents, and stresses of a magnitude ¢ are applied at r = R, at least
one solution must have an integration constant of infinity to satisfy
the boundary conditions at r = R when R increases beyond all bounds.
In such a case the stress-concentration factor at the edge of the hole
is indefinitely large.

It has been shown that in the region of Fig. 2 where (12) has four
real roots, the stress-concentration factor is finite when 3 = 1 (see (34))
which, in turn, implies that § = 25,, (see (38)). If the value of 5, is
kept constant and that of S is increased beyond 25,., both terms in
the right-hand member of (18a) increase, and thus « also increases.
But then # must decrease because the product «f remains constant
in agreement with (20c). On the other hand, 8 < 1 implies indefinitely
large stress-concentration factors according to (34b). Indeed, in the
region above the line S = 25, in Fig. 2 indefinitely large stress-con-
centration factors were obtained for R — «, A similar argument would
show that below the straight line the stress-concentration factor tends
to zero as R increases beyond all bounds.
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In the range of conjugate complex values for ¢ and 3 the stress-
concentration factor is finite when « + 3 = 2 implying the relationship
(47) between S and S,. It follows from (41c) that the value of o + 8
increases if S is increased beyond the value stipulated by (47) while
S, is kept constant. But an increased value of o + § results in a neg-
ative exponent for R in (44) and thus the value of the stress-concen-
tration factor approaches zero as R increases beyond all bounds. This
again agrees with earlier findings as presented in Fig. 2. Below the line
corresponding to (47) the value of & + 8 decreases when S is increased
with S, remaining constant, the exponent of R in (44) becomes pos-
itive, and the stress-concentration factor of the infinite plate ap-
proaches infinity.

The situation is simpler in the case of axisymmetric loading. There
one exponent in the expression for the stresses is =1 — /S, and is
always negative. The other exponent, ~1 + /S, is positive when S,
is greater than unity; in this case two boundary layers exist and the
stress-concentration factor approaches zero as R increases beyond
all bounds. When S, is unity, the stresses are constant throughout
the plate, and when S,, is smaller than unity, the stress-concentration
factor becomes indefinitely large as R increases beyond all bounds.

But infinite stress-concentration factors found for infinite plates
should not dismay the engineer, because no one has yet built an infi-
nite plate or has loaded one at infinity. What counts is the behavior
in the finite range which is illustrated in Fig. 3.

In this figure four of the five full lines indicate slowly varying values
for the stress-concentration factor in the practical range 3.5 < R <
10, and the fifth full line shows low values for it. Below the value 3.5
for R the rapid rise in all the curves is a consequence of the rapidly
decreasing cross-sectional area available to carry the load.

Of course, the solution obtained in this paper is rigorously valid only
for the circular plate investigated. Similarly, the Kirsch solution holds
rigorously only for the infinite isotropic plate. Whenever the stresses
in a real plate of given shape and proportions are needed accurately,
the actual article must be tested in the laboratory, a study must be
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made of a suitable model with the aid of photoelasticity, or a numer-
ical investigation must be undertaken with the help of the finite-
element method.

Such a study has already been carried out in the case of finite rec-
tangular plates of varying proportions made of materials orthotropic
with respect to a Cartesian system of coordinates. Of the many curves
so obtained by Hong and Crews [5], only one is reproduced in Fig. 3;
it is shown as a dotted line. It refers to an isotropic plate whose length
is equal to twice its width. Between R = 3.5 and R = 10 the value of
the stress-concentration factor is almost constant along this curve,
and it differs little from the value obtained by Kirsch for the infinite
plate. It is gratifying to observe that the dotted curve agrees very well
with the isotropic curve of this investigation which is rigorously valid
only for the circular plates. It appears, therefore, that the location and
the shape of the outer boundary of the plate have much less effect on_
the stress-concentration factor than, for instance, the orientation of
the fibers.

It is believed, therefore, that the stress-concentration factor along
the edge of a circular hole in a finite plate of arbitrary (but reasonable)
shape and size can be calculated from the equations here derived with
a value of R between 3.5 and 10 if the elastic properties of the plate
are cylindrically symmetric with respect to the center of the hole, and
if great accuracy is not required for the value of the stress-concen-
tration factor.
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Diffraction of Elastic Waves by a
Surface Crack on a Plate

The interaction of time harmonic elastic waves with an edge crack in a plate is stualea.
The crack is assumed to be normal to the plate surface and its depth small compared to
plate thickness. Only plane strain deformations are considered: The incident waves are
assumed to be either plane body waves (compressional (P) or ‘inplane shear (SV)) of arbi-
trary angle of propagation or surface Rayleigh waves propagating at right angles to the
crack. For each incident wave type the complete high frequency diffracted field on the
plate surface is calculated. Solution is obtained by the application of an asymptotic theo-
ry of diffraction. Application to ultrasonic inspection techniques is indicated.

Introduction

Study of the interaction of elastic waves with edge cracks is of
considerable importance in a variety of engineering applications. In
fracture mechanics the interest is in the stress concentration near the
crack tip. In ultrasonic nondestructive testing the influence of crack
length and dlrecmon of incidence on the diffracted wave pattern is of
interest.

Solution of the problem is complicated by the presence of the free
surface in addition to the crack surfaces and the associated sharp
edges. As a consequence inspite of its engineering significance the
problem has not been widely treated in the literature.

In a recent paper (Stone, Ghosh, and Mal [13]) the diffraction of
antiplane shear waves by an edge crack was investigated. In [13] the
problem was formulated in terms of a singular integral equation which
was solved numierically for low and intermediate frequencies. Athigh
frequencies the asymptotic solution was constructed from the solution
of the well-known Sommerfield diffraction problem. It was shown that
the asymptotic solution gives accurate results valid at surprisingly
low frequencies (also see Achenbach and Gautesen [1]).

The inplane edge crack problem can be similarly formulated in
terms of a system of coupled integral equations which can, in principle,
be solved numerically to determine the response of the crack at any
frequency. As in most elastodynamic problems, the numerical solution
is likely to be unreliable at very high frequencies, and should therefore
be supplemented by an asymptotic solution at high frequencies. Such
a solution is presented here.

The inplane problem is considerably more complex than the anti-
plane one due to mode conversion of body waves on reflection as well
as the preserice of Rayleigh waves on the free surfaces. Fortunately
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Fig. 1 Geometry of the problem

at very high frequencies the problem can be decomposed into a
number of canonical problems whose solutions are available in the
literature. It is expected that the resulting solution will be valid in a
frequency range which include some cases of practical importance.

Theory

We locate a Cartesian coordinate system at the intersection of the
crack with the plate surface, with the x-axis along the plate surface
and normal to the crack surface (Fig. 1). The z-axis is taken along the
length of the crack. Then the plate occupies the region —« <x < =,
0<y <h,— @ <z < » and the crack occupies the region, x =0 +,0
<y <1, —w <z < =, where h is the plate thickness,  the crack depth,
The incident waves are assumed to be polarized on the xy-plane, and
all deformations are independent of z. Thus the problem can be for-
mulated in two dimensions on the xy-plane. We further assume that
the crack faces do not come into contact during motion.

The foregoing model corresponds to plane strain deformations of
the plate. The formulations can be used, with minor modifications
in plane stress situations (e.g., through cracks in thin plates, —« <
x < ©,0<y<h,—€<z<e¢, esmall).

As indicated in the Introduction it is extremely difficult to obtain
exact solutions of elastodynamic problems associated with the above
geometry. At low frequencies numerical solutions via integral equation
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Table 1

14 Ro TO
0.25 0.26 0314 0.67 e~13L
0.33 0.4 ¢06i 0.6 g—16¢

formulations similar to that in [13] can in principle be obtained. At
high frequencies application of ray theoretic considerations is a nat-
ural and promising approach.

In the ray theoretic approach the wave motion is constructed by
calculating reflected, refracted, and diffracted waves from each in-
dividual surfaces and edges in the system by ignoring the presence
of the others. In the present problem reflecting surfaces are the free
surfaces of the plate (x <0,x > 0,y =0; —~ <x < «,y =h) and the
free surfaces of the crack (x = 0 %, 0 <y < ). The diffracting edges
are the crack tip x = 0, y = | and the two 90° cornersx =0 %,y = 0.
Thus it is necessary that the solution of the following canonical
problems be available.

(1) Reflection of Plane Harmonic Body Waves at a Free
Surface. The solution of this problem is available in standard texts
on elastodynamics (see, e.g., Eringen [4]). The results are expressed
in terms of reflection coefficients Rpp{fg), Rps{fo), Rsp(fo), Rss(0o)
where the first index (P or S) indicates the incident wave type and
the second index the reflected wave type. fp is the angle of incidence.
" The expressions for these coefficients are given in [7].

(2) Diffraction of Body and Surface Waves by a Crack Tip.
Since the effect of all other boundaries are ignored, the crack may be
assumed to be semi-infinite. The solution to this half-plane diffraction
problem has been given by Maue {11] for body wave incidence and by
Freund [5] for Rayleigh wave incidence. The diffraction coefficients
Dpp(8, 60), Dps(8, ), Dpr*(8, 60), Dsp(d, 0o), Dss (0, 6o), Dsr (8, o),
Dgp(0), Drs(f), Drg* are defined in the Appendix.

(3) Finally, the Transmission and Reflection of Body and
Surface Waves by a Right-Angled Wedge. To the authors’
knowledge no analytical solution of this problem is available in the
literature. However excellent experimental data and numerical so-
lutions for the reflection and transmission coefficients Ry, Ty of the
Rayleigh waves have been obtained for Poisson’s ratios of 4 and § (see,
e.g., Mal and Knopoff [10]; Fuyuki and Matsumoto [6]; Achenbach,
Gautesen, and Mendelsohn [2]). These values are listed in Table 1.

Unfortunately none of the available results include estimates of the
spatial and angular variations of the diffracted body waves at the
corner. Clearly, they decay as (k;r)~1/2 at a distance r from the corner
where k; is the wavelength of either P or S waves. Further the decay
becomes O (k;r)~%/2 on the free surfaces of the wedge. The amplitudes
of the reflected and transmitted Rayleigh waves in Table 1 also in-
dicate that very little of the incident wave energy is converted into
body waves. Thus the diffracted body waves from the corner can be
ignored for all practical purposes.

In the case of body wave incidence, all propagating body waves can
be obtained by ray construction, except for one ray incident directly
on the corner. Since all the incoming energy is carried away by the
doubly reflected P and SV waves, this single ray can not produce any
outgoing surface waves on the faces of the wedge. It can be further
argued that there can be no scattered body waves propagating away
from the corner, since any virtual source of body waves at the corner
must also produce surface waves. Thus the only possible effect of the
unaccounted for ray is a disturbance restricted to the immediate vi-
cinity of the corner. The displacements produced by this disturbance
in the far field must be of much lower order in magnitude than those

due to the primary and secondary diffracted propagating waves in- .

cluded in the present analysis.

With prior knowledge of the solution of the three canonical prob-
lems described previously, an approximate solution of the edge crack
problem at high frequencies can be constructed in a straightforward
manner.

Edge Crack in a Half Plane. We first assume that the lower
surface of the plate is at infinity; so that the crack is located in a uni-
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Flg. I2((:4) Diffracted Rayleigh waves from body-waves incident on an edge
cracl

Fig. (2b) Reflection of diffracted body waves

form half plane y > 0. The influence of the lower surface of the plate
will be included in the next section. :

Incident Body Waves (Figs. 2(a, b)). Let plane harmonic P or
SV waves be incident on the crack at angle 5. The elastodynamic field
due to the incident waves may be conveniently described by scalar
potentials goe it Pge ~iwt,

¢0 = Aoe—ikl(" cos O + y sin fp)
\[/0 = B0 e—ikz(x cos 8p + y sin fp) (1)

where w is the circular frequency and k; = w/cj, j = 1, 2; ¢y, co being
the velocities of P and S waves in the medium. The time function
e~#%! appears in all field quantities and will be suppressed.

If diffraction effects are ignored, approximate solutions for motion
at all points in the medium can be immediately written down by
means of the plane wave reflection coefficients Rpp, Rps, Rsp, Rgs.
The solution obtained in this manner is usually called the geometric
solution following a terminology used in optics. The geometric solution
can also be described by means of potentials ¢, and ¥y, whose ex-
pressions can be easily written down. The displacement components
due to the plane waves given by the geometric solution can be calcu-
lated from these expressions, These displacements are discontinuous
across the boundaries between the various regions defining shadows
of P and S waves. Diffracted waves from the corners at O and the edge
at L must be added to the geometric solution in order that the total
displacement field is continuous everywhere except on the crack
OL.

We shall assume that the displacement components in the incident
(and geometric) field are O(1) in frequency. As indicated earlier the
diffracted body waves are O(k;r)~V/2 at a distance r from the dif-
fraction point. On the free surfaces the diffracted body waves are
O(kjr)~32 while the diffracted surface (Rayleigh) waves are O(1). The
behavior of the diffracted surface waves imply that multiple reflection
between O and L must be included in the solution even at extremely
high frequencies. The situation is further complicated by the fact that
each Rayleigh wave arriving at the crack tip L gives rise to diffracted
body waves which are of same order in frequency as the primary dif-
fracted body waves. It should be noted, however, that each successive
reflection at O or L reduces the amplitude of the surface waves con-
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siderably so that for practical purposes inclusion of one or two re-
flections would be sufficient. We include all reflections in the analysis,
since they are the lowest order terms in the high frequency solution
and return to the significance of multiple reflections later.

It is not necessary to retain the multiple reflection of body waves
between O and L since they are two orders of magnitude smaller than
those that are retained in the asymptotic solution. As indicated earlier,
we also ignore the diffracted cylindrical body waves from the cornor
0, since either they are small, or are higher order (on the free surfaces)
than (k;r)=1/2,

In summary the diffracted field will be calculated by including

(a) Cylindrical body waves due to primary diffraction of incident
and surface reflected plane waves at crack tip L.

(b) Surface (Rayleigh) waves generated by primary diffraction
of incident and surface reflected plane waves at crack tip L.

{c) Diffracted surface waves due to multiple reflection and
transmission of the surface waves described in (b) between O and
L.

(d) Cylindrical body waves generated at L by all surface waves
reaching L.

The resulting solution would be valid to O(k;r)~1, strictly at points
on the free surface and approximately (but with small error) at points
in the interior of the solid.

1t is straightforward to write down the potentials due to the primary
diffraction of the body waves at L. Denoting by ¢pr¢, ¥pr? the re-
sulting potentials, it can be easily shown that for incident P waves

dprd = AolDpp(m + 8, 00) + Rpp(80)Dpp(m + 8, 1 — 8o)
eilkir—=/4)

+ Rpg(~00)Dsp(m + 0, 7 — 8,)} T
1

Vpr® = AofDps{m + 8, 80) + Rpp(Bo)Dps(m + 8, w — o)
gilkor—=/4)

+ Rps(—00)Dss(m + 0, 7 — O} —==— (2)
kzl’

where (r, 0) are measured from L, as shown in Fig. 2(a) and
s = sin~! (sin fp/0)

Similar expressions can be easily written in the case of incident S
waves. The displacement components (1,9, us?) can be calculated
from (2) by means of the relations

u® = ikld)d

up? =~ ikoyd (3)

The displacement components on each face of the crack after each

successive reflection of the Rayleigh waves can in principle be written -

down in terms of the reflection coefficient By at O and the reflection
and transmission coefficients at L. defined in the Appendix. The
transmitted surface waves on y = 0 and diffracted body waves from
L due to each Rayleigh wave propagating on the crack faces in either
direction can also be calculated. In order to carry out the details of
this procedure we recall that for a Rayleigh wave propagating along
a free surface, the surface displacement components normal and
parallel to the surface differ by a multiplicative factor which is fixed
for a given solid. Further, the two components of the displacement
always differ in phase by 7/2 and the sense of motion is retrograde
elliptic. Thus, recalling that time-dependence e =it has heen sup-
pressed, the surface displacement vectors

i i
2 AT R
1 1

e~ik x 4)

where 7, is a constant defined in the Appendix and k; is the Rayleigh
wave number, represent Rayleigh waves propagating along the posi-
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tive and negative x-directions in a half plane — <x <,y <0. Then
surface displacement on y = 0 must be given by

i

T+ Ve eier (5)
1
for x > 0 and by
=i\
T | vr | e ior>
1

for x < 0, where T* are unknown complex constants.
Similarly the displacement on the crack surfaces 0 <y <! are given
by

1 1
AY| i eiry + BT [ —i | e~ikr-D 6)
Yr Yr
for x = 0+ and by
-1 -1
A~ i e*ry+B- i |e-ikro—
Yr Yr

for x = 0—, where A*, B* are unknown complex constants.

For an incident P wave the Rayleigh waves generated by primary
diffraction at L and multiple reflection and transmission at O and L
may be described by the system of linear equations

A* = RoB*eikp!

B = DRR+A¢eikrl + DRR "A*eikr’ + kleDpR“:(Ho)e_ikl' sin 60

T* = ToB*eikr! (7
Similar equations result for incident S waves; only the term con-

taining Ao is changed into kaBoD T (0g)e —i*2! sin 00, Solution of the

simultaneous equations (7) gives the unknowns A*, B*, T* in terms
of known guantities,

A* = kleRoeikrl‘ikll sin B°{Ro€2ikrl(DRR+DPR*(0o)
—Dgr~Dpr™(00)) + Dpr™(00)}/ A
B# = kyAge~ik1l sin 00{R (0 2ikpl(Dpp+ Dpp % ()
=~ Dpr~Dpr™(#0)) + Dpr™(60)l/ A
T* = kleToeikrl‘ikll sin 90}R062ikrl(DRR+DPR*(9o)
= Drr~Dpr™(60)) + Dpr™{(B0)}/A (8)
where

A = (RoDgp~eZrl ~ 1)2 — (RoDgp*e2kri)2

It should be noted that if multiple reflection of the Rayleigh waves
between O and L were ignored the surface displacments would be
simply given by

B* ~ klAOD*PR(GO)e—ik‘[ sin 8y
At ~ RoBFeikp!
T+ o TyB*eiky! 9)

The other terms in the resulting series expressions for A%, B%, T+
in (8) give results of higher-order reflections hetween O and L.

.The cylindrical body waves generated by secondary diffraction of
thlf.Rayleigh waves at L are given by the potentials dgec?, Veec?,
where
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eitkir — n/4)

hY klr

gilkor = =/4)

¢secd ={A"Dgp(f) + A+DRP(_0)}

l»bt:ecd = {A—.DRS(G) + A*Dps(—0)} Tor (10)
2
The total diffracted body wave field given by
ud ~ ik1¢d = ik1(¢dpr + ¢dsec)
Ud o ikzl,//d = ik2('//dpr + \bdsec) (11)

is valid for large (kjr) to O(k;r)~!. In addition the diffracted Rayleigh
waves on two sides of the crack are given by the surface displace-
ments

i —i
Ty, | etors Ty, | e tkrs (12)
1 1

(11) and (12) are the main results for P wave incidence. If the dif-
fracted body waves are observed on the free surface y = 0, their am-
plitudes and phases will be different from those obtained from (11)
due to reflection effects. In order to include these effects let the field
point be located at @(x, 0), x > 0 (Fig. 2(b)).

At very high frequencies the x and y-components of the surface
displacement at € must be modified by the multiplicative factors
are

V62 —sin? 6, Rps(6y)

1+ Rpp(8y/) —

sin [/} 1
and
—1+ Rpp(6y) — tan 6,Rps(6y') (13)
Similarly, for S wave incidence the multiplicative factors are
1 — Rss(f1') — tan 6;Rsp(81)
and
VI=oZsnZf R .
1+ Rs(oy) + Y= s Py Rp @) (14)
o sin f
where
aqg = kg/kl, ¢ =m— 01

The foregoing formulation can now be used to calculate high fre-
quency displacements at almost all points on the surface of the me-
dium for incident body waves.

Incident Rayleigh Wave.
displacement

Let a Rayleigh wave with surface

o)

be incident on the crack from the left side (Fig. 3). The situation is
somewhat different from the body wave cases considered previously,
since the Rayleigh waves are inhomogeneous waves and there is no
primary diffraction at the crack tip at high frequencies. The dis-
placement components can be calculated as before. It can be shown
that the Rayleigh waves on the +ve and —ve faces of the crack are
given by

1 1

At i etry; Bt —ife-ikro-D
Yr ;_r-
-1\ -1

A~ L@ Jetry; B | =i |e #rb-b
Yr ;’:
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Fig. 3 Diffracted Rayleigh waves from incident surface wave on the edge
crack

where
At = RoToTre?*rl/A
A~ = To + RoTo{Roeti*rI(Ty,2 — Rp,2) + Rpe2¥rl)/A
Bt = ToTrettri/A
B~ = {ToRpe*r! + RoToe¥*r(T,2 — RL)Y/A
A = (RoRpe2*r! — 1)2 — (RoTLe%*r!)?

and we have written D*gp = Tr; D gpr = R. Transmitted and re-
flected Rayleigh waves on the free surface are given by the displace-
ment vectors

i

T+ | v, | eitr (15)
1
for x > 0, and
L3
T Yr | e~ thr> (16)

for x < 0, where
T+ = TozTLezikrl/A
T-=Ry+ [T02€2ikrlRL + R0T0264ikrl(TL2 - RLz)]/A

The influence of the successively reflected Rayleigh waves between
L and O can be recovered as before by expanding A~L. The diffracted
body waves can also be calculated in a straightforward manner. The
details of these calculations will be omitted.

The transmission and reflection coefficients T and T~ are func-
tions of (k,l) as might be expected. It can be easily seen however that
they are both O(1) in k{. Thus each of them oscillates about a con-
stant value at all frequencies, so that even if k.l — =, i.e, the crack
is infinitely long compared to the wavelength T does not vanish. This
result although somewhat unsatisfactory, is easily explained by the
unrealistic two-dimensional nature of the model.

It should be further noted that if multiple reflection between L and
O are ignored

|T*| = |To*T|
and
IT=| = |Rol
For most materials | T] ~ 0.6, | T| ~ 0.2, and |Ro| = 0.3. Thus
|T*| ~ 007, |T-|~03

Clearly a very small amount of the incident energy is transmitted
across the crack and the overall energy balance implies that most of
the surface wave energy is converted into body waves by interaction
with the crack. ’

Edge Crack in a Plate. The solution just described can be ex-
tended to the cases where the solid medium may contain other
boundaries. The additional complications are only geometric and
algebraic in nature.
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Fig. 4 Di"racfed body waves from the crack tip

As an illustration of the foregoing we assume that the medium is
bounded below by a free surface —o <x < w,y =h,—w <z < =, We
seek solution under the restriction k;! » 1 (waves short compared to
plate thickness), and [ «< h.

We consider the motion generated by the diffracted waves at a point
€ on the plate surface located at (x, 0). The body wave ray paths be-
tween the crack tip L and Q are shown in Fig. 4. Other ray paths which
include multiple interaction between the plate surfaces are ignored,
although they can be included if necessary. Clearly the direct P or S

waves must leave L at an angle 6, where
f = w — tan™1 (x/1) 17

in order to arrive at . The PP or SS wave leaves L at angle 02

where
x = (2h — [) tan O (18)

Similarly the angles of the PS and SP are 83 and 4, respectively,
where

x =(h —1)tan f3 + h tan ¢3

x=(h—1)tanfy+ h tan ¢4 (19)
sin ¢g = A2 sin fg
1
. CL .
sin ¢4 = —sin Oy (20)

c2

It is to be noted that the angles 61, 02, 83, 84 are well defined for all cg/c1
< 1solong as x, !, h are finite. For given values of co/c1, x/1, h/l, 61 and
05 are calculated directly from (17) and (18) while f3 and 84 are most
easily calculated by trial and error.

The effect of the bottom surface of the plate is to give two reflected
body wave rays for each diffracted body wave incident on it. At high
frequencies (k;jh > 1), these contributions can be calculated by simple
plane wave reflection considerations.

Special attention must be paid to the diffracted body wave rays that
propagate directly downward from L: No mode conversion (from P
to S or vice versa) of these rays occur on reflection at the bottom
surface of the plate. Since most of the energy in the diffracted ray is
returned on reflection, the secondary diffraction at the crack tip from
these reflected rays are relatively strong, thus significant Rayleigh
waves on both sides of the crack are produced. These waves have same
orders of magnitude as the primary diffracted body waves. The
Rayleigh waves in turn are transmitted through the corners to create
motion on the plate surface on either side of the crack. The motion
due to these waves can be calculated from the results of the previous
section by assuming incidence angle 6 = 0.

The motion on either surface of the crack due to diffraction can be
calculated by means of the procedure just described. For Rayleigh
wave incidence the secondary diffracted Rayleigh waves previously
discussed are the strongest distinguishing features in the surface
motion for the plate problem as opposed to the half plane.

Numerical Results and Discussions. The normalized x-com-
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)

)

Fig. 5 Amplitudes of transmitted, reflected, and secondary shear converted
Rayleigh waves for Poisson’s ratios of 3 (solid curves) and 1 (dashed
curves)

1.2 r

1ol

0 1 | 1
6

Fig. 6 Amplitudes of Rayleigh waves in x > 0 due to shear waves incidence
at different angles; solid curves are for primary diffracted waves, dashed
curves for secondary shear converted Raylelgh waves

ponent of the displacement on the plate surface y = 0 due to various
types of wave incidence is plotted against the dimensionless frequency
kil in Figs. 5-8. The normalized displacement U is defined by

U = u(x, 0)/u®0, 0)
for Rayleigh wave incidence and by
U = ul(x, 0)/]u®(0, 0))

for body wave incidence. In all cases it is assumed that h = 10!, and
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Fig. 7 The significant diffracted body waves at %/ = 10 due to incldent shear
wave at 30°; wave types are defined in Fig. 4

that the Poisson’s ratio of the plate material is 4 (except in Fig. 5).

The surface displacements produced by transmitted, reflected, and
secondary diffracted Rayleigh waves due to an incident Rayleigh wave
are shown in Fig. 5 for two values of the Poisson’s ratio. It can be seen
that the reflection coefficients are significant, especially for » = §and
that the transmission coefficients are negligibly small. For v =  the
reflection and transmission coefficients oscillate about 0.3 and 0.07,
respectively, values previously obtained by ignoring multiple reflec-
tion of the Rayleigh waves within the crack. The same is true for
v=1

It should be noted that the reflection and transmission coefficients
T'# are not influenced by the bottom surface of the plate. Hence, these
coefficients are identical with those for an edge crack in a half plane.
The half-plane problem has been considered in three recent papers
by Achenbach and his colleagues [2, 3, 12]. Reference [2] contains the
high frequency asymptotic solution for Rayleigh wave incidence. The
reflection and transmission coefficients given in [2] are in basic
agreement with T'F shown in Fig. 5 for v = %

The secondary Rayleigh waves shown in Fig. 5 are generated by the
reflection of the diffracted S waves at the bottom surface of the plate
and subsequent diffraction of these reflected waves at the crack tip
L. Amplitudes of these waves decay with frequency and are symmetric
with respect to the crack. Secondary Rayleigh waves are also generated
by the reflection at y = h of P waves from the virtual source at L. But
the amplitudes of these secondary waves are negligibly small in all
cases studied here, and therefore are not shown in Fig. 5. Amplitudes
of the other body wave arrivals after reflection at the lower plate
surface y = h are also smaller than those of the transmitted Rayleigh
waves and are not plotted in Fig. 5.

Figs. 6 and 7 contain representative results for shear wave incidence
at different angles. Rayleigh waves produced by the interaction of the
edge crack with shear waves incident at 0°, 30°, and 45° are shown
in Fig. 6. Clearly, shear waves propagating parallel to the crack pro-
duces the strongest Rayleigh waves amongst all cases considered here.
The secondary shear converted Rayleigh waves are also quite strong.
The amplitudes of these waves decrease with increasing angle of in-
cidence. The primary diffracted and reflected body waves arriving
at a point x/l = 10 on the surface y = 0 due to S wave incidence at 30°
are shown in Fig. 7. The notable features here are the strong reflected
S8 and direct PD waves for the diffraction point L. The diffracted
body wave amplitudes are considerably smaller at other angles of
incidence (including incidence parallel to the crack).

Body and surface waves of significant amplitude produced by in-
cident P waves at 30° are plotted in Fig. 8. Tt can be seen that the field
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Fig. 8 Motion at x// = —10 due to P wave incidence at 30°; R Is primary
diffracted Rayleigh wave, SR the secondary shear converted Rayleigh wave;
diffracted body waves are defined in Fig. 4

is dominated by reflected waves from the lower surface of the plate
y = h.

Calculations of the diffracted field for other values of x/I were also
carried out. The diffraction pattern was found to be similar except
for the amplitude changes of the body waves caused by changes in
distance between the virtual source and the field point.

The general conclusions that can be drawn from the present study
are as follows:

1 The crack is an efficient reflector and poor transmitter of
Rayleigh waves. The crack tip diffracted shear waves reflected from
the opposite face of the plate directly below the crack produce rela-
tively strong Rayleigh waves after secondary diffraction at the crack
tip.

2 Both primary and secondary diffracted Rayleigh waves gener-
ated by incident shear waves are relatively strong at all angles of in-
cidence, and especially for incidence parallel to the crack. Some of the
body wave rays also carry significant energy.

3 Primary diffracted Rayleigh waves generated by incident P
waves are small for all angles of incidence. The secondary shear con-
verted Rayleigh waves and some of the body wave rays reflected off
the lower surface of the plate have significant amplitudes for oblique
incidence.

For Rayleigh wave incidence both the primary and secondary
Rayleigh wave pulses have been observed and recorded in experiments
involving plates containing long fatigue cracks (Tittman and Buck
[14]). Fourier analysis of these pulses should exhibit the oscillatory .
behavior in their amplitudes as shown in Fig. 5. The period of oscil-
lation is approximately related to the crack length through k,I = .
It should also be possible to record the onset and pulse shape of some
of the relatively strong body waves. These observations could be useful
in the accurate determination of the geometrical properties of an edge
crack.
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APPENDIX

The Diffraction Coefficients
For P wave incidence on the crack x > 0, y = 0%, the potentials in
the incident and diffracted body wave field are related through the
equatlons,
$0 = etkilaox + Boy), Yo=0
¢% = Dpp(0, Bo)e By = =/ \ /Ty
Y@ = Dps(0, Oo)e!tker = 7/ /\/Ror
where
g = cos g, fo = sin by,

0y is the angle between the incident ray and x-axis; (r, §) the polar
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coordinates of the field point (x, y); Dpp, Dps are the diffraction
coefficients. Similarly, diffraction coefficients Dgp(8, o), Dss(8, 8¢)
can be defined for S wave incidence. The diffracted Rayleigh dis-
placement components are given by

udR(x, 0+) =

A

u?®(x,0—) = k1Dxr~(0o) ( /yr) ik

kiDxr™* (fo) ( /’yr) etk

The symbol X in the diffraction coefficients is either P or § depending
on whether the incident wave is a P or S wave, and

ke = w/c,
¥r =12 = (cr/c2)3/2 V1 = (c;/c2)F

For Rayleigh wave incidence we assume that the crack is located
inx <0,y = 0, and the waves are incident along the negative face of
the crack x < 0, y = 0—. The displacement vector on the crack face
due to the incident wave is

wl = (i/”) ik

The diffracted dey waves in the far field are described by the po-
tentials,

¢d DR:(H) i(kir — 7r/4)/\/ﬁ
1
Y ~ DR;(H) eithar = w/8) \[Tor

The reflected Rayleigh waves on the negative face of the crack and
the transmitted Rayleigh waves on the positive face have associated
displacement vectors u” and ut where

_I:/'Yr) o—ikrx

= D_RR(
= D*pp (_i{%) e-ikex

The expressions for the nondimehsional diffraction coefficients are
given in [7].
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Introduction

The plane problem of the response of an unbounded elastic body
subjected to a suddenly applied, spatially uniform, application of
loading at the surface of a circular hole has been studied extensively
by Kromm {1], Selberg [2], and others. Kromm and Selberg used
Laplace transform techniques to obtain their solutions, and Miklowitz
{3], in solving a related problem of waves from a suddenly punched
hole in a stretched plate, used an improved and more direct method
of inversion of the Laplace transforms. The problems considered in
{1-3] involve one spatial variable and time. Such problems can also
be solved, numerically, by the method of characteristics as shown by
Chou and Koenig [4]. In th is paper we are concerned with a general-
ization of the problem considered in [1, 2], which arises when a spa-
tially nonuniform application of surface tractions is applied at the
circular hole. Eringen [5] considered this generalization and also
moving loads at the surface of the hole and indicated how solutions
could be obtained by using integral transform methods, but did not
give any numerical results. Ziv [6] has shown how the method of
characteristics can be extended to analyze elastic wave propagation
problems with two spatial variables, but again no numerical solutions
were given. In this paper we present a different approach for the so-
lution of a class of elastic wave propagation problems with two spatial
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and time, can be applied when the dependent variables are expanded as Fourier series
in terms of the polar angle 0. A numerical procedure is proposed for the method of charac-
teristics and numerical results are obtained for a specific example.

variables. The dependent variables are represented by Fourier series
in terms of the polar angle . Each “harmonic” of these variables is
governed by a system of partial differential equations, which is hy-
perbolic. Such a system of equations and boundary conditions is not
coupled with any other harmonic and has two independent variables,
a spatial variable, and time. A solution is obtained by solving each
system by the numerical method of characteristics, for one spatial
variable and time. This gives the coefficients of the Fourier series for
the dependent variables.

Haddow and Mioduchowski [7] used the method of near charac-
teristics to obtain solutions to the problem of the unloading waves
from a suddenly punched hole in a uniaxially stretched elastic plate.
It has now become evident to us that this problem is a special case of
the class of problems considered in this paper and that results can be
obtained by the simpler procedure presented here.

Formulation of Problem

It is assumed that the plane elastic body is homogeneous and iso-
tropic, although, with trivial modification a transversely isotropic
body with the axis of isotropy in the direction of the axis of the hole
can be considered. It is further assumed that the dimensions of the
body in the plane are very large compared with the radius of the hole
so that the body can be taken as unbounded and there are no reflected
waves. The procedure presented is valid for both plane strain and
generalized plane stress but the equations given are for generalized
plane stress. Since the two independent elastic constants in these
equations are taken as the shear modulus  and Poisson’s ratio », the
plane strain equations can be obtained by replacing », in the plane
stress equations, by v/(1 — »). ‘

We take the origin of plane polar coordinates, r and 8, on the axis
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Fig. 1 Coordinate system

of the hole of radius a as shown in Fig. 1. Initially the body is at rest
and unstressed so that
o (r,0,t)=ap(r,0,t) =1.00(,0,t)=0
u(r,8,t)=v(r,0,t) =0
where 0., gy, and 7, are the stress components in the usual notation,

t is time and u and v are the radial and circumferential components
of displacement, respectively. At ¢ = 0 surface tractions

ora,0,t)=p@, ) HE),

rza,t<0 (1)

(2)
7r0(a, 8, ) = 7(6, £) H(t),
are applied at r = a, where H(t) is the unit step function.
The equations of motion are :
%0, 1071, (o, — 0p) 2%y .
2y -2 =00, @)
or . r of r ot2
1d0g O1r8 2 3%
- = 1= p— 4
rob  or " P @

and the constitutive equations in terms of the shear modulus and
Poisson’s ratio are

ou _(or ~ vay)

) 5
or 21+ v)u ®)
u 192_(‘”"”‘5)

rorofd 20+wvp’ ©
1w v _v_1m a

rofd or r pn

Method of Characteristics
First we consider loading at 7 = a which is symmetric about 6 = 0.
Boundary conditions (2) may then be expressed as

0@, 0,8) = Po(t) + 3 Palt) cos nb, ®)
n=1
Tro(a, 0, t) = i S,.(t) sin né. 9)
n=1

We seek a solution for the stresses and displacements in the form

o, = o, O, )+ 3 6,0)r, t) cos nb, (10)
n=1 :
a9 = 600, £) + T ap™(r, t) cos nb, (11)
n=1 .
Tro = Y, 7(")r, t) sin nd, 12)

n=1
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u=uO(t)+ i u™(r, t) cos nd, (13)
n=1
v= i v()(r, t) sin né. (14)

n=1

Substituting equations (10)—(14) in equations (3)-(7), and equating
coefficients of cos nf, gives

o, (1) (n) ) — g,y . 2y n)
ar + nr (o, ao\™)) _ u : (15)
or r r Jt2
arny  or() p A2y ()
+ —— gl = . (16)
or r r P ot?
du () n) — (n)
Al (or Voy an
or 2u(l + »)
—u_(n_) no®) _ (o) — va, ™ (18)
r r (1 + v)
)  p) p) (n)
_mu® ™ a0 19)
r or r o
forn=0,1,2... )

We note that 79 = 0 and v© = 0, so for n = 0 equations (15)—(19)
reduce from five equations to three, namely, equations (15), (17), and
(18).

Comparing equations (8) and (9) with (10) and (12), gives

o™ a, t) = Po(t),
(g, t) = S, ().

(20)
(21)

If equations (17)-(19) are differentiated, partially with respect to
time, equations (15)-(19) can be put in the form

dq(n) aq®
SIS

A—+ =b™, (22)
ot or
where
v 0 0 1
21+ v)p 21 4+ v)u
L 0 0
A= 21+ »)u 21+ »)u
' 1
0 0 - 0 0
. I3
0 0 0 P 0
L 0 0 0 0 »
0 0 01 0
0 0 0 0 0
B= 0 0 0 -14,
-1 0 O 0 0
0 0 -1 0 0
F'ar(n)- 0 »
u®  pp0)
09(") -
3 (n) r 5(n)
qm = | 7 pm= | 2T ,
(rf) (n,; (n)
4 (o, — gp™) +T
r
(n) (n)
[ o0 ] 27in _nog n J
: L r r

and a superposed dot denotes differentiation with respect to time.
Equation (22) represents a set of five linear first-order partial-dif-
ferential equations. The system is hyperbolic and by using the stan-
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dard techniques, given by Whitham [8], we obtain the characteristic
directions,

and the relationships,

do®™ 1 drw 1 1
- L {:E—(Zfra(")“naa("))
dt pCr dt r

d
+ Cplnu®™ + W)), “on d—; = +Cp, (23)
3 () (n)
da®™ 1 do,®™ _ lll (6, — g, + 7))
dt pCrL dt rlp

dr
—pCp @™ + np™)}  on o +CL, (24)

1 ﬁwm> da, ™)

1 d
v =2+ np™) on — =0,
20 + )\ dt de | r dt

where

u\1/2
Cr= (—) and Cp =Cr
o

9 )1/2
1~

are the transverse and longitudinal wave speeds, respectively. When
n = 0, equation (22) represents a set of three equations. The charac-
teristic directions are then

dr

7 +Cy,
and the relations along the characteristics are equations (24) and (25).
Henceforth we denote the characteristics with slopes £Cr, +C;,, and
0 as the {7, +{1, and {p characteristics, respectively.

If the boundary conditions (1) and (2) have discontinuities with
respect to time these discontinuities are propagated at speeds Cy, and
Cr, respectively. It may be deduced from those of equations (22)
which are in conservation form that, for waves traveling radially
outwards,

and O,

[o0®™] = v[o, ], (26)
[o: ™} = —pC [ "], 27
[T(n)] = —pCT(lJ<")], ('28)

where the square brackets have the significance [A] = Ag — A1 and
Ag and A are the values of 4 ahead of, and behind the wave front,
respectively. Since the material of the body is homogeneous we deduce
that discontinuities of ¢, and 7 ) travel in the (r, t)-plane along
straight characteristics with slopes C, and Cr, respectively.

If we consider loading at r = a which is antisymmetric about
6 = 0 the boundary conditions (1) and (2) may be expressed in the
form

6r(a,0,8) = 3 Qu(t) sin nf, (29)
n=1

Trola, 0,t) = To(t) + 3 T, (t) cos nb. (30)
n=1

The procedure followed is analogous to that for symmetric loading.
The characteristic directions are the same, however, in the relations
along the characteristics, n in equations (23)—(25) is replaced by —n.
Also, 0, @ = 0,65® = 0, and u® = 0 so that for n = 0, the matrix
equation (22) represents two equations and the relations along the
{r characteristics are equations (23) with n replaced by —n.

Nondimensionalization
We introduce the following nondimensionalization scheme:
(@M, 5™, ™) = (0, g™, 1)/, (&,D) = (@,0)/Cr,
ﬁL =0 /Cpr=(2/1 — V)l/z'

i = Crt/a, UT =1,
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Fig. 2 Characteristic mesh
@, 0) = (u,v)/a, F=rla, =1

Henceforth we use nondimensional forms but for convenience we omit
superposed bars. The nondimensional forms of the slopes of the
characteristics are

dr dr 2 Y12 dr
— =41, —=4 , ==
dt dt 1-vp dt
and the corresponding relations along the characteristics are
do™  drye™

01

1
= —{£(270 —ngyW) + pu ™ + pinl}
r

dt dt
on dr/dt =%1, (31)
du™  (1-p\12dg™ 1
+ - =~{+(g, ) —g)m) + pr)
dt(Z) dt rl(” o0+ nr™)
2 —~ p2\1/2 d 2 \1/2
—( ") (u(n>+m}("))} on l=i( ) , (32)
1-v di 1—v
1 [dag™ da, ™ 1 dar
— == (g 4 ) —=0. (33
o1 +9) | dt T (83)
The nondimensional forms of equations (26)—(28) are
[o ] = vl ®], (34)
9 \1/2
o= [ o), (35)
1-v
[r ] = [50]. (36)

Again we note that the relations presented are for generalized plane
stress and the plane strain relations can be obtained by replacing v
by v/(1 — »).

Solution of Problem

In this section we present the method of solution for loading, at
r = 1, which is symmetric about # = 0, so that it can be represented
by equations (8) and (9). The method of solution for the antisym-
metric loading represented by equations (29) and (30) is similar but
with the appropriate changes, for example, n replaced by —n in
equations (31)—(33).

The first step is to obtain the coefficients P,(¢) and S,(¢) in
equations (8) and (9). It follows from equations (20) and (21) that this
gives us prescribed data for ¢,-**) and 7 on r = 1 in the (r, t) char-
acteristic plane. We have five families of characteristics in the
(r, t)-plane for n = 1. A numerical scheme for stepwise integration
of such systems has been suggested by Whitham [8], however, this
scheme was found to be inapplicable to the present problem. The
characteristic mesh used is shown in Fig. 2 and is similar in form to
the near characteristic mesh used in [7] but has a different signifi-
cance.

In Fig. 2 only segments of the +{ characteristics are shown except
for the characteristic AP given by r = ¢ + 1, which is shown as a
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dashed line. Referring to Fig. 2 the characteristic AB given by r = Crt
+ 1, where, in nondimensional form C, = (2/1 — »)1/2, represents the
wave front and divides the (r, t)-plane into two Regions I and II. It
follows from equation (1) that in Region I all the field variables are
zero. Along characteristic AB on Side II all the elements of the column
matrix q™ = {g,. ), g, 70 NT where the superscript T denotes
the transpose, are known. If P,,(0) = 0 there is no discontinuity of any
of the elements of q{™ across AB so that ¢ = 0 on Side IT of AB. If
P,(0) # 0there is a jump [0, (1,0)] and the discontinuity [o, ®(Ct
+ 1, t)] is propagated along AB. It follows from the theory of propa-
gation of wave fronts [9) that [a, ™ (CLt + 1, £)] = [0, ™(1, 0)] P12,
The discontinuities [t] and [4'")] across AB are found from
equations (34) and (35), and 0™ and 7" are continuous. It follows
then that q™ is known on Side Il of AB. If P, (¢) is discontinuous at
times other than ¢ = 0 the discontinuities are propagated along the
appropriate {7, characteristic. Similar remarks apply to discontinuities
in S, (¢) except that these discontinuities are propagated along {r
characteristics.

Referring to Fig. 2, the three unknowns ap™, ™, 6@ at D are
found by solving the three simultaneous equations given by the finite
difference: forms of equations (31)—(33) for the segments AD, CD, and
ED of the {o, — {7, —{r characteristics through D, Next, the five un-
knowns, that is the elements of q(*), at G are found by solving the five
simultaneous equations given by the finite-difference forms of
equations (31)—(33) for the segments DG, FG, EG, HG, and IG. The
values of q at F' and H are found by interpolation, The values of q»
at the other nodal points along the {7, characteristic DeJ are found,
successively, in a similar manner. The procedure is repeated for nodal
points along LM and continued until point K is reached. If S, (0) =
0, there is a jump [ ®)(1, 0)] and the discontinuity [z ™t + 1, t)] is
propagated along the {7 characteristic AP. This discontinuity also
decays as r~1/2 and when the finite-difference forms of equations
(31)—(33) are used in the numerical technique, account must be taken
of the discontinuities for segments cut by the {7 characteristic AP.

The determination of the field q©@ = {g,©, g,0, OT jg
straightforward since only +{7, and {, characteristics are involved and
the technique described by Chou and Koenig (4] is applicable.

We note that if p(f, t) and 7(, ¢) in equations (2) can be expressed
in the forms

p(f,t) = p*(0) f(£),
(0, ) = 7¢(0) f(t),

a simplification arises in the determination of the coefficients P, (¢)
and S, (¢) in equations (8) and (9) since these can be expressed as

Pp(t) = Pu* f(2),
Sn(t) = Sa*f(2)

where P,* and S,,* are constants.

Consideration of Special Cases

1 Waves From Suddenly Punched Hole in Plate Subjected
to Uniaxial Tension. Solutions for the sudden punching of a circular
hole in a thin plate subjected to uniaxial tension have been obtained
by Haddow and Mioduchowski [7] who used the method of near
characteristics and the details of the problem are given in [7]. This
problem can be regarded as a special case of the class of problems
considered here if we subtract the initial uniaxial tension o, = s. The
boundary conditions are

or(1,0,8) = — % (1 — cos 20) f(t), a7

01,0, 8) = — —;-sin 20 £(t), (38)

where

f(t)=£—{H(t)—H(t—t*)}+H(t—t*) and t*
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is the time to punch the hole as discussed in [7]. Consequently nonzero
coefficients in equations (8) and (9) are

§ §
Py=—— Py==
(| 2f(t), 2 2f(t),

Sp=— %f(t).

A solution to the problem with quiescent initial conditions and
boundary conditions (37) and (38) is readily obtained by the method
described. The initial uniaxial tensile stress is then added to obtain
a solution to the original problem. Results obtained are not presented
but are identical to those in [7] but were obtained with substantially
less computational effort than by the method of near characteris-
tics.

2 Waves Due to Suddenly Applied Normal Stress on Part of
Circumference. The problem that we now consider involves normal
tractions at r = 1, which are symmetric about # = 0, and zero shearing
traction. The numerical results which are given are for plane strain,
so that » is replaced by /(1 — v) in the governing equations. A step
function application of loading is assumed at r = 1,0 < |f| < &, of the
form

1 (]
ar(1,0,¢t) =—(1+cos7r-— H@), |6 £a,
2 @
=0, a<l|l] ==, (39)
ro(1,0,8) = 0. (40)

The Fourier coefficients, in equations (8) and (9), which correspond
to equations (39) and (40) are

[44
Py =—H(¢),
0= (t)

P, =

72 — n2g?2

sin na ( w
na

—)H(t), n=12,...

Po=—H({t), n=n/a,
2w

S, =0, n=0,1,2... (41)

The coefficients given by equations (41) were used in the procedure
already described and results were obtained for o = 60°, for the
stresses. A nondimensional time increment, At = 0.01, that is AD =
0.02 in Fig. 2, was used in the finite-difference form of equations
(31)-(33), and the series was terminated at n = 14. For smaller values
of the semiangle a, more terms are required since convergence of the
Fourier series representation of equation (39) is slower, the smaller
the value of @. Numerical instabhility is encountered in the numerical
scheme, described in the previous section, beyond a certain value of
t which decreases as n increases and as the increment At is increased.
For values of n up to 14 and with an increment ¢ = 0.01 it was verified
that the numerical values of o, ™), g4, and 7,4 obtained from the
method of characteristics approached closely the equilibrium values
and no instability occurred for t < 7. The equilibrium values were
obtained from a special case of a solution obtained by Michell [10].

The variations of the stresses, with time, for several points are
shown graphically in Figs. 3-6. Equilibrium values, obtained from the
solution of Michell {10] are also shown, and the time-dependent
stresses approach these as time increases.

Tt is interesting to note that the arrival times of the disturbance,
for points not in the region r = 1, 60° = |8}, are clearly evident in the
figures.

Miklowitz [11] has given a solution, based on transform methods,
for the problem of a normal line load of unit intensity at the cavity-
surface. We can approach this problem by taking

1 9
ar(1,6,t) = —(1 + cos ”—) H(t), 0] <«
2a o

=0, a<|f] £,

7r0(1,8,£) =0, (42)
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op(1,6, 1)

-1.0b

Fig. 3 Variation of nondimensional circumferential stress with nondimen-
sional time at r = 1 for § = 0°, 45°, 90°, 180°

1.00

0,(1.496, 6, 1)
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T
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-0.50+

Fig. 4 Variation of radial stress with time at r = 1.496

and letting o become small, however for small ¢, say & = 5° consid-
erably more computational effort is required than for the example
given. As @, in equation (42), approaches zero it is probable that an
integral transform method with numerical inversion of the transforms,
as described in [12], would require less computational time but more
difficult analytical techniques. The method presented is not readily
applicable to the limiting case of equation (42) as & — 0, which cor-
responds to a concentrated radial load of unit intensity, since the
Fourier series (8) does not converge.
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Introduction

Consider a thin elastic originally circular cylindrical shell lying on
a horizontal surface. Due to its own weight, the shell deforms into a
noncircular shape (Fig. 1). The equilibrium of heavy elastic shells is
important in the following areas: Thin shells intended for aquatic or
space environments may not be able to support themselves on ter-
restrial ground. The shell may experience irreversible damage due
to high local bending moments. On the other hand, the equilibrium
shapes provide a means of testing the flexural rigidity of flimsy ma-
terials such as textile loops.

If the thickness of the shell is thin compared to its perimeter, the
heavy elastica equations may be used to describe the equilibrium
shape [1, 2]

d2 .
El—=Tsinf + (F — ps’) cos 8 (1)
ds’2
dx’ dy’
—= f, — =sind
™ cos 45 sin (2)

Here EI is the flexural rigidity, 8 is the local angle of inclination, p is
the weight per perimeter length of the material, s’ is the arc length,
x” and y’ are Cartesian coordinates, T and F are the horizontal and
vertical forces at s” = 0, respectively (Fig. 1). We nqrmalize all lengths
by the half perimeter length L

s=s/L, x=x'/L, y=y/L (3)
Equations (1) and (2) become

d2f .
—=Asinf + (C — Bs) cos (4)
ds?
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Fig. 1 The coordinate system

d d
& cos 4, o sin 8 (5)
ds ds
where
TLZ? L3 FL2
=—=, B=C c=— (6)
EI EI EI

Fquations (4), (5) are strongly nonlinear and closed-form solutions
do not exist.

The Boundary Conditions

The most important parameter is B, representing the importance
of density and length to flexural rigidty. B1/2 is the ratio of half pe-
rimeter length L to “bending length” (EI/p)'/3. When B is zero,
gravity has no effect and we expect the shape to be a perfect circle.
As B increases we have the following four distinct cases (Fig. 2).

Case 1. One Point Contacts Ground. In this case F' = pL or
C = B. The boundary conditions are
s§s=0, 0=x= y=0
7 (8)
s=1, 0=7w, x=0 M

The five unknowns are 8, df/ds, x, y, A.

Case II. One Segment Contacts Ground. Let 2a be the contact
width. The vertical force at s = 0is then pL(1 —a) or C =(1 —a)B.
The six boundary conditions are
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O =

case | case I
case I case IV
Fig. 2 The four cases
s =0, f=df/ds=x=y=0
9 10
s=1—a, x=—a, O0=x

The six unknowns are 8, df/ds, x,y, A, and a.

Case III. One Segment Plus One Point Contact Ground. The
seven boundary conditions are
=0, f=df/ds=x=y=0
s fds =x =y an a2
s=1—a, x=—-a, y=0, =7 .

The seven unknowns are 8, df/ds, x,y, A, a,and C.
Case IV, Two Segments Contact Ground. - The seven boundary
conditions are

=0, 0=db/ds=x=y=0
s=b, y=di/ds=0, =7
The seven unknowns are 8, df/ds, x,y, A, b, and C.

(13) (14)

Approximate Solution for Small B

When B is small, the effects of gravity are much smaller than the
effects of stiffness. We expect Case I, small A, and the cylinder would
be almost circular in shape. Let

B=e«kl, A=qe (15)

where « is a constant of order unity. Equation (4) becomes
d20/ds? = eq sin 8 + e(1 — s) cos # (16)

We also perturb 8, x, y, and & »

0 = fOo(s) + efi(s) +... amn
x =x0(s) + ex1(s) + ... (18)
¥ =yols) + eyals) +... (19)
a=ap+eo;+... (20)

Substitution into equations (5), (7), (8), and (16) yields the following
successive equations: ‘

%= R %=cosﬁo; £i-y;(z"—“sinﬂo 21)
B0(0) = x0(0) = yo(0) =0, 8(1) =m, x0(1)=0 (22)

The zeroth-order solution is 1‘;he circle
B = 75, x0=Sin 7rs, y0=1—cos s 23)

‘ ™ T
The first-order equations are

d201/ds? = agsin 0 + (1 — s) cos Oy (24)
dxi/ds = ;01 sin 8y, dyi/ds = 6y cos (25)
61(0) = x1(0) = y1(0) = 61(1) = x1(1) = (26)

Journal of Applied Mechanics

The solution is

-3 1
0y = —sinws + — (s — 1)(cos ws — 1),

g = —— 27
P -2 ) Py 27)
1
%1 =—= (s — 1){cos 27s + 3 — 4 cos 7s)
473
1 . 1.
+ — (sin ws — —sin 2ws) (28)
wt 2
2 L +8 D0
= ——¢os 27s —~ — COS TS sin 2ms
. 27 71'4 Aqrd
(s—1) . s2—2s 1
- sin 7s + — (29)
T 472 ort

Now dfl/ds represents the local moment normalized by EI/L. We find
from equations (23) and (27) ‘ )

df 1 1~
m+e —cosvrs—-——+( 9) sin s + 0(e?)
ds max 72 e $=0.415393
=7 + 0.0649225 € + O (€?) (30)
dg . 3
T = 2
= 0= o e+ 0(e?) (31)
do 1
iy — e 2
. V= Py e+ O(e2) (32)
The maximum height is at s = 1
2 1 2
h———(———— )e+O(eZ) (33)
r \4n?2 7!

The maximum widthisat § = /2. Using equations (17), (23), and (27),
we obtain the arc length at which it occurs.

1 3 1
s==+{———|e+ O(e (34)
2 (2 4 9q3 ) )

Substitution of equatioh (34) into equations (18), (23), and (28) yields
the maximum width .

, .2 2 1
w52x|9=,,/2=—»+(_—_)€+0(62) (35)
T \wt 273
The maximum height to maximum width ratio is
h 11
—=1'—(———————)e+0(62) (36)
w

8w 4n?

Similarity Solutlon for Large B
When B is very large the effect of rigidity is relatxvely small and we
expect Case IV to occur. The problem is simplified further as follows.
We multiply equation (4) by df/ds and integrate once to obtain
1 {d6\2

—(—) =—Acosf+Csinf—B(ssinf—y)+D 37)
2 \ds

where D is a constant of integration. Using equations (13) and (14)

y=df/ds=0.at §=0 andat f=m (38)
we find ’ » ..
A=D=0. (39)
Thus equation (4) reduces to
d?0/ds® = (C — Bs) cos 0 (40)
Now lef ' A
| §=BY%, CT=B-C, T=BY%, y=BYy @4l
which yields .
d?0/ds? = (C ~5) cos § (42)
d%/d5 = cos 6, dy/ds = sin . (43)
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Fig. 3 The similarity shape for Case IV

The number of boundary conditions is thus reduced to five
=di/ds§=X=y=0 (44)

(45)

§=0,

f=m, =0
sincedf/ds =0atf=m,y=0 i§_ automatically satisfied by (37).

By trying different values of C, we integrate equations (42)-(44)
by the variable step Runge-Kutta algorithm until equation (45) is
satisfied. We obtain

C = 3.7450050 (46)

The solution is similar, i.e., valid for all large B. The similarity shape
is shown in Fig. 3. Other pertinent values are

FTmax = 0.75672519, Xpi, = —2.4844776 47
Vmax = 0.9065969, 5ax = 4.6833276 (48)
Thé maximum moment, occurring at # = /2, is
%g T 2.5337470 (49)
or
e = 2.533747 B3 (50)
The maximum height is
h = 0.90660 B~1/3 (51)
The maximum width is
w =14 |ZTmin| + 2%max = Smax )
=1 —0.68435 B~1/3 (52)
Similarly the base width is
Whase = 1 — 2.19885 B~1/3 (63)
The height to width ratio is
h _ 0.90660 54)

w B3 — 068435
Notice equations (50)—(54) are exact and are not expansions for large
B. The similarity equations (42)-(45) were first integrated by Stuart

[3] using a finite-difference algorithm. Stuart’s values of ¥may = 0.9066
and Smax = 4.683459 are extremely close to our equation (48).

Numerical Solution

For intermediate values of B, especially Cases II and III, numerical
integration is necessary. We shall describe the numerical methods for

Cases I, 11, and III which are much more difficult than the previously

discussed method for Case IV.
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Table 1 Some representative numerical values; £ = free length/2

B A c /L

0.0000 0, 00000 0.0000 1.00000
10. 0000 ~1.78903 10. 0000 1. 00000
18.3865 -3,68877 18,3865 1.00000
100,000 ~ ~11.0628 73.7308 0.737308
176,106 4.57499 121,978 0.692639
250,000 1.68826 150.045 0.673890
368,307 0. 00000 192.424 0.653378
2000.00 0. 00000 594.483 0.3171716

For Case I, let

vt = (A,0(0)), (55)

and x(s,01), y(s;v1), 8(s;u1) be the solution to the initial value problem
given by equations (4)—(5) with initial conditions (7) and (55). Then
the two-point boundary-value problem equations (4), (5), (7), and (8)
is equivalent to

(56)

F(op) = (x(l;vl) ) -0

B(Lo) — w
Solving the nonlinear system equation (56) amounts to determining
the correct parameters and initial conditions such that the boundary

conditions are satisfied. The appropriate variables and nonlinear
system for Case II are

v = (4, a) (67
Fu(von) = (;((11 :Z’;)IIII)) f:) =0 (68)
and for Case il
v = (4, a, C) {69)
(1 —aom) +a
Fualom) = { y(1 — o,om) =0. (60)

\0(1 —aoup) — 7

The notation v, F(v) will be used generically to refer to any of the three
cases equations (55)-(60). ‘

Our methods require the Jacobian matrix DF(v) of F(v). For ex-
ample, for Fy(vy), this is

ox{Lvp ox(lvy)
04 a(6°(0))
DFy(vy) = (61)
of(Lvp  o8(Lwp)
DA 2(8'(0)
Consider the initial value problem
dz, dzs . dz3
— =cosz3, ——=sinzg, — =24
ds s s
dza .
—— = A sin zg + (C — Bs) cos z3
ds
dzg o s dzg dzq
— = —z78in 23, —— = 2708 25, — = 2
ds TERER Ty TETEE gy T 78
ng . .
7— = Az7 cos z3 + sin z3 — (C — Bs)z sin z3 (62)
s
21(0) = 22(0) = 23(0) = 25(0) = 26(0) = 27(0) = 25(0) = 0
24(0) =vrs (63)

Then z5 = dx/0A and z7 = 96/dA. The other partials of F are calcu-
lated similarly. These differential equations are solved by a very ef-
ficient variable order, variable step ODE algorithm, and computing
these partials is not as expensive as it might appear.

The equation F(v) = 0 was solved by either a quasi-Newton or a new
homotopy method, depending on the case and circumstances. These
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two methods are described in the following. Whenever a quasi-Newton
method converges, it is much more efficient than a homotopy method.
However, even the best quasi-Newton algorithms sometimes fail, and
then another algorithm, like the globally convergent homotopy al-
gorithm proposed here, becomes necessary. Basically, our approach
was to try the quasi-Newton first and then use the (much more ex-
pensive) homotopy algorithm wherever the quasi-Newton method
failed.

Case [ is fairly easy, and was solved entirely by the quasi-Newton
method. Case 11 yields to quasi-Newton for B < 100, but for B > 100
it requires an initial estimate so close to the true solution as to be
impractical (e.g., starting from the solution for B = 100, it failed for
B = 101). The homotopy algorithm was used for Case II (B > 100),
and most of Case III. Accurate B-values for the boundaries between
the cases were determined by the secant method using quasi-Newton
for the required function values. Essentially, quasi-Newton was used
to home in on the case boundaries and homotopy was used in between
the boundaries.

The quasi-Newton algorithm used was the code HYBRJ from the
MINPACK package developed at Argonne National Laboratory. This
method [4, 5] approximates the Jacobian matrix DF(v) of F'(v) rela-
tively cheaply, is reliable, robust, and does not require good initial
estimates in general. Conceptually, a quasi-Newton algorithm oper-
ates as follows:

1 Start with an estimate By of the Jacobian matrix and an esti-
mate vg of the solution. Fori = 0, 1, 2,. . ., until convergence, do

2 Compute a search direction p; by solving B;p; = —~F(v;).

3 Compute the next approximation

vi+1 = v; + tip;, (64)
where t; is chosen to minimize |F(v; + tp;)| in some “trust region”
[4, 5].

4 Update the Jacobian approximation by

Bit1=B;+ M, (65)

where M is an easily and efficiently computed combination of rank
one matrices, elementary matrices, and B;. See Dennis and Moré [5]
for the precise form of M.

The homotopy algorithm used was the code FIXPT from Watson
and Fenner [6]. This powerful method is globally convergent (under
farily general hypotheses) and thus does not require a close initial
guess. Versions of the method have been previously applied to fluid
mechanics [7], nonlinear complementarity [8], fixed point [9], and
continuum mechanics problems [10]. The homotopy algorithm is
applied to the nonlinear system of equations F(v) = 0. The theoretical
justification of the algorithm requires fairly deep differential geom-
etry, although the algorithm itself is deceptively simple. Thorough
discussions of both the theory and some applications can be found
in [6-11].

Define a homotopy map ¢y [0, 1) X E* — E" (wheren = 2 or 3
depending on the case) by

ewX,v) =@, A\, v) = AF{) + (1 - N —w). (66)

The supporting theory [9] says that for almost all w (i.e., all w except
possibly those in a set of Lebesgue measure zero), the Jacobian matrix
Doy, of ¢, has full rank on

000 = (M V|0S A<, veEn, ¢,(\v)=0, (67)

the set of zeros of ¢, in A, v space. The full rank condition implies that
the zero set of ¢y, consists of smooth disjoint curves which cannot just
“stop” in the interior of (0, 1) X E™ The hope is that there is a zero
curve vy of ¢, reaching from a trivial known solution (at A = 0) to the
desired solution (at A = 1). Such a zero curve exists under fairly gen-
eral hypotheses, but they are often difficult to verify for practical
problems. Nevertheless, the homotopy method works well in prac-
tice.

The algorithm is conceptually simple: track the zero curve v of ¢y,

emanating from (0, w) until a point (1, D) is reached. Then, by equa-
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Fig. 4 Local bending moments as a function of B/3

tion (66), U solves F(v) = 0, hence also the original two-point bound-
ary-value problem. This algorithm differs significantly from standard
continuation in that A need not increase along vy, and there are never
any “singular points” along -y [9). The power of the algorithm derives
from this ability of A to both increase and decrease along v, with
turning points posing no special difficulty. Parameterize y by arc
length x so A = A(r), v = v(r) along v. Then 7 is the trajectory of the
initial value problem

d
— @A), v() =0, (68)
dr
dA\2 dul]2
— +l—ll =1, (69)
dr dr
] A0) =0, v(0)=uw, (70
where r is arc length along . Equation (68) is
X
dr} _
Dew(Mr), v(r)) |~ 0, (71
dr

where D, is the n X (n + 1) Jacobian matrix of ¢,,. De,, has full rank
on the zero curve <y given parametrically by A(r), v(r). Thus the de-
rivative (d\/dr, dv/dr) is calculated by numerically finding the kernel
of Dy, and then using equation (69) and the continuity of the de-
rivative {6, 9]. A sophisticated variable step, variable order ordinary
differential equation solver (as in [12]) is used to solve equations
(68)—(70), where the derivatives required by the ODE solver are cal-
culated as just described. Such an ODE solver is very efficient [12],
and considerable computational experience indicates that this ap-
proach is superior to schemes using Newton’s method and/or simpler
ODE techniques to track «y [9, 11].

Results and Discussion
The case boundaries are found to be

Case I 0 < B < 18.386564

Case Il 18.38654 < B < 176.10643
Case III 176.10643 < B < 368.30735
Case IV 36830736 < B <w

Fig. 4 shows some normalized local moments plotted against B1/3, the
ratio of half perimeter length to bending length. The corresponding
case boundaries are at B/3 = 2.63937, 5.60521, 7.16809. Notice that
as B is increased, the slope of the moment curves show abrupt changes
at the case boundaries.
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Fig. 5 The equilibrium shabes

Fig. 5 shows the integrated shapes for various B. Only the right half
is shown since the configuration is symmetric: Fig. 6 shows the di-
mensions of the configurations. For B1/3 > 4,12 the midpoint height

no longer represents the maximum helght since the curvature becomes
negative at the midpoint.

Fig. 7is useful in the determination of the flexural rigidity of heavy
elastic cylinders. Since maximum height i, maximum width w, pe-
rimeter length L, and density p can be easily measured, Fig. 7 yields
EI, the flexural rigidity. Stuart [3] proposed a similar method, but
his analysis can only be applied to Case IV, the extremely flimsy cy-
lindrical shells.

From Figs. 4, 6, and 7, we see our approximate solutions for small
B compare well with the exact numerical solution for almost the entire
range of Case 1. This is because the constant coefficients in our first-
order solutions are small, thus extending the range of validity to values
of B larger than unity.
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Finite Elements Based Upon Mindlin
Plate Theory With Particular
Reference to the Four-Node Bilinear
Isoparametric Element

Concepts useful for the development of Mindlin plate elements are explored. Interpolato-
ry schemes and nodal patterns which are ideal according to the proposed criteria are
found to be somewhat more complicated than desirable for practical applications. How-
ever, these ideas are found to be useful as starting points in the development of simpler
elements. This is illustrated by the derivation of a new four-node bilinear quadrilateral
which achieves good accuracy without ostensible defect.

1 Introduction

There has been considerable effort of late directed toward the de-
velopment of improved plate and shell finite elements. Much of this
effort has been focused upon theories which include transverse shear
strain effects, for physical and computational reasons [22]. As a basis
for the development of “displacement” plate elements of this type,
the Mindlin theory [35] serves as the canonical starting point. Anal-
ogous, but generalized, theories may be used as the basis of shell ele-
ment formulations. The “degeneration concept” is the terminology
often applied to these ideas [1]. The literature on this topic, although
mostly recent, has already become extensive. The interested reader
may consult works among the following (incomplete) bibliography
to familiarize himself with developments in this area: [6, 8, 9, 14-16,
19-25, 28, 29, 31, 37, 39-45, 49-52, b4, 56]. Although general im-
provement in element behavior is being sought, particular emphasis
of late has been placed on reliability (i.e., making elements “fool
proof”’) and simplicity. This latter requirement is an essential one in
nonlinear analysis and especially in nonlinear transient analysis. Here,
cost is the overriding consideration, and simple, inexpensive elements
are actively sought after. Until fairly recently, there really was no plate
or shell element which was sufficiently simple and inexpensive to be
considered viable for large-scale nonlinear transient problems.
However, the situation appears to be changing considerably as many
efforts in the direction of simplicity have been performed (for a
sampling of the literature on this topic, we may mention {3, 5,7, 8, 17,
23-26, 28, 29, 31, 52, 54]). Progress is being made on many fronts, al-
though a consensus favoring a particular approach is not yet in evi-
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dence. Efforts of ours in this area have employed reduced and selective
integration techniques (see e.g., [22-26}), a topic which has generated
considerable literature in recent years.

Unfortunately, efforts to develop effective simple elements (e.g.,
3-node triangles, 4-node quadrilaterals) often engender conceptual
complexity. To make simple functions and nodal patterns work well
seems to require the use of special procedures, or “tricks,” depending
on one’s viewpoint. These encumbrances are quite puzzling to the
nonspecialist and even create controversy among specialists.

One of the purposes of this paper, is to attempt to provide some
explanation why special techniques are necessary for the development
of simple, effective elements within the context of Mindlin plate
theory. Based upon an idea due to MacNeal [31], we propose criteria
for the development of Mindlin plate elements. Interpreted strictly,
not allowing for reduced/selective integration or allied procedures,
the interpolation schemes suggested involve different order polyno-
mials for displacement and rotation, and consequently different nodal
patterns. Thus it may be argued that “natural” elements, from the
standpoint of the performance criterion, are neither natural nor
convenient from implementational and practical standpoints. It is
thus no wonder that elements of this type have apparently not been
investigated heretofore. The traditionally used alternative of equal-
order interpolation, if to be optimally effective, requires additional
embellishments. This is acknowledged by a weakened version of the
criterion, which accommodates the use of special techniques, such as
reduced/selective integration, This form is, in fact, the one used by
MacNeal [31].

These thoughts are, at first, somewhat disconcerting since they
seem to imply that elements which should work well, within the
standard Ritz-Galerkin framework, are not practically desirable.
However, it is felt that there are lessons to be learned from these el-
ements in that they may serve as conceptual starting points for ele-
ments which are simpler than their progenitors. We use this idea to
generate a new four-node quadrilateral which employs bilinear iso-
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parametric shape functions for all dependent variables. The element
possesses correct rank and thus cures the spurious zero-energy mode
problem which has beleaguered our previous endeavors on four-node
plates [22, 26]. The new element turns out to have some features in
common with MacNeal’s QUAD4 {31], although it is felt that several
advantages are accrued in the present formulation. These are men-
tioned as follows:

The development of the element for the general quadrilateral
configuration is different from MacNeal’s and appears to preclude
some of the complications alluded to in [31]. In particular, no special
local Cartesian system is necessary for effectuating good element
behavior, or for achieving an invariant formulation.

In nonlinear analysis, the entire strain and stress tensors need to
be calculated at each evaluation point. A shortcoming of what may
be described as the classical selective integration procedure is that
different components are calculated at different points, thus pre-
cluding straightforward generalization to nonlinear analysis. Recently,
a generalization of selective integration has been developed which
enables the pointwise definition of all strain, and consequently stress,
components [18, 23]. The present element was developed within this
format and thus may be straightforwardly generalized to the nonlinear
case. This does not appear to be the case for QUAD4, in which a
complicated variant on the selective integration theme is em-
ployed.

We have avoided the use of any ad hoc modification to attain spe-
cial behavior under certain circumstances. Robinson [45] has criticized
QUAD4 on this point because of its tunable aspect ratio parameter
whose value is selected to give acceptable test results in certain single
element test cases. Although we are sympathetic of efforts to improve
high aspect ratio behavior, ad hoc techniques of this kind, based on
linear test cases, become suspect in generalizing to nonlinear analysis,
and even in linear cases, improvement in one situation may result in
deterioration in another. (An example of this phenomenon is pre-
sented in Section 5.6, “The Twisted Ribbon.”) Presently, aspect ratio
deterioration is an ubiquitous, but poorly understood finite-element
phenomenon.

Another area in which we have opted for simplicity, compared with
QUADY4, is in the calculation of bending strains. MacNeal develops
a special selective integration procedure to accurately represent
certain cubic bending modes. (Herein we refer to these as “Kirchhoff
modes,” see Section 2.) MacNeal goes on to show that full cubic be-
havior is unattainable, despite the introduction of a further compli-
cation, namely, modification of stiffness parameters via so-called
“residual bending flexibility.” Since an order-of-accuracy improve-
ment is not achieved, it is felt that the additional complications are
unwarranted. Admittedly, the price is not high in linear analysis;
however, in nonlinear analysis it is not at all clear what can even be
done along these lines. Consequently, standard procedures are em-
ployed herein to calculate bending strains.

An outline of the remainder of the paper is given as follows. In
Section 2, criteria for designing effective Mindlin plate elements are
discussed. A link between function approximation (i.e., order of ac-
curacy) and special techniques, such as reduced/selective integration,
is incorporated in the criteria. Element interpolatory schemes and
nodal pattterns, suggested by these ideas, are presented.

" Using one of the elements as a conceptual starting point, the new
four-node bilinear quadrilateral plate is developed in Section 3. The
only nonstandard feature of the development is the way transverse
shear strains are interpolated, which is presented in detail in Section
3. In Section 4, implementational ideas are discussed. The special
treatment of transverse shear strains manifests itself in the definition
of the well-known “B-matrix” (i.e., strain-nodal displacement matrix)
of finite-element theory. The modification falls within the framework
presented in [18, 23]. In Section 4, numerical examples illustrate the
good overall behavior of the element. Since it is now well known that
plate/shell elements may behave well on one problem and patholog-
ically on another, an extensive set of problem results is presented. The
studies range from standard convergence tests to difficult problems,
incorporating singular behavior, which tend to manifest element
weaknesses. In addition, we consider a single-element test proposed
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by Robinson {45] as a critical measure of the performance of a plate
bending element. Conclusions are presented in Section 6.

It is felt that some of the ideas presented herein significantly con-
tribute to the understanding of plate element design and behavior,
Many new element possibilities arise in the presentation which will
no doubt be the objects of future studies. Furthermore, it is hoped that
analogous concepts will be useful in the study of related problem areas,
such as continuum elements for incompressible, and nearly incom-
pressible, behavior (see, e.g., [4, 12, 18, 19, 32-34, 36, 38, 48]).

The new four-node bilinear element developed herein is a decent
performer. The overall accuracy level of the element appears to be
good, without any ostensible defect, and this is accomplished while
retaining simplicity. Nevertheless, it is not claimed to be a panacea.
For example, its aspect ratio behavior on some problems is disap-
pointing. Perhaps further improvement may be made here. On bhal-
ance, however, it appears as good as any four-node element we have
seen, perhaps better. it is a common practice for the developers of
elements to see only the virtues of their own work, and only the sins
of others, so we shall not belabor this point, leaving it for the reader
to decide what is most appropriate for his/her circumstances.

2 Criteria for Designing Effective Mindlin Plate
Elements

The first criterion which shed some light on the design of Mindlin
plate elements was the method of constraint counting. This was em-
ployed in the investigations of Malkus and Hughes {34], Hughes,
Cohen, and Haroun [22], and several studies of Hinton, Zienkiewicz,
and colleagues (see, e.g., [42, 55]). Although helpful in predicting the
performance of many plate elements, for some time it has been known
that an overly pessimistic assessment may be obtained in certain
situations. Recently, Spilker and Munir [49-51] have proposed a
modified constraint counting measure, called a “rotational constraint
index,” which has achieved better correlation for the performance of
hybrid plate elements.

The criterion advocated herein is based upon the ideas originally
presented by MacNeal [31] and employed by Parisch [39]. Thin plate
behavior is governed by the classical Poisson-Kirchhoff theory. In this
limiting situation the face rotations become equal to the slopes of the
transverse displacement field. Analytically, the rotations are no longer
independent kinematic variables, but become the derivatives of the
transverse displacement field. To assess the ability of Mindlin-type
plate elements to correctly handle limiting thin-plate behavior, we
shall examine the Mindlin elements with respect to the modes of
deformation emanating from the classical theory.

To be more precise, let us define a Kirchhoff mode by the rela-
tion

0o =wea (1)

where w is a given transverse displacement; 8, is the x,-rotation, a
=1, 2; and a comma is used to denote partial differentiation (e.g., w «
= Jw/dx ).

A Kirchhoff mode of order m will be one in which w is taken to be
a complete mth-order polynomial, P, (x1, x2). An example of a com-
plete polynomial is the quadratic polynomial

Pz(xl, xz) = C1 + Cle + C3x2 + C4x12 + C5x1x2 + Cex22 (2)

where the C’s are arbitrary coefficients.

Criterion 1. As a measure of the effectiveness of an element, we
shall ask what order Kirchhoff mode the element is able to exactly
interpolate. The higher the order, the greater the ability of the element
to perform accurately in the thin-plate limit.

Criterion 2, A weakened version of the foregoing criterion, which
accommodates reduced/selective integration and other procedures,
asks for what order Kirchhoff mode is the strain energy calculated
exactly. This is the form of the criterion employed by MacNeal [31]
and Parisch [39]. Note that Criterion 1 implies Criterion 2.

Posing the criteria in terms of complete polynomials links up with
order-of-accuracy concepts and may be useful in mathematical error
analysis. '
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Fig. 1 Beam elements derived from the Kirchhoff-mode criterion

Criterion 1 has the advantage that it suggests element interpolation
schemes which may be effective. In this regard, it is immediately ap-
parent that, according to Criterion 1, ideal interpolations may be
devised by assuming w to be a polynomial one order higher than that
assumed for the 8,’s. Before considering some detailed examples of
this type, it is worth remarking that schemes like this have apparently
not been tried before and would be somewhat inconvenient from an
implementational standpoint.

As a starting point, let us consider some one-dimensional beam-type
examples. The lowest order possibility is quadratic displacement and
linear rotation. (Note that linear displacement, constant rotation, is
inadmissible since the rotation would necessarily be discontinuous,
in violation of the continuity requirements of the governing theory.)
The nodal pattern is illustrated in Fig. 1. This element achieves
quadratic accuracy according to Criterion 1. The center displacement
degree of freedom is inconvenient, however. An element of equivalent
accuracy, in the sense of Criterion 2, which exclusively uses linear
interpolations, may be devised by employing the reduced integration
concept (one-point Gaussian quadrature need be used). This element
was introduced in [26] and has led to the simplest effective two-
dimensional shell formulations [14, 24, 25, 54]. In the linear constant
coefficient case it can be shown to be identical to the quadratic dis-
placement, linear rotation beam. (The center displacement degree
of freedom may be statically condensed to yield an identical stiffness
matrix [2].) Here we have a primitive illustration of the success of the
reduced/selective integration concept, in that an element possessing
a convenient interpolatory scheme may be made to behave like one
possessing a higher-order, inconvenient scheme.

The next beam example consists of cubic interpolation for dis-
placement and quadratic interpolation for rotation. The nodal pattern
is illustrated in Fig. 1. Again, the internal degrees of freedom are in-
convenient in practice. Static condensation leads to the usual element
stiffness of structural theory (see, e.g., [10, p. 333]). An equivalent
element may be obtained with quadratic interpolations for both w
and 0, in conjunction with reduced two-point Gaussian quadrature.
Again, static condensation of the internal degrees of freedom leads
to the usual stiffness of structural theory [2]. Higher-order examples
of this type may be constructed similarly.

Analogous two-dimensional interpolatory schemes may be devised
for triangles. The triangular family illustrated in Fig. 2 appears unique
among two-dimensional element families in that the functions which
constitute the rotational interpolations are obtained exactly from the
derivatives of displacement—no more, no less. This is unlike the
situation for a somewhat analogous family of quadrilaterals in which
Lagrange interpolations are used, the displacement being one order
higher than the rotation (see Fig. 3).1 For this family of elements, the

!In consideration of quadrilateral elements, for purposes of discussing
Kirchhoff modal behavior, we shall assume a rectangular geometry.
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w quadratic cubic quartic
8q tinear quadratic cubic
accuracy with
respect to quadratic cubic quartic
Kirchhof f modes

Fig. 2 Triangular plate elements derived from the Kirchhoff-mode crite-
rion

90,0
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w biguadratic bicubic biquartic
8q bilinear biquadratic bicubic
accuracy with
respect to quadratic cubic quartic
Kirchhoff modes

Fig. 3 Quadrilateral Lagrange plate elements derived from the Kirchhoff-
mode criterion

derivative of displacement contains more monomials than does the
rotational interpolations. The classical Lagrange family of quadri-
lateral plate elements, in which identical interpolations are used for
displacement and rotations (see Fig. 4), creates the opposite situation
in that the rotational interpolation contains more monomials than
does the derivative of displacement. That this situation is harmful
has been suggested by Spilker and Munir [50]. Further research is
required to determine the nature and extent of the problem when
displacement and rotation fields fail to “match” according to the
criteria. In any event, the triangular family of Fig. 2 appears canonical
in this sense.

Of course, classical Lagrange-type interpolations, in which identical
nodal patterns are employed for displacement and rotation (e.g., Fig.
4), are more easily implemented and applied than the new schemes
suggested by the Kirchhoff modal criteria (i.e., Figs. 2 and 3). The
behavior of Lagrangian elements has been shown to improve through
use of the reduced/selective integration technique (unfortunately,
so far at the expense of rank deficiency) {22, 42]. The excess rotational
monomials are “filtered” by the lower-order quadrature resulting in
higher-order behavior in the sense of Criterion 2. Thus we see again
that convenient interpolations necessarily entail special procedures,
such as reduced/selective integration and allied techniques, if they
are to achieve optimal accuracy in practice. It has been argued that
if high enough order interpolation (e.g., bicubic level) is used there
is no need to employ reduced quadrature as adequate accuracy is
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Fig. 4 Classical Lagrange plate elements

achieved. The fact remains, however, that the behavior of such ele-
ments with full quadrature is suboptimal and may be further im-
proved by the use of appropriate reduced/selective integration
techniques.

In passing, we may note that the behavior of serendipity interpo-
latory schemes [53] is similar to Lagrange schemes with respect to
Kirchhoff modal behavior. Specifically, classical schemes, in which
the same interpolations are used for displacement and rotation, result
in excess rotational monomials, whereas schemes in which displace-
ment is interpolated one order higher than rotation possess excess
monomials in the displacement-derivative field.

It is interesting to note that by using different interpolations for
displacement and rotation, the possibility arises of devising
“matched” interpolations for quadrilaterals. As an example of this
phenomenon we may mention the combination of nine-node biqua-
dratic Lagrange interpolation for displacement with eight-node ser-
endipity interpolation for rotation. (This scheme has in fact been used
as the starting point for the development of a discrete-Kirchhoff el-
ement by Irons [27].)

In summary, the ideal interpolations, with respect to the proposed
criteria, are not the most desirable from the practical standpoint. In
the sequel we shall attempt to use the idea of “optimal interpolation”
(roughly speaking, one order higher for displacement than rotation)
as a basis for the design of a practically appealing four-node quadri-
lateral element which simultaneously achieves simplicity and accuracy
without engendering rank deficiency.

3 The Four-Node Bilinear Isoparametric Element

The present version of the four-node bilinear isoparametric element,
is based upon the concepts described in the previous section. The
conceptual starting point is the straight-edged quadrilateral element
in which transverse displacement is interpolated via nine-node
Lagrange shape functions and rotations are interpolated via four-node
bilinear shape functions (see Fig. 3). This element achieves quadratic
accuracy with respect to Kirchhoff modes. The idea is to calculate the
transverse shear strains in a special way independent of the midside
and center node displacement degrees of freedom. In this way, the
element stiffness senses only the corner node transverse displacement
degrees of freedom and, consequently, four-node bilinear shape
functions may be used in place of the nine-node Lagrange shape
functions in formulating the element arrays. Examination of the in-
terpolations reveals that the midpoints of the sides are locations at
which the transverse shear strain components parallel to the sides are
independent of the aforementioned nodal values. These four scalar
values will be used to define the transverse shear strains. The details
of the procedure follow.

Definition of Element Transverse Shear Strains. Geometric
and kinematic data is defined in Fig. 5. Note that the direction vectors
have unit length (e.g., [e11l] =1, etc.). Let w, and 8, denote the
transverse displacement and rotation vector, respectively, associated
with node a. Throughout, a subscript b will equal ¢ + 1 modulo 4.
That is
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The definition of the element shear strains may be facilitated by the
following steps:

1 For each element side define a shear strain component, located
at the midpoint, in a direction parallel to the side, viz.,

Lo = (Wp ~ wa)/hg — e51+ (0 + 85)/2. (4)

2 For each node, define a shear strain vector (see Fig. 6 for a
geometric interpretation of this process):

Yo = Yb1eb1 + Yozes2 (5)
Yoz = (1 — ap?)"Hgpe — gp100) (6)
o1 = (1 = 0%~ Hgs1 — gracwy) (M

ap = ep1- ep2 (8)
8b1 = 8b (9
Ep2 = —8a (10)

3 Interpolate the nodal values by way of the bilinear shape
functions (Ng’s). :

4
Y= X NoYe (11)
a=1
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Remarks:

1 If the nodal transverse displacements and rotations are specified
to consistently interpolate a constant transverse shear strain field,
say¥, then the preceding steps will result in 4 =4. That is, constant
transverse shear deformation modes are exactly representable in the
general quadrilateral geometry. ‘

2 In the rectangular configuration, the shear strains take on the
following form (we assume the origin of coordinates coincides with
the element center):

Y1(e3,72) = 0,4(0,0) = 0:(0,0) + xalw 12— 61200, 0)]  (12)
Yal(x1, x2) = w,2(0, 0) — 62(0, 0) + x1[w 21 ~ 02,1(0,0)]  (13)

where w12 = w21 = constant. In this case the linear variations of v,
with x2 and ¢ with x1 may be clearly seen. Note that there are four
scalar transverse shear strain modes. (This may be concluded in
general from the foregoing steps 1-3 which amount to an interpolation
of the four scalar parameters g1, g2, £3, and g4.) These modes include
the two constant transverse shear modes, and the “hourglass” and
“in-plane twist” modes (see [22] for a discussion), thus enabling the
element to achieve correct rank. In the rectangular configuration, the
transverse shear strain variation is equivalent to.the selective inte-
gration scheme of MacNeal {31]. The generalizations to quadrilateral
configurations differ somewhat.

3 The “constraint index” (as defined in [34]) for the present ele-
ment is —1, which suggests failure in the thin-plate limit. As will be
seen from the numerical examples, this is not the case, an illustration
that the constraint index is sometimes overly pessimistic for
plates.

4 To assess the effectiveness of the present element we employ
the ideas of Section 2. Consider the rectangular configuration. It can
be shown, with the aid of (12) and (13), that quadratic accuracy with
respect to Kirchhoff modes is attained. This could be anticipated from
the way the transverse shear strains were interpolated. The re-

- duced/selective integration elements presented in [22, 26] effectively
achieve the same end. However, they do not retain correct rank as does
the present element. .

5 Analogous procedures may be used to derive a three-node
triangle employing linear shape functions. The conceptual starting
point, in this case, is the triangle with quadratic w and linear 6,’s (see
Fig. 2). Again, quadratic accuracy with respect to Kirchhoff modes
is achieved in the sense of Criterion 2. If effective in practice, this el-
ement would represent one of the simplest effective elements ever
devised for bending applications.

4 TImplementation

In this section we consider the implementation of Mindlin plate
elements in which the same interpolatory patterns are used for dis-
placement and rotations. This is general enough to encompass our new
four-node element. It suffices in the present circumstances to consider
the simpler case of a homogeneous, isotropic, linearly elastic plate of
constant thickness ¢.

f N FdA +
Ae

fre =
- L NoCodA ~

s€ns

B = [B1%ByY ... B,Y] 1n
BS = [B°Bs°. .. B,'] (18)
0 Ng1 O
BsP=]0 0 Nuo| 1<asxn. (19)
0 Na,Z Na,l

The definition of B, * is the essential ingredig_nt in the development
of an effective element. In the “normal” case, B,° = B, %, which is de-
fined by
-N, 0
~N,

1<a=n

Bt = [0 (20)

V., 0

With this definition, some form of reduced/selective integration
usually needs to be employed for success in the thin plate limit.

In the present formulation the reduced/selective-integration effect
is accounted for directly in the definition of B,* [18, 23]. For the
transverse shear strain interpolations derived in the previous section,

B,* takes on the following form [recall the relation between subscripts
a and b, see (3)]:

By® = [By'Bor'Boy’] 1<b=<4 (21)
Bo1® = ha~1G, — hy~1Gp (22)
Bhz® = (ep2'Gq — e&lle)/2 (23)
Bu3® = (eb2®Gs — €51%Gp)/2 (24)

G, =(1- aaz)*lNa(eal — 0g@gp) ~ (1 — ab2)—1Nb(eb2 — apepy)
(25)

ey 1
ep; = [ 12}, etc. (26)
€b1
The matrices D and D3, for the isotropic, linearly elastic, constant
thickness case, take on the following forms (respectively):
204X A0

:)"—t3 X

12 @n

and

) t[l o}
S=K
#0

1 (28)

where A = 2Au/(X + 2u), A and u are the Lamé parameters, and « is
a “‘shear correction factor,” which is taken to be & throughout.
The external load vector, t¢, is given by

fe = {fre} (29)

NoQds, I=3a—-2, 1<a<n

sensg

(30)
NeMyds, I=3a+a—2, 1<a=n, a=12
2 .

Let A¢ and s¢ denote the area and boundary, respectively, of a
typical element. Let Ny, N, .. ., N, denote shape functions, where
n is the number of element nodes.

The element stiffness matrix, k¢, may be defined as follows:

ke = kp€ + kg© (14)

ko = f BY"DYBYdA  bending stiffness (15)
. Ae

ke = f BsTD’B°dA shear stiffness (16)
Ae
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where F is the total applied transverse force per unit area, Cy, is the
total applied couple per unit area, Q is the applied shear force, M, is
the applied boundary moment, and sz is the portion of the plate
boundary upon which forces and moments are prescribed.

The element stress resultants may be obtained from the following
relations:

Myx

myy ¢ = —D®B%d® bending moments (31)

Myy
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Fig. 7 Square plate meshes; due to symmetry, only one quadrant is discre-
tized

{Qxl = DsBd¢ shear resultants (32)
dy
where
d? = {ds¢} element displacement vector (33)
= - < <
dpe = [wa, I=3—-2, 1<a<n (34)
Ous, 1=8a+a—-2, 1<a=<n, a=1,2
[
0, ={ 1“}. (35)
Hh

Remark. Generalization of the formulation to fully nonlinear
analysis is straightforward by way of the procedures described in [18,
23].

5 Numerical Examples

All calculations were performed at the California Institute of
Technology Computer Center on an IBM 3032 computer in double
precision (64 bits per floating point word). Unless otherwise specified,
a Poisson’s ratio of 0.3, Young’s modulus of 10.92 X 105, and geometric
parameters L = 10 and ¢ = 0.1 were used throughout.

In the context of Mindlin theory, two interpretations of the classical
simply supported boundary condition are possible: SSy, in which only
the transverse displacement is set to zero; and SSs, in which the
transverse displacement and tangential rotation are set to zero. In
applications to thin plates, SS1 is generally preferable since it leads
to convergent results when polygonal approximations of curved
boundaries are employed. Nevertheless SSg corresponds to the simply
supported condition of classical thin plate theory and may be safely
employed for the analysis of polygonal, and in particular rectangular,
plates. See [22] for a discussion of the treatment of simply supported
boundary conditions and references to pertinent literature.

The following codes are used to denote the elements compared:

S1—This element employs 2 X 2 Gauss quadrature on the bending
stiffness and one-point Gauss quadrature on the shear stiffness
(“selective reduced integration”). It was originally proposed in [26]
and has subsequently been studied extensively in [22] among other
places. It possesses two spurious zero-energy modes {22, 26].

T1—This is the element developed herein; 2 X 2 Gauss quadrature
it used on all terms. It possesses correct rank.

U1l—This element employs one-point Gauss quadrature on all
terms (“uniform reduced integration”). It was first proposed in [22]
and studied therein. It possesses four spurious zero-energy modes.

In one case, the “twisted ribbon,” we compare results with an ele-
ment proposed by Robinson [45], dubbed LORA, and the MSC/
NASTRAN element QUAD4 [31].

Despite the defects of S1 and U1 (i.e., spurious zero-energy modes)
they behave well in many situations and are of interest because of their
economy. With appropriate stabilization measures, such as so-called
“hourglass” stiffness and viscosities, they hold significant potential
in nonlinear analysis. See [11, 13, 30] for discussions of stabilization
ideas employed in the continuum case.

In cases in which the dimensions enable the plate to be considered
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Fig. 8 Convergence study for thin square plate
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“thin,” comparison is made with results of classical Poisson-Kirchhoff
theory. .

5.1 Thin Square Plate. This set of problems is perhaps the most
common employed in testing plate element behavior. Meshes are
depicted in Fig. 7 and results in Fig. 8. As may be seen, results for el-
ements S1 and T1 are identical for plotting purposes. All elements
perform well for this case.

5.2 Thin Circular Plate. These problems test the behavior of
the elements in nonrectangular configurations. The radius R = 5.0.
The meshes are shown in Fig. 9 and convergence results presented in
Fig. 10. In this case, T'1 is generally the best performer, although all
elements perform well. ’

5.3 Thin Rectangular Plates. These problems test the response
of the element to chianges in planar aspect ratio. The meshes are
shown in Figs. 11 and 12 and results are prsented in Figs. 13 and 14.
In these cases, as in the case of the square plate study, the differences
between S1 and T1 are indiscernible on the scale of the plots.

" As may be seen from Figs. 13 and 14, by far the worst displacement
results are obtained for the clamped-boundary, concentrated-load
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Fig. 11 Rectangular plate meshes (aspect ratio = 2); due to symmetry, only
one quadrant Is discretized

case. (This same pattern is in evidence for the square plate, see Fig.
8.) Robinson [45] has selected this case to compare S1 with an element
he proposes, and some others, on crude meshes. Furthermore, some
of the data he presents for S1 shows the error to be approximately
twice the actual amount. Nevertheless it must be admitted that there
is deterioration of accuracy with planar aspect ratio, a common, but
not well-understood phenomenon for virtually all finite elements.
5.4 Thin Rhombic Plate. The configuration and mesh are
shown in Fig. 15. The length parameter ¢ = 100. The plate is uni-
formly loaded and simply supported boundary conditions (SS;) are
employed. This problem is a difficult one since there is a singularity
at the obtuse vertex. The analytical solution reveals that the x; and
x2 bending moments have opposite signs in the vicinity of the obtuse
vertex. Many thin plate elements yield pathological results for this
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Fig. 13 Convergence study for thin rectang plate (aspect ratio = 2)

problem in that moments with the same sign are obtained (see [46,
47] for a discussion). Moment results are presented in Fig. 16. The
general trend for each element is correct. However, the elements have
a tendency to oscillate somewhat as may be seen. The worst oscilla-
tions are produced by UL, Considering that the mesh is not biased to
favor the singularity, and that the problem is a numerically difficult
one, the accuracy of the results obtained for S1 and U1 is considered
to be fairly good.

5.5 Thick Circular Plate. This problem employs the same
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48-element mesh as shown in Fig. 9, except the thickness is taken to
be 2.0, and thus the plate may be considered “thick” (R/t = 2.5). It
has been our experience that increasing thickness creates problems
for rank-deficient elements [26]. An analytical solution obtained from
Reissner’s theory is tised as a basis of comparison. The behavior under
the load is singular and this gives rise to almost identical oscillatory
patterns for elements S1 and U1 as may be seen in Fig. 17. On the
other hand, element T1 produces very accurate results for this
case.

5.6 Twisted Ribbon. Configurations, data and results for this
problem are shown in Fig. 18. In each analysis, only one element is
employed. Robinson [45] has proposed this as a.critical single element
test for plate bending elements. Comparisons are made with data
presented in [45] for Robinson’s element, LORA, and MacNeal’s
QUAD¢ [31].

For Cases A and C (fully fixed boundary), comparison is made with
respect to a benchmark analysis, reported upon in [45], involving
sixteen high-precision elements. As may be seen, the results for our
new element T1 are superior to the results for both LORA and
QUADA4. Furthermore, no deterioration with increasing aspect ratio
is detected. For this case, elements S1 and U1 exhibit pathological
behavior due to rank deficiency (not shown).

It is interesting to note that Robinson [45), in advocating the use
of LORA, has particularly emphasized its good behavior with respect
to aspect ratio. Clearly, however, there is significant and inexplicable
deterioration of LORA in Case B. Special emphasis has also been
given to aspect ratio behavior by MacNeal [31] in the development
of QUADA4. The technique employed is ad hoc and employs an ad-
justable parameter. Although improvement is noted in some situa-
tions, deterioration is encountered in others, as may be concluded
from the comparison of T1 and QUAD4 in this example.
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If only half the domain is modeled, and antisymmetrical boundary
conditions are enforced (Cases C and D), the exact solution is one of

. pure twist. For these cases, S1 and T'1 yield exact solutions, whereas

U1 still behaves pathologically (not shown).

-6 Conclusions

In this paper a new conceptual framework has been established for
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the development of plate elements based on Mindlin theory. The
interpolatory patterns suggested have not been studied heretofore,
but are somewhat more complicated than practical requirements
presently dictate. It is proposed, however, that the ideas are useful
in the development of more appealing elements, and this is illustrated
by the development of a new four-node quadrilateral element
employing bilinear isoparametric interpolation for all dependent
variables. The element represents an improvement over past efforts
of ours in that no spurious zero-energy modes are present. Simplicity
is retained in the formulation and the element is shown to behave well
on a variety of plate problems. The formulation enables straightfor-

ward generalization to nonlinear analysis, and appears to have some
advantages over competing elements.

Considerable further work remains to be done in exploring the
behavior of some of the new elements proposed herein. In addition,
serious studies of aspect ratio effects and transverse shear resultants
would be very helpful in improving the understanding of element
response. Finally, the rigorous mathematical convergence analysis
of elements of the type considered in this work, which is a delicate
matter judging from related studies [38, 48], needs to be assiduously
pursued to put matters on a sound footing.
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Loss of Contact in the Vicinity of a
Right-Angle Corner for a Simply
Supported, Laterally Loaded Plate’

The solutions to problems of laterally loaded, simply supported rectangular plates are
classical ones that can be found in standard textbooks. It is found that forces directed

downward must be present to prevent the corners of the plate from rising up during bend-
ing. The objective of the present analysis is to determine the extent to which such a plate
will rise if the corner force is not present and the plate is unilaterally constrained. Rather
than determine the solution for a rectangular plate, we consider a laterally loaded, simply
supported plate which occupies a quarter space region. The plate is unilaterally con-
strained and may rise at the corner due to an absence of restraining force there. [Ising in-
tegral transform techniques appropriate to the quarter space for elastic plates, the region
of lost contact is determined for a general loading. The special loading due to a concen-
trated force is given as an example.

Introduction _

The solutions to problems of laterally loaded, simply supported
rectangular plates are classical ones that can be found in standard
textbooks [1], where it is shown that forces directed downward at the
corners must be present to prevent the corners of the plate from rising
up during bending. In the vicinity of a corner, therefore, if the plate
is not solidly joined with the supporting members, then there will be
a tendency of the plate to rise there.

It is clear that the problem is one of receding contact [2], since parts
of the plate near the corners, if not constrained bilaterally, will bend

_away from the supports upon loading, resulting in a receding contact
between the plate and the supporting structure. Since the contact is
of the receding type, it can be predicted that the extent of contact
between the plate and the supports is independent of the level of
loading and that the support reactions are proportional to the load.
Rectangular plates whith are partially supported have been consid-
ered by Kiattikomol, et al., [3], by Stahl and Keer [4, 5], and rectan-
gular plates which involve considerations of advancing contact have
been considered by Dundurs, et al. [6].

The objective of thepresent analysis is to determine the extent to

1 This work was supported in part by the National Science Foundation, Grant
CME-8006265. .

Contributed by the Applied Mechanics Division for presentation at the
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10017, and will be accepted until December 1, 1981. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division, May,
1980; final revision, February, 1981. Paper No. 81-WA/APM-11.
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which a simply supported plate will rise in the vicinity of a right-angle
corner if the force at the corner is not present. The support is viewed
as a unilateral constraint allowing only upward motion of the plate.
Rather than determine the solution for a rectangular plate, it is more
revealing to consider instead a laterally loaded, simply supported plate
that occupies a quarter infinite region, x > 0, y > 0. The analysis to
a certain extent follows concepts from Sneddon’s analysis of the elastic
quarter space [7].

One could also develop a solution using the superposition of edge-
point load solutions for half planes at right angles to each other with
suitable symmetries. Although the exposition using that technique
might be clearer, it is not clear that the path leading to integral
equations (23) and (24) would be significantly eased.

Formulation

The problem concerning the lifting at the corner of a simply sup-
ported quarter infinite plate can be formulated as the sum of two
solutions. The first is the solution to a laterally loaded, simply sup-
ported, quarter infinite plate in which the corner does not lift, For
many cases a solution in closed form can be obtained and a specific
example is given in the next section. The displacement corresponding
to a problem of this type will be denoted as wq(x, y). The total dis-
placement w(x, y) can be represented as the sum

wlx,y) = wolx, y) + wilx, y) 1

where w;(x, v) represents the displacement solution required to insure
that there is no loading on that region where the plate lifts from the
support.

The equation governing w is

DV =g )
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where

DV4wy = q, DA%w; =0, D = ER3/12(1 — »2), (3a—c)

and g(x, y) is the applied load. The stress couples and resultants
are

M,=-D —b—@ 2@) (4a)
dx2 dy?
M, =D (%%+ y %) (4b)
M,y = —M,, = D(1 - ») ; ;” (4c)
V,=-D— [ﬂ+( )—z—;—u; (ba)
2

[—— +@-v) —Z—x%} (5b)

and the corner force R, at x = 0, y = 0, is given by
R = 2M.y ) x=0,y=0. (6)

The boundary conditions for the lifting plate are (Fig. 1)
My =Myp+My1=0 y=0, 0<x0w (7a)
w=wytwi=0 y=0, a<x<= (7b)
Vy=Vy+V,1=0 y=0, 0<x<a (7c)
My =Myo+M; =0 =0, 0<y<ew (8a)
w=we+w;=0 x=0, b<y<w (8b)
Vi=Ve+Va=0 x=0, 0<y‘<b. (8¢)
Furthermore,

My,=0 x=0,y=0. (8d)

The boundary conditiops for wo are the following:
wog=Myp=0 y=0, 0<x<w (9a)
Wog=Myp=0 x=0, 0<y<w, (9b)

where wy satisfies (3a) and stress resultants having subscript “0”
correspond to wo. Similarly, w; satisfies (3b) and stress resultants
having subscript “1” correspond to w;. The remainder of the problem
requires the determination of w; such that boundary conditions (7)
and (8) are satisfied, including the corner condition (8d).

The lateral deflection wq, appropriate for the regionx > 0,y > 0,
and satisfying equation (3), can be written in the following form:

Duie,) = 7 E21AQ + EyB(@le sin £ xd

+ J; 2=2[C(p) + naDme-" sinnydn.  (10)
Using equations (7) and (8) and assuming that wg and its corre-
sponding stress resultants are known, one may determine boundary
conditions on w; in terms of the assumed known solution wq.

Differentiating equations (76) and (8b) twice with respect to x and
y, respectively, and integrating equations (7¢) and (8¢) with respect
to x and y, respectively, leads, after use of equations (4), (5), (10), (7a),
and (8a) to the following coupled equations:

J;QB(g)singxd@o @<z <o, (11)

me(n) singpydyp=0 b<y<o, (12)
0

- fmu—u)(nx — D)D(n)e=r5dy — fm(3+y)B(g) cos £ xdf
] 1]

=V, (x)+Cy; 0<x<a, (13)
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- f7 -9 @&y - DB@e-tag

- j;m 8+ v)D(n) cos n ydn = Vo(y) + Cy

0<y<b, (14)

where V, (x) = fV,0 (x)dx and V. (y) = f Vio (v)dy and Cy, C; are
constants of integration, We note that for many cases of simple loads
the functions V, and V, can be found in closed form.

The corner force, R1, is given as

Ri= 20— )2 =21+ ) fo " [B(s) + D(s)}ds. (15)

ox 0y
According to condition (8d), we must have

R=R0+R1=0. (16)

Therefore,

f " [B(s) + D(s)]ds = Ro/2(1 + ). an
0

Let x = 0in (13) and ¥ = 0 in (14), and if the resulting equations are
summed, then we are led to the result

Cy + Cx = —Ro — V,(0) = V..(0), (18)

where use has been made of equation (17).
At this point it is convenient to represent the transforms B(£) and
D(£) as the following finite Fourier transforms:

B = j; *b(t)sin gt dt, D(y) =, j; ") sinnede. (19a,b)

Here we note that b(t), d(t) are related to the second derivatives of
w with respect to x and y. These represent quantities which have the
same singularities at a, b as do the moments there.

Substitution of equations (19) into equations (13) and (14) leads
to the following coupled pair of singular integral equations (see, e.g.,

(M)

_(l—x/)f z(’;+ Z)Qd(t)dt
_3+V

1 1
‘[; b(t) l:‘;+ t—:;] dt = Vy(x) +C,y
0<x<a (20)
2
—(1~») j‘ i(y” tZ)Zb(t)dt

3+uf d()[

Letx = 0 and y = 0 in equations (20) and (21), respectively, and take
the difference of these two equations to obtain

b a
C,—Cy =4 fo d(’?dt ~4 j; b(tt)dt —V,0) + 7,0). @2

1 ..
+—dt =V, +C
t+y] +(¥) x

0<y<b (21)

Equations (18) and (22) are simultaneous equations for C; and Cy.
When they are determined and put into equations (20) and (21), the
following equations are obtained, whose solutions will yield b(¢) and
dit):

_ 1 —v)t(x2—t2)
j; [m(x2+t2)2 ]d(t)dt
_fa B+ (L‘I‘L)b(t)dt
0 2 t—x +x
V) - T - T B tD
=V,(x) —~ V,(0) 2 (Lt 0<x<a (23)
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(1 - nt(y2— tz)
S

—f-b(3+y)(~—1—+——)d(t)dt
0 2 t—y t+y

&(3+u)
2 1+

= Va(y) = V. (0) -

0<y<b. (24)

Numerical Analysis

Equations (23) and (24) are prepared for numerical analysis by first
extending the regions of integration to —a <x <a,—b <y < b and
introduce the following changes of variables and redefinition of b(t)

and d(t):

t=as, x=au, blas)=b(s)+/1—s2
t=bq, y=bz, dbg)=4d(q)v1—q? (25)

where b(s) and d(q) are regular at 1. Here we note that the definition
of b(s), d(g) in terms of b(s), d(g) imply that the moments of a, b are
bounded there. This is in agreement with [6] where the related ad-
vancing contact problem was considered.

Equations (23) and (24) can thus be written in the following
form:

flb(s) d +f Ko, q)d(q) /1 —q2dq
T -1 s —
= Filau), =1<u<1 (26)
1 fl dViza, | fl K(a~1z, 5)b(s) /T = s%ds
T J-1 q-—z -1
=Fo(bz), —1<z2<1 (27)
where
2 2 1=\ u(f2—u?
K = 2
()] G L +( p ) ) (28a)
l Y Ro (3 + V)
=3 (3 + ) Filx) = Vy(x) — V,(0) — 2 Ltr) (28b)
1 5 _Ry(3+w) .
—27r(3+lf) Foly) = V. (y) — V:(0) 2 (1+9) (28c)
and a = a/b.

An important physical quantity is the displacement the plate
undergoes near the corner of the plate as it lifts off the simple support.

Using equations (13), together with (10) and (19), one obtains the

following values for the edge displacements:

x a
le(x,0)=1—1—[j; b(t)tdt+f b(t)xdt], 0<x<a
- P x

T a
—1—:‘;‘[; t b(t)dt,
(29a)

U' d(t)tdt+f d(t)ydt} 0<y<b
i
_I—Z—Vj; t d(t)dt,

x>a

Dwi(0,y) =
y > b.

(29b)

Equations (29) require a rigid-body displacement term, w,, to shift
w1 so that wy(x, 0) and w(0, ¥) are zero for x > a,y > b, respectively.
Thus the additional condition

wila, 0) = w1(0, b) = —w, (30)

j;atb(t)dt = j;b td(¢t)de.

Journal of Applied Mechanics

is imposed, i.e.,

(31)

Fig. 1 A simply supported plate being loaded laterally by a concentrated
torce P acting at a position (R, 0). a and b denote the parts of the edges being
lifted up

The Gauss-Chebyshev integration formula is applied to equations
(26) and (27), which are then written as [8]

n 1 —g;2[ b(s;)
i>=:1 n+1 L

+ wK(auy, q;)d(q,)] Gilue) (32)

i

n I_Qi [d(q;
i=intl |[g;

, +1rK(a“12k,s,)b(sz)] Galzr) (33)
i~ %k

where G1(ur) = Fi(aur), Ga(zp) = Fao(bzy). Here,

s cos ( il ) 1 (34a)
L= q = N =1, , a
7 n+1
T 2k —1
Up = 2 = Cos |—-+ , k=1...,n+1 (34b)
2 n+1
Equation (31) becomes
i (b (s;)sii0; — d(g;)qimi} = 0; T; = — sinZ( T ) (35)
=1 ’ nt+1l n+1l

There are 2n + 3 equations arising from equations (32), (33), and (35)
from which we wish to solve for n values each of b(s;), d{g;) and one
value each of @ and b. During the process of solution an even value of
n was assumed, and the equations corresponding to k2 = n/2 + 1 in
both (82) and (33) are identical equations and one can be discarded.
The remaining 2n equations are then solved using an assumed value
for «. The resulting b(s) and d(g) are put back into (35) and either
one of the (n/2 + 1)th equations of (32), (33) for checking. A series of
values for a and b are tried until the correct ones that simultaneously
satisfy the checking equations are found.

Example—Concentrated Load. We consider a concentrated load
located at a position (R, #) as shown in Fig. 1. Solution to the simply
supported quarter plane plate having a concentrated load at (R, #)
can be found by use of the solution to the concentrated load in an
infinite plate along with the method of images. The resulting deflec-
tion is given by

P
wolx,y) = P {ltx = p)? + (y — p2)?]

X log [(x — p0)2 + (y — p2)?| /2
+ {2 + p1)2 + (v + p2)?] log [(x + p1)2 + (v + p2)?] /2
=[x = p)? + (v + p2)? log [(x — p1)2 + (¥ + p2)?]*/2
—[(x + p02+ (v — p2) log [(x + p1)2 + (¥ — p2)?]V%}  (36)

where p1 = R cos 0, ps = R sin 6. Using this solution for wq, the corner
force Ry can be computed as
Owo| _2P(L—v)[_pipa

lP12+ P2 2]

and the integrated values of the shears are found to be

Ro=2D(1 - »)

e 37
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Table 1 Values of a/R, b/R for different locations of concentrated load

v

0. 0,125 0.250 0.375 0.5
o ol a/R | bR | am | b/R | a/ | vR | am | wR | ar | wm

LI 0.829 0.829 0.788 | 0.788 0.7}$2 0.742 0.692 0.692 0.632 0.632]
3nf16 | 0,857 0,813 | 0.810 | 0.776 0.761 0.734 0.705 0.686 | 0.642 | 0,630
/8 0.891 0.808 0.839 0.773 0.783 0.734 0,723 | 0.687 0.654 | 0,632
/16 | 0.928 0.820 | 0.868 0.78? 0.807 0,746 | 0.739 0.698 0.665 | 0.639
/32 0.946 0,836 | 0.883 0,800 0.815 0.756 | 0,745 0.705 0.668 0. 643
/512 | 0,955 0.850 0.889 0.809 0.820 | 0.762 0.747 0.708 | 0.670 | 0.645

Vy(x) = JVyo (x)dx = _B{tan_l (x + pl) — tan™! (26:"&)

™ P2 P2
+ [ pi® + po® — x? ]}
(1~ v)p1po2 (38)
[ + p0)2 + po2[(x — p)2 + p?]]

. ) -
Vi(y) = fVio (y)dx = ——-{tan‘1 (M) — tan™1! (Q’___@E)
™ 01 £1

P+ po? — y? ”
. (39
2+ 02y = p2)® + 017 )

+ = {[(y + p2)

Using these values, G1(u) and G(2) in equations (32) and (33) are
calculated as

P 2 1—-v
G1w) = = |—=—] 7] sin 20 — 20 + 6
) =5 (3 + u) (1 + u) s 0
1~ ( -——uz) sin 26
- z — (40)
[(1 + %u?) — ——u?sgin? 0]
Pl 2 1-v)
G = in20+20—7+6
«) 72(34-1) 1+ - T
2
1= ( ———'522) sin 26
-y
2 b2 \2 1)
[(1 + I;ﬂ) ———=22%¢cos? 0]
fp = tan™1 (,_Bg) — tan~! (au —£ 1) (42a)
P2 p2
f: = tan~! (bz * ’33) ~ tan™1 (bz L 2) (42b)
P1 P1

Applying the numerical scheme just described, values for a/R and b/R
can be computed for various locations of the concentrated load P and
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P

Fig. 2 The displacements of the edge near the corner for § = x/512, x/8,
#/4, with » being 0.25

for different values of ». T'able 1 shows several such values that de-
scribe the locations of the loss of contact. In addition Fig. 2 shows the
edge displacements near the corner of the lifting plate for some of
these values.’

Conclusion

Solutions are obtained for some cases of a quarter infinite, laterally
loaded, simply supported plate having a unilateral constraint. The
solution technique used here required the identification of certain
limiting values of integral transforms related to the corner forces
arising from the bilateral problem. Once this identification was es-
tablished standard numerical solution techniques for such problems
could be employed.
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Equations for small finite displacements of shear-deformable plates are used to derive
a one-dimensional theory of finite deformations of straight slender beams with one cross-
sectional axis of symmetry. The equations of this beam theory are compared with the cor-
responding case of Kirchhoff’s equations, and with a generalization of Kirchhoff’s equa-
tions which accounts for the deformational effects of cross-sectional forces. Results of
principal interest are:

1 The equilibrium equations are seven rather than six, in such a way as to account for
cross-sectional warping.

2 In addition to the usual six force and moment components of beam theory, there are
two further stress measures, (i) a differential plate bending moment, as in the corre-
sponding linear theory, and (i) a differential sheet bending moment which does not occur

in linear theory.

The general results are illustrated by the two specific problems of finite torsion of
orthotropic beams, and of the buckling of an axially loaded cantilever, as a problem of
bending-twisting instability caused by material anisotropy.

Introduction

The principal purpose of the-following is the derivation of a system
of one-dimensional nonlinear beam equations for originally straight
beams, as a rational consequence of a given nonlinear system of plate
equations. The method of derivation and certain basic constitutivity
assumptions are the same as those used previously for the problem
of torsion and flexure within the framework of linear theory [3]. The
present derivation is based on a system of nonlinear plate equations
which represents a generalization of the Kirchhoff-von Karman sys-
tem, in such a way that the effect of transverse shear deformation
(which turns out to be more significant than anticipated) is included
[1, 4].

The equations of the one-dimensional theory which is obtained here
are compared with the corresponding classical Kirchhoff equations,
and also with a direct generalization of Kirchhoff’s equations in which

1 Supported by the Office of Naval Research.

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.
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Department. Manuscript received by ASME Applied Mechanics Division, May,
1980; final revision, December, 1980.
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account is taken of the deformational effects of cross-sectional forces,
in addition to the deformational effects of cross-sectional moments
[2].

The results of the present analysis which are thought to be of main
interest are the following:

1 The equilibrium equations of the nonlinear beam theory are
seven in number rather than six.

2 The relevant stress measures, in addition to force and moment
components are (f) a differential plate bending moment, Ry, as known
from linear theory, and (ir) what may be called a differential sheet
bending moment, Rs, which does not occur in linear theory.

The meaning of the general results is illustrated by means of two
specific problems. The first of these is the problem of finite torsion
of an orthotropic beam, and the second the problem of Euler buckling
of a cantilever beam as a problem of bending-twisting instability
caused by material anisotropy. Both problems show a non-negligible
effect of the two differential bending moments which are a part of this
theory, over and above the conventional six force and moment com-
ponents,

Equations of Nonlinear Plate Theory
We take as given a system of six equilibrium equations of the form

[1]
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Ni1+No2a+p1=0, Nig1+Naa+pa=0, Ni=Noa, (1)
Qi1+ Qa2 = k11N11 — k92No2 — k19N12 — ka1No1 + ¢ = 0,
Mg+ Moo — @1+ yiNu + y2Nar + my =0, (2)
Mi21+ Moo — Q@2+ viN12 + yalNoa + ma =0,

in conjunction with strain displacement relations

K11 = @1,1, K1z = da,1, K21 = di2, Koz = ¢,
3)
Yi=drtwy v2=datwpy,
= 2 — 2
€11 = w1t wers — 3%, oo = uge + whag — 3¢5,
€12 = U1~ w + Wha1 — Ip162,
(4)

€21 = Uiz + w+ whre — 3142,
M = w1 — 31621 + Sbed,

with (3) and (4) being consistent, via considerations of virtual work,
with equations (1) and (2).2

We note that in the foregoing equations stress resultants N and @
and stress couples M, as well as body forces and moments and
translational and rotational components of displacements are taken
with respect to body-fixed directions, which in the undeformed state
coincide with the cartesian axes x1, x9, and x3.

A reduction to the Kirchhoff-von Karman theory takes place upon
assuming, as part of a system of constitutive relations, that y; = v
= (. Significantly, when this reduction is assumed the remaining
system of equations seems no longer of sufficient generality so as to
retain within its scope the possibility of leading to a system of one-
dimensional equations which is general enough to allow a solution of
the Prandtl-Michell lateral stability problem.

A2 = wa + pad12 — Sbidas,

Constitutive Equations and Strain Displacement
Relations for the Derivation of Beam Theory

The essence of our procedure for the derivation of a conventional
system of one-dimensional equations depends on the assumption that,
only those components of strain which enable stresses acting over the
cross section of the prospective beam to do work are of a non-negli-
gible magnitude. If we consider x; as the direction of the axis of the
beam we then have, as part of the constitutive equations of the plate,
the system of rigidity conditions

€91 = €99 = Yo = Kg1 = kg2 = Mg = 0, (5)

with N2y, Nag, Q2, Ma1, and Ma, now being reactive quantities,3 and
with the remaining constitutive equations being of the form

(N11,N12,@1,M 11 M19) = f(ex1,€12,61,K11,K12)- ()]

Leaving aside for now a stipulation of the form of (6) which will be
used explicitly in what follows, we observe that equations (5) imply
as expressions for displacements

$1 = ¢1(x1), w = w(xy) — x2¢2, (7)

U1 = ug(x) = xalw — dp1¢a), (8)

¢ = ¢a(x1), w = w(x1),
ug= uglxy) + daod,

and equations (7) and (8) in turn imply as expressions for the re-
maining components of strain, with differentiation with respect to
x1 now indicated by primes,
kin=¢1, Kki2=¢2, v1=d1tw —xady, 9)
€11 = ut’ = 3% — x2(w’ + 3y’ d2 — 3o’ 1),

€12 = Uy’ — @ + wda' — Ip162.

(10)

2 The nonlinear strain displacement relations (4) have been derived in [1}
by considerations which involved an element of speculativity. For an alternate
systematic derivation see [4]. o

3 We note the appearance of the quantity Az in (5). The statical counterpart
of Ag would be a moment component Py with axis perpendicular to the plate.
surface which, in the nature of a further constitutive stipulation, we do not
consider here.
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Equations (9) and (10), and therewith the constitutive equations
(6), contain altogether six unknown one-dimensional displacement
functions, ¢1, ¢2, w, U1, L2, w, and in order to complete the system of
one-dimensional beam equations it is now only necessary to derive
six one-dimensional equilibrium equations, as a consequence of the
six plate equilibrium equations (1) and (2). If we do this we obtain a
one-dimensional beam theory which is in effective agreement with
the result in [2]. We will here, however, not proceed in this direction
and, instead, consider a shortcoming of the foregoing which will then
show the way to a generalization of the theory, involving a total of
seven one-dimensional displacement functions and seven one-di-
mensional equilibrium equations.

The shortcoming of the results in (6) and (7) consists, in essence,
of the fact that the bending strain measure x1; and the rotational
displacement ¢1 are independent of the width coordinate x4, that is,
the equations of the theory based on the assumption (5) do not make
provision for the effect of differential bending. In looking for the cause
of this excessive limitation we find that this cause is one of the con-
straint conditions in (5), namely, the condition xg; = 0. i

What follows is then based on leaving five of the six conditions in
(5) as they are, while at the same time relaxing the sixth condition in
the simplest way possible, by stipulating instead of the relation kg
= 0 a relation

(&)

with this relaxed condition then leading to a one-dimensional non-
linear beam theory which is significantly different from “conven-
tional” Kirchhoff-type theories.

In evaluating the consequences of the assumption (5%) it will be
convenient to introduce the notation

¢1(x1) = ¢, Palx1) =4,

ko1 = Ylx1),

uil{x1) =u, wuslx1)=v. (11)

Therewith we now obtain as expressions for displacement compo-

nents

dr1=¢+x2p, ¢2=0, w=w(x1) —xl, (12)
o = wlxy) — keall,

uy = u ~ xa(w + wy — p8) + x50,

uz = v + xo6?
' (13)

with (12) and (13) agreeing with the previously derived equations (7)
and (8) except for the additional terms with .

Having equations (12) and (13) we obtain from (3) and (4) for the
set of nonvanishing strain components

knn=¢ txo, k=0, ka=y, yi=é+uw +x20y—0),
(14)
and
a1 =+ wd — % — xolo’ ~ Yo +w)
1 ;o s 2, r 1
+3(0¢ $0)] + x2¢(0 W), (15)

€12 =" — w + wh — 5¢0.

Equilibrium Equations of Beam Theory

We now consider the plate equilibrium differential equations (1)
and (2), with expressions for the components of strain which occur
in them given by (14), with a view toward deducing altogether seven
one-dimensional equilibrium equations.

As a step toward obtaining this one-dimensional system, we con-
sider that we have as boundary conditions for two spanwise edges xg
= xg9; and xg = x99 of the plate

Noy = Nz = Qo= Mg = Mgy =0. (16)

To make apparent the physical meaning of the various kinematical
terms which will appear in the one-dimensional equations we intro-

duce in equations (14) the defining relations
0" =k, (17)

¢ =kp, ¢+ w =y,
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With (16) and (17) we then obtain from equations (1) and (2) a
system of eight integrated relations,

fN’11+fP1=0, le12+fp2=0,

SxoNy — fN1g+ fxopy =0, (8)

S —kp fNu =¥ fxaNu — (ke + Y) N1z + fg =0, (19)
Sx2Q1 = S Q2 — kp Sx2N11 — ¥ 23N 1t

— (ke + ) fxoN1o + fx2q =0, (20)

SMy — S@ui+ vpSNu— (ke =) fxaNu + fmy =0, (21)

SMi— Qa2+ vp SN2 — (ks — ) fxoN12 + fma =0, (22)
SxaMyy — fMar — fx9Q1 + vp SxoN1y

— (ke =Y fxINu + faami =0, (23)

In writing (18)-(23), as well as in what follows, we omit, to save space,
the usual factor dxs, and also the limits x9; and xg2 in the definite
integrals. The desired seven beam equations are derived from
(18)—(23) in two steps. The first step consists in stipulating in equation
(23), as part of the complete system of constitutive equations, the
relation

SMa = [My,.

The second step consists in the elimination of Q2 from (20) and (22).
The result of doing this is the one equation

S M1z — x2@Q1) + kp fxoN11 + vp S N1z + ¢/ Sx3N1

(24)*

+ 2y fxoN12 + [(mg—x29) =0, (26)
in place of (20) and (22).

Therewith, and with the notation

JQ1=8Q,, SN2 =Qy, SNu =P,

Sa1=ap, Sp2=4s, Spi=p (26)
SMy1 =M, SxoN11 = M;, SMyg =Ty,

Jmy=mp, Jxap = m, Sma=tum 27)
Sx9@1==Tq, SfxoMu =R, Sx3N1u = R,
—Jx2q = tq, Jxomy = rp, Sxipi=rs, (28)

where the subscripts p and s have been chosen to indicate the dif-
ference between plate and sheet action, we now rewrite the seven
beam equilibrium differential equations in the form

P+p=0, Q:+qg =0, M;,—Q;+m;=0, (29)
(Qp — YM,Y — kpP — x:Qs + qp = 0, (30)
M, — keM; — (Qp —¥M) + ypP+ my =0, (31)
Tyu+ (Tg+ YRsY + kpMs + vpQs +tar+ 1, =0,  (32)
R;, — ktRs — Ty + (Tq + YR) + ypM; +rp =0. (33)

The following observations may be made in regard to the appear-
ance of the system (29)-(33).

1 We obtain a Kirchhoff-type system of the kind given in [2] by
assuming ¥ = 0 and by disregarding the seventh equation, (33). The
additional assumption v, = 0 leads to an appropriately abbreviated
version of the original Kirchhoff system. In saying this we take account
of the fact that for beams of narrow cross section, as discussed here,
the additional terms xsQs, kpQp, &sN, k¢ Qp, k:Mp which are included
in the full version of equation (29) and the additional terms , T and

4 The stipulation (24) is neither required, nor possible, in the event that we
presuppose the additional constraint relation k3 = ¢ = 0, in which case equation
(23) becomes a defining relation for My, in place of being a part of the dif-
ferential equation system.

Journal of Applied Mechanics

ksMp which are included in the full version of equations (31) and (32)
would be of negligible consequence.’

2 In order to obtain the term x;M; in equation (31), which term
cannot be dispensed with, we had to make use of the term y1N1; in
the plate equilibrium equations (2). What this seems to mean is that
we cannot deduce an appropriate version of Kirchhoff’s beam equa-
tions, as a consequence of the Kirchhoff-von Karman plate equations,
without generalizing these plate equations first so as to account for
the effect of transverse shear deformation.

3 The terms yM; and YR, in (30)—(33) account for sheet stress
contributions to beam stress measures which, without explicit con-
sideration of cross-sectional warping, would be due to plate stress
action only.

Constitutive Equations for Beams

In deriving one-dimensional constitutive equations on the basis of
a given system of constitutive equations for plates, in accordance with
(6) or with generalizations of (6) in which account is taken of equation
(5), we limit ourselves here to cases of plate constitutive equations
which are included in the following:

N1 =Cnen, €2=0, Q1=Cqvy, (34)
My = Dgkur + Dpr(kiz + k1),
My = Dp(x12 + k21) + DprKis (35)

In this the coefficients C and D are given functions of x; and xs.
Furthermore,

K11 = Kkp +xo¥/, K12 =k, K=V, v1=7ptx2¥ ~ k), (36)
and, in accordance with (15),
€11 = € + xok, + 22k — &), ea=1ys +wk, — 306, (37)
where
e=u +wkp — 32, Y=V — o,
Ky = — o + Yyp + ke — xp). (38)

Introduction of equations (34)—(37) into the defining relations
(26)—(28) then gives

P=efCn+ ks f22Cn + Yik: — ) f25Cw, (39)
My = ef3oCn + ks S33CN + ¥ — B S2iCn,  (40)
Rs = efx3Cn + ks fx3CN + Yk — 3) fx4Cn, (41)
Qp =vpJCq+ (¥ = &) fx2Cq, (42)
—Tg =vpfxsCq + (¥ — &:) fx5Cq, (43)
My = kp fDp + V¥ fx2Dp + (x: + ¥) f Dar, (44)
Rp = kpfxoDp + ' f23Dp + (k; + ¥) fx2Dpr,  (45)
Ty = (ke + W) S D1+ kp fDpr + V' f22Dpr. (46)

In using (39)—(46) account has to be taken of the fact that the forces
P and ¢ and moments M and T are components with respect to body
fixed axes rather than with respect to the Cartesian axes x;. Within
the range of applicability of the present formulation, these differences
are negligible for tangential force components and plate-normal
moment components, but not for normal force components and tan-
gential moment components. The relevant formulas are

Va=Qp+ [(Ni1¢1 + Ni2gpg) = Qp + Pop + Moy + Q,0, 47)

5 A previous generalization of Kirchhoff’s nonlinear beam theory, with
three-dimensional theory equations as the point of departure, in which con-
sideration of warping introduces a seventh equilibrium equation has been given
by Wempner [5]. The present equations differ from equations which are in-
cluded in Wempner’s equations by the terms with { and v, in (30)-(32).
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M;=Ty+ To+ Sxa(Nupr + Niago)

=Ty+ T+ M;¢+ Ry + 3RS0, (48)

where we have used the relation f 23N~ 2 xoN12 = 0, and with w
in the integral as in equation (7)

M2=Mp+fN11w =MP+PLU—MSB. (49)
Finite Torsion of Orthotropic Symmetrical Cross-
Section Beam

We consider, as a relatively simple illustration of the use of the
foregoing, a beam for which

JxoCn = f22Cq = fx3Dp = f23Cn =0,

with the only load being a torque My, as defined by (48).

By symmetry, we may assume that the only nonvanishing measures
of strain are the quantities ¢, «;, and ; and the only nonvanishing
measures of stress the quantities Ty, T, and R;.

The relevant constitutive equations for this problem are then, in
accordance with (39)—(46)

Dpr =0, (50)

0=efCn+ Y — }) fx3Cn, (1)
R, = efx3Cn + Y(x; — W) fx4Cn, (52)

and ’
Tq = (ks — ) f23Cq, Tm = (x; + ) fDr, (53)

with the applied torque equation (48) here reducing to the form
M;=Ty+ To+ YR, (54)

Equations (51)—(54) are, in effect, a system of three relations for
the four quantities ¢, Y, k;, and R;. The needed fourth relation is given
by the seventh beam equilibrium equation, (33), which here be-
comes

Tar — Tq + (ke — Y)Rs = 0. (55)

The result of principal interest which may be derived from the
system (51)—(55) is a nonlinear torque-twist relation My = f(x;). In
deriving this relation it is instructive to begin with a consideration
of the case of negligible transverse shear deformation which results
upon setting

J23Cq =, ¥ =k, (58)

with Ty now being reactive and, in accordance with (55), such that
TQ = TM.
We next obtain, from (51) and (52)

R, fCn =43 S Cn f2iCn — (S£3C)2), (57)
and therewith, from (53) and (54), as expression for M
C 4, —- 2 2

M = dx Dr+ 13 JCn S x3Cn — (Sx3Cn) _ 58)

2fCn
For the case that fx3Cg is not assumed to be infinite we have in
place of (57)

R S Cn =Yk ~ WIS Cn f23Cn — (S23CN)Y.

It now remains to determine ¥ as a function of «;, through use of
equations (55) and (53), that is from the relation

V(I Dr+ f23Cq) + k(S D7 — fx§Cq) = (Y — ke)R,,

with the solution of this to be introduced into the torque expres-
sion

(59)

(60)

My =x(fDr+ fx3Cq) + Y (S Dr — fx3Cq) + YR

As the exact determination of \ as a function of x;, by means of (59)
and (60), now involves the solution of a cubic we limit ourselves here
to an approximate determination, with (56) replaced by the stipula-
tions,

(61)
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ID7/fx3Cq « 1, Y =1+ 8)xs,

with 6 < 1. We obtain in this way an expression for M1 which follows
from (58) upon changing k; into k. (1 — £ D7/ fx%Cq).

(62)

Euler Buckling of Anisotropic Nonhomogeneous
Cantilever

We consider a beam of length L which is acted upon at the end x1
= 0 by an axial compressive force P = —F, with the line of action of
this force coinciding with the elastic centroidal axis of the beam. We
assume that the end x; = L is fixed.

In view of our assumption that the x;-axis is the line of centroids -
we have now [x3Cn = 0, with the state of strain in the unbuckled state
given, in accordance with (39) by ¢ = —F/{Cp. In view of (41) the
state of stress in the unbuckled state involves in addition to P the
stress measure R; with a value

Ry = —p?F, (63)

where p% = fx3Cn/fChn.
Equilibrium equations for the problem of buckling follow from
(30)-(33), with Qs = 0 and M, = 0, in the form

Q'+ Fk, =0, My’ —Q,—Fy,=0, (64)
Tw' + To' — p2FY’' =0, Ry’ — Ta+ To+ p2F(k, — ) =0,
(65) -

where Kp, K¢, and yp are given in terms of displacements as in {(17).
The four equations in (64) and (65) are associated with the five
constitutive equations (42)—(46). With their help (64) and (65) may
be transformed into four simultaneous equations for the four dis-
placement variables ¢, w, 8, Y.
Boundary conditions for the system of buckling differential
equations are the conditions of support

w(L) = ¢(L) = 8(L) = Y(L) =0, (66)
together with conditions of vanishing end moments,
Mp(0) = Ti(0) + Tq(0) — p2FY(0) = Rp(0) =0, (67)

and together with a fourth loading condition which expresses the fact
that the direction of the force F remains unchanged during buckling.
It is simplest to express this condition for the built-in end of the beam,
where it means the absence of a transverse force at the support, that
is, we have in place of a fourth condition for x; = 0 a fifth condition
forx;=1L,

@p(L) =0.

Buckling Equations for the Case of Negligible Transverse
Shear Deformation. We assume that, effectively, [(1,x2,x%)Cqg
= = and set v, = 0 and Y = k¢, with @, and Tg now being reactive.
The remaining constitutive equations (44)-(46) take on the form

(68)

Mp = ¢' (D + ¢ fx2Dp + 2y f Dpr, (68)
Rp = ¢/ [xoDp + ¢’ fx3Dp + 2y fxDpr, (69)
Ty =2y Dr+ ¢ fDpr+ ¢ fx2Dpr, (70)

and the four equilibrium equations in {64) and (65) reduce to two
defining relations, @, = M, and Tq = Ty — R}, and to two differ-
ential equations

Mp” +F¢’ =0, 2Ty —Rp” — p?Fy’ =0. (71)

The order of the system (71) may be reduced, through use of the
second conditions in (66) and (67), in conjunction with (68), leaving
as a fourth-order problem in terms of ¢ and ¥,

My +F¢ =0, 2Ty —Rp' — p2Fy =0, (72)
with the remaining boundary conditions being
d(L) = Y(L) = ¢/(0) = ¥/(0) = 0. (73}
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Equations (72), when written with the help of (68)-(70), b‘ecome

Dpo¢” + Fop + Dpry” + 2Dpe)’ = 0, (74)
Dp1¢” — 2Dpi ¢’ + Dpayp” — 4Dy + p2Fy = 0, (75)

with the coefficients in these equations defined by
Dy = fx3Dp, D= fDr, Dy = {Dpr. (76)

Equations (74) and (75) contain as special cases the problem of an
orthotropic beam, upon setting Dy, = 0, and the problem of the beam
with coincident centroid and shear center location, upon setting Dy
= 0. We will here give an exact solution of the former problem and an
approximate solution to the latter.

Orthotropic Unsymmetrical Cross-Section Beam. Setting
Dy = 0 we may obtain the solution of (74) and (75) which satisfies all
four boundary conditions in (73) by setting

¢ = A cos A\x1, ¥ =B cosA\xy, (77)

with A = 7/2L. Equations (74) and (75) become, with (77), two si-
multaneous homogeneous equations for A and B. The vanishing of
the determinant of this system gives as equation for the critical load
Fc ’

M)Z o | (78)

- 2|y — .
Fe = Duok [1 (Dbo 4D, + Dpa\? — p2F,
Since, necessarily, (Dp1A/Dpo)? << 1 we must, for a numerically sig-
nificant effect of the nonvanishing of Dp1, have that D;/Dpo << 1. In
general, this condition will not be satisfied for the class of narrow
cross-section beams and so the effect of a nonvanishing Dj; is here
negligible.

Anisotropic Symmetric Cross-Section Beam. We now set Dj;
= 0 and attempt to determine the effect of a nonvanishing Dy, on the
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value of F,. While it is possible to obtain an exact relation for F; on
the basis of (73)-(75), we will limit ourselves here to a simple ap-
proximate solution of the form (77), by assuming the effect of the term
with Dyg in equation (75) to be negligible. Consistent with this we
disregard the boundary conditions for y in (73). Equation (75) now
gives

—2Dy;
=y, 79
12 D — p2F¢ (79)
and (74) becomes therewith
4D3%, )
Dy~ ———2— 47 + F¢ = 0. 80
( 0~ p 7F ) ¢ (80)

The solution of (80), with boundary conditions in accordance with
(73), gives an equation for ¥, which can be written in the form
P _, (Dbz)z ( D, _pN®_F. __Di

-1
= -2 ~ 81)
DyoA? Dpo 4 Dbo>\2) D;Dyo (

Dyo

with the simplified version of the result following from the fact that
D,/Dpo = O(1) and, necessarily, p2A\2/4 « 1.
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Steady Motion of an Elastic Beam
Across a Rigid Step

An infinite elastic beam moves at constant speed across a frictionless rigid step. Steady-
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state solutions are obtained in closed form using both Euler-Bernoulli and Timoshenko
beam models. With step height and speed as parameters, the noncontact regions, mode
shapes, and foundation reactions are determined. The results show interesting qualita-

tive as well as quantitative differences between the behavior of the Euler-Bernoulli and

Timoshenko beams.

Introduction

Problems involving moving loads on elastic beams and strips have
been the subject of many investigations. No attempt will be made to
list and categorize all of them. Recently the behavior of such systems
with unilateral constraints has been studied. In [1], Adams and Bogy
determine the steady response of an elastic beam resting on a smooth
rigid foundation and subject to a steadily moving load. Alternatively,
that problem could be considered one of an elastic beam moving
steadily along a rigid foundation and subjected to a stationary load.
They determined the noncontact lengths, mode shapes, and foun-
dation reactions as a function of load and speed. Related problems
involving moving loads on elastic strips with one-sided constraints
were studied by Adams [2, 3].

An elastic foundation which acts in compression only can be con-
sidered a generalization of a unilateral constraint (rigid foundation).
In {4}, Choros and Adams solve the problem of an infinite elastic beam
resting on a tensionless Winkler foundation and subjected to a steadily
moving load. They determine the minimum required loads in order
to initiate separation of the beam from the foundation, as well as the
liftoff regions and deflection curves. The solution of related problems
involving elastic strips pressed against elastic half planes can be found
in [5, 6].

In the present investigation, we determine the physical response
of an infinitely long beam moving along a rigid foundation which has
a step discontinuity. Such situations are encountered when an elastic
medium, such as a computer tape, is pulled at high speed along a base
with such a discontinuous configuration. Both Euler-Bernoulli and
Timoshenko beam models are considered and solutions are obtained
for both steady state and static cases. The method of solution is es-
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sentially to determine the solution of the appropriate differential
equations of motion in terms of local coordinate systems, one for each
contact and noncontact region. Then boundary and continuity con-
ditions are applied separately to each noncontact region (pair of
noncontact and contact regions for the Timoshenko beam). This leads
to simplified forms for the displacement equations (displacement and
rotation equations for the Timoshenko beam) which are finally
matched together by continuity conditions at the step corner. Then
by choosing one of the noncontact region lengths as if it were known
and taking the step height as unknown, we obtain the desired solu-
tions. This leads to a considerable reduction in algebraic complexity
over the method of [1], especially for the Timoshenko beam. The re-
sults will be the noncontact regions, mode shapes and foundation
reactions for a range of step height and speed.

Euler-Bernoulli Beam

(A) Problem Formulation. We consider an infinitely long
elastic beam, resting under its own weight on a rigid step of height h,
and moving to the right with constant speed ¢ (Fig. 1). Beginning with
the partial differential equations of motion of an Euler-Bernoulli
beam and transferring to a dimensionless coordinate system (x, y)
fixed with respect to the stationary step, we obtain the following
equations of motion:

Yyt ey’ = -1, xeQ o)
y=0, rix)=1, xe R—Q 2
where »
y(x) = E¥y(x + ct)/pg?, x =&+ ct)/x,

r=7¥/pgA, k=+T/4, w=c/\/Ejp, h=Ehipgk?, (3)

in which ¥ is the-transverse beam deflection, 7 is the foundation
contact pressure, J is the second moment of the cross-sectional area
(A), and p, E, g are the mass density, Young’s modulus, and acceler-
ation of gravity, respectively. R denotes the real line (—=, «) and
the noncontact region(s). The corresponding dimensionless shear and
moment are determined by
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Fig. 2 Step height versus noncontact lengths for an Euler-Bernoulll beam
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Q =Q/pgAx =y”, M =M/pgAx?=y" (4)

No initial restrictions are placed upon the number of noncontact
regions which may exist, or on their location with respect to the step.
However, it was shown in [1] that multiple regions of noncontact must
be “free mode” solutions which are decoupled from the noncontact
regions surrounding the load. Their existence thus depends upon the
history of loading and is not part of the steady problem. With this in
mind we look for solutions with no more than one noncontact region
on each side of the step. Referring to Fig. 1, region 4 extends to infi-
nitely whereas regions 5 and 6 do not exist.

(B) Method of Solution. Although the equations of motion (1)
and (2), subject to appropriate boundary and continuity conditions,
could be solved directly, we will use the method of [4] which results
in a considerable reduction in algebraic complexity. Writing the so-
Iution of (1) in terms of local coordinate systems, we obtain

whys(xg) = Ao+ Ajwxs + Ap cos wxp

+ Agsin wxs — 3023, 0<x2<ly (5)
whys(xa) = By + Biwxsg + B cos wxz + Ba sin wxg
~ 302}, —l3<x3<0, (6)

where /3 and 3 are the lengths of the two noncontact regions. The
boundary conditions express the continuity of displacement, slope
and moment and are given by

y2(0) =0, y3(0) =0, y5(0) =0, n
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y3(0) =0, y3(0)=0, y30). 8

The continuity conditions between the two noncontact regions at the
step are

9
(10)

valle) = ya(=la), yolla) = y3(—ls)
yolle) = h, y3(=l3)=0
Applying conditions (7), (8) to (5), (6), respectively, we obtain

whya(xg) = Ar{wxg — sin wxg) + 1

—cos wxa — kwlx3, 0<xy<ly (11)
wiys(xa) = Bi(wxs — sin wxg) + 1
—~cos wxz — w23, —l3<x3<0. (12)
We now use (10)2 obtaining
B = (1 — cos wlg — dw2l3)/(wl3 — sin wlj), (13)

which expresses the unknown B; independently of both the step
height h and the parameters of region 2. Applying (9)2 and (9); we
find :

A1 = (cos wlz ~ cos wly — By sin wlz)/sin wls, (14)

A1(1 — cos wlp) + sin wlg + sin wlz = B1(1 — cos wlg) + w(ls + I3).
(15)

Equation (15) with (13), (14) represents a single transcendental
equation which relates the two unknown lengths I and [3, and is in-
dependent of h. For each value of I3 we solve for /5 using standard it-
erative methods. The corresponding step height i can then be cal-
culated by using (10); which results in

wih = Ay(wls — sin wlg) + 1 — cos wly — w23 (16)

A plot of w*h versus wlz and wl3 is given in Fig. 2, which is valid for
any dimensionless speed .

We can also consider the possibility of a single noncontact region
occurring by taking the limit as I3 — 0 in (13)—(15). This leads to

B; =0, A;=tan(wly/2), tan (wle/2) = (wls/2),

1 2

yo(x9) = (wla/2)(wxg2 — sin wxg) + 1 — cos wxg — 3w2x3,

which is the free mode solution [1] with k = 0. Thus all solutions with
h > 0 have at least one noncontact region on each side of the step.

Having determined {1, l2, and h, we can now determine the corre-
sponding beam deflections anywhere in the noncontact regions from
(11)—(14). Typical configurations for each mode (1)-(3) are shown in
Fig. 3 (A-E). In order for a solution to be physically admissible, it
must have positive displacement everywhere in the noncontact re-
gions. This is true of all the solutions given in Figs. 2 and 3.

The distributed foundation contact pressure is equal to unity in
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Mode 1
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E)
Mode 3

wls=165

Fig. 3 (A-E) Typical Euler-Bernoulli beam deflection shapes, normalized in the verlical direction with respect to h and in the horizontal

direction with respect to /,

the contact region. However, concentrated reactions exist at the
boundary of the noncontact regions and are found by determining the
discontinuity in the internal shear force. The results are

wR1=A;, wRy=-B;, wRp=Bjcoswls

am

—~A1 cos wlg + sin wly — sin wl3,

where Ry, R4, and R;, are the concentrated reactions at xo = 0, x3 =
0, and xg = lo, respectively. The results are shown in Fig. 4. In order
for the solutions of Figs. 2 and 3 to be typically admissible it is nec-
essary for Ry, Ry, and Ry, to be positive, as shown in Fig. 4.

(C) Solution Choice and Discussion. We have shown only the
first three solution types in Fig. 2; many others exist. The question
then arises as to which solution is actually physically realized for a
given value of wh. The solution choice will be based upon an energy
criterion. The energy functional V for the Euler-Bernoulli beam is
given by

V=t 1672wy + 2yldx (18)
Q

in that stationary values of (18) yield (1). In (18) the first term rep-

resents the strain energy due to bending, the second term is from the

kinetic energy and the last is the potential energy due to gravity. The

solution of (18) is given by

608 / VOL. 48, SEPTEMBER 1981

2PV = 3(1 — A?) sin 2wly + 3(1 — BY) sin 2wl3 — 4[41(1 — cos wlg)
~ B1(1 — cos wlg)] + 241 sin wla(A; + sin wlg — wly)
— 2B1 sin wlg(sin wls — wlz — By) — 2(sin wlz + sin wly)
— 2w(l3 cos wlz + Iy cos wlg) + 2w2(A1l3 — Byl?)

— 203(13 + 19)/3 + wls(3 — A?) + wis(3 — B} (19)

Due to the dependence of the gravitational potential energy, which
is measured with respect to y» = h/2, on the step height h, the ex-
pressions (18), (19) can only be used to compare the energies of con-
figurations having the same value of w4h.

Without investigating the stability of the solutions, we take the
actual solution as the one which, for given wth, produces an absolute
minimum in V. These solutions are the ones drawn in heavy lines (Fig.
2). It is not intended to reject other solutions, as multiple local mini-
mums of the energy may exist. If so, the correct steady solution would
have to be determined as an appropriate limit of the initial value
problem.

Although physically we would specify step height, it is more con-
venient to discuss the results (Figs. 2-4) in terms of the length /3.
Mode 1 shows that as I3 increases from zero, h increases from zero
until it attains its maximum value for this mode and then decreases

- again to zero (Fig. 2). The length l2 also increases from zero to a

maximum value and then decreases to zero. It realizes its maximum
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Flg. 4 Concentrated foundation reactions versus noncontact length wl; for
an Euler-Bernoulli beam

at a lower value of I3 than that for which h was a maximum. So Mode
1 begins with h, g, and I3 equal to zero and ends with & and I3 equal
to zero. The corresponding final value of 3 is then the first free mode
solution [1]. Mode 2 begins with the free mode solution and as it in-
creases both h and Iy increase with /3 again reaching its maximum
value first. They then decrease to zero with Mode 2 ending at the
second free mode solution. Similarly Mode 3 begins with the second
free mode solution and ends at the third free mode solution with h
and /3 varying as before.

The corresponding deflection shapes (Figs. 3, (A-E)) show that in
all cases the transverse displacement increases monotonically from
zero to h within region 2. In region 3 there are one, two and three local
masximums for Modes 1, 2, and 3, respectively. The absolute maximum
deflection as well as the overall deflection shape increases monoton-
ically with l3. The foundation reaction R4 increases monotonically
with the length I3 (Fig. 4). However, for Mode 1, R;, increases from
zero to a local maximum and then decreases to zero, In Modes 2 and
3, R;, begins at a finite value, increases, and then decreases to zero.
The behavior of Ry is as shown. Note that R, and R}, are both dis-
continuous at values of I3 corresponding to the free mode solutions.
This is because at these values the length I3 approaches zero and R,
becomes indistinguishable from Rj. The sum of Ry and Rj is con-
tinuous at these points.

(D) Static Solutions. Solutions for a stationary beam can be
easily obtained by setting w = 0 in (1). The method of solution is ex-
actly the same as for the steady case and will be omitted for brevity.
The results are

 yalxg) = x3(2s ~ x2)/24, 0<xy<ly
y3(x3) = —xg(l:; + x3)/24, —l3<x3<0
Is=(/3— 1), h=1(24/3-3)l}/24,

R, = 13/2, Ry= 13/4, Rp =1+ 13/4. (20)

Solutions of this type are, of course, unique. The lengths /5 and I3
increase monotonically with the step height h.

Timoshenko Beam

(A) Problem Formulation. We now consider the same physical
problem using Timoshenko beam theory which includes the effects
of shear deformation and rotational inertia [7]. Writing the corre-
sponding pair of partial differential equations of motion in terms of
a dimensionless coordinate system (Fig. 1) fixed in space we obtain

— 2 ANy 247 e
(1 - o)l - wd)p” + wi¢ 1], ceQ @1)
¥ =¢—1-we"
and
—wde” — ¢ = 3
(1=e¢”=¢=0, y O}, seR-Q (22)
r{x) =1+ ¢’

Journal of Applied Mechanics

where

y{x) = *Ey(x + ct)/pgr?, x = X + ct)/x,

b(x) = BEP(x + ct)/pgr, ws =c//Glp, w=c/Efp,
a=+vG/E = w/ws, k=+/1/A,

in which ¢ is the rotation and G is the effective shear modulus. The
dimensionless shear and bending moment are

M = o®M/pgAx? = ¢, Q= aQ/pgAx = (1~ w?)¢”.

(B) Method of Solution. (i) 7Two Noncontact and Two
Contact Regions. In order to avoid the considerable algebraic com-
plexity encountered in [1}, we will apply a modification of the method
of [4] to a Timoshenko beam, We obtain the solution of (21) in terms
of local coordinates for each of the two noncontact regions (I =
2,3)

(23)

(24)

¢i(x;) = A; sin px; + B; cos px; + C; — x;/w?,
yilay) = D; + Cix; — x7/202
+ [—A; cos px; + Bj sin px;|/p(1 ~ 0?), (25)
and for each of the two contact regions (i = 1, 4)

¢i(x;) = Aje 9% + Bied¥i, y;(x;) =0,

rilx;) = 1+ q(—Aje™7% + Bie?) (26)
where
p=wq//1=w?, q=1+/1-w
The boundary conditions to be applied at infinity are '
lim ¢i(x1) =0, lim ¢slxg) =0, 27
2y x4
and those at the contact points of the noncontact region are
y2(0) =0, y3(0) =0. (28)
The following continuity conditions are now used:
#1(0) = $2(0),  1(0) = $5(0), ¢1(0) = ¢3(0), (29)
$3(0) = 64(0),  #5(0) = $4(0), $3(0) = $:(0). (30)

By applying (27)-(30) we can determine the unknown constants
pertaining to the regions to the left and to the right of the step in terms
of By and A4, respectively.

There remains two unknown constants By, A4 and two unknown
lengths [2 and I3, which will be determined using the following four
continuity conditions at the step:

balla) = pa(—ls).
(31)

yolle) =h, y3(—l3) =0, ¢ally) = ¢s(—Ia),

Applying (31)z,4,3 we obtain A4, By and a transcendental equation for
I3, I3. Varying I3 we can calculate corresponding values of I3 by stan-
dard methods. For a given I3 and I3 the associated value of h is ob-
tained from (31);.

The displacement and rotation at any point on the beam can now
be obtained directly from (25). The corresponding foundation reac-
tions are the distributed pressures given by

rifx1) =1+ qBie?y rylxg) =1— qAe 7% (32)
and the corresponding concentrated reaction
Ry, = [¢a(=13) ~ ¢a(l2)]/q?
= A4(q cos ply — p sin pl3)/q
+ Bi(p sin ply — q cos pla)/g
+ p(sin pls + sin pl3)/w2q2 (33)

Due to the inclusion of shear deformation the concentrated reaction
ati the step causes a discontinuous slope at that point.

(ii) One Noncontact and Two Contact Regions. At this point
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Fig. 5 Maximum step height and noncontact length versus dimensionless
speed for a Timoshenko beam with « = 1/\/5 {rectangular cross section and
Poisson’s ratio of 0.25)

we consider the possibility of a single noncontact region occurring with
complete contact to the right of the step. This can be accomplished
by eliminating regions 3, 5, and 6 in Fig. 1. Boundary and continuity
conditions (27), (28)1, (29), (31) are still applicable and must be
supplemented with

d2(ls) = $4(0),  $alla) = $4(0)

The resulting displacements, rotations, and step height are the same
as before, with different expressions for By and A4. These are valid
for any length Is provided that the conditions of positive displacement
in the noncontact region and positive foundation reactions in the
contact regions are satisfied. As h increases so does I3 and the con-
centrated reaction at the step corner increases as expected. However
the distributed pressure (32); decreases because A, increases.
Therefore, the maximum permissable step height h occurs when A4
= 1/g. A graph showing the maximum value of h and the corre-
sponding value of /3 for which only a single noncontact region exists
is shown as a function of dimensionless speed in Fig. 5. These limiting
values agree with those obtained by taking an asymptotic expansions
for small I3. Note that the maximum value of h decreases with in-
creasing speed.

Note that in the limit as w; — 1, the results in Fig. 5 show that [,
— 0, but h approaches a finite value. This can be verified directly by
taking the limit as w; — 1 obtaining Iz = 0 and h = 2(1 — «?). The
reason is that as the shear wave speed is approached, the discontin-
uous slope at the step corner, which results from shear deformation,
increases without bound. .

(iit) Two Noncontact and Three Contact Regions. Now let us
consider the existence of a finite length contact region immediately
to the right of the step corner (Fig. 1 without region 3). By applying
the following conditions:

4(ls) = ¢5(0),
¢s(ls) = ¢6(0),
v5(0) =0,

we obtain the solution for regions 4, 5, 6, where the length [ is given
by

(39)

dalla) = ¢5(0),
P3ls) = pe(0),
(35)

$a(la) = ¢5(0)
d5lls) = pe(0),
ys(ls) = 0,

(pls/2) cot (pls/2) = (1 + gw? 15/2)/(1 — wl). (36)

There are an infinite number of solutions of (36); these are the free
mode solutions encountered in [1]. Note that the behavior of the beam
in the regions to the right of the step corner depends on only one pa-
rameter “l4.” The solutions for regions 1 and 2 are as before and are

given strictly in terms of /2 and B;. Applying continuity of rotation .

and bending moment at the step corner
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Fig. 6 _ Step height versus noncontact lengths at fixed speed w = 0.4 (o =
1/4/3)

d2(l2) = pa(=ls) ¢z (I2) = d3 (—13) (37)

we eventually obtain By, l4, and h.

The displacement and rotation of the beam at any point can now
be determined from (25). The concentrated reaction at the step corner
is given by

Ry = (Is/2)e~914 — B1(q cos pls — p sin pls)/q

+ (p/g?w}) sin ply (38)
and the distributed reactions are
ri(x1) = 1+ qB1e9, ry(ng) = 1+ (gla/2)eTel),
re(ag) = 1 — (gls/2)e 9% (89)
(iv) Three Noncontact and Three Contact Regions. Finally,

we consider the possibility of all six regions occurring (Fig. 1), The
solution can be obtained in a manner similar to the foregoing by
applying appropriate boundary and continuity conditions. For brevity
we have omitted all of the details. The essential effect of the extra
noncontact region is to alter region 4 from one in which the rotation
is exponentially decreasing to one in which it is exponentially in-
creasing. This allows for new solutions in regions 1, 2, 3.

(C) Solution Choice and Discussion. In Fig. 6, we show a plot
of step height h versus noncontact lengths as defined by I3, I3 for the
case of two noncontact regions and Iy, I3 + l4and I3 + I4 + 5 for the
case of three noncontact regions. These results are valid at a fixed
speed of w = 0.4 for a beam with a rectangular cross section and
Poisson’s ratio equal to 0.25. Mode 1 begins with a finite value of
at I3 = 0 due to the inclusion of shear deformation which allows only
one noncontact region to exist for small values of k. As I3 increases,
h increases to a maximum and then decreases to zero leaving the first
free mode solution. Typical displacement configurations for Mode:
1 are shown in Fig. 7 (A, B). Unlike the Euler-Bernoulli beam, Mode
2 for the Timoshenko beam begins with three noncontact regions (¥Fig.
1) in which the noncontact region i = 5 is the first free mode. However
as h approaches its minimum value, the distance /4 approaches in-
finity. As h increases l4 decreases to zero. At this point, two of the
noncontact regions (i = 3, 5) coalesce forming a single noncontact -
region (i = 3) as the point x3 = 0 is gently lifted off the smooth rigid
foundation. Then h increases to a maximum value and decreases to
zero leaving Mode 2 in the second free mode solution. A typical dis-
placement configuration is shown in Fig. 7 (D). Mode 3 also begins
with three noncontact regions, however, region 5 is the second free
mode solution which is an infinite distance from the step corner. Note
that both modes 2 and 3 begin with the same values of h, I3, and [3.
This can be seen by taking the limit as {4 — «, obtaining B — 0.
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Fig. 8 Foundation reactions versus noncontact length I3(/; + /5 + Is, for three
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Hence the displacement configurations in regions 1, 2, 3 are identical
in the beginning stages of mode 2 or 3. The subsequent behavior of
mode 3 is similar to that of mode 2 with the two noncontact regions
Q =55 (i = 3, 5) joining together and eventually ending with A = 0 and the
3= 9. third free mode solution. A representative deflection shape is shown
in Fig. 7 (C). As with the Euler-Bernoulli beam, modes 1, 2, 3 corre-
spond to one, two, and three local maximums, respectively, in the
displacement shape.

We have also considered the possibility of a finite length contact
region immediately to the right of the step. However, no solutions exist

for the range of the parameters plotted in Fig. 6.
The results of Fig. 6 show that at fixed speed w and step height h,
C) many solutions exist. Following the same reasoning used for the

Mode 3 Euler-Bernoulli beam, we form the energy functional

V=1 f_ 1 = @)(@)2+ (1 — 0D — WHy)? + 2ylda,

(40)

in which the first term represents the strain energy of bending and

9\ -=15.58 kinetic energy of rotation, the second term is strain energy due to
3 ' shear deformation, the third term is the kinetic energy due to
transverse motion, and the last term is due to gravity. This integral

has been evaluated in closed form; however, the results are very

J lengthy and will not be given here. Those modes which result in an

absolute minimum for V are shown in heavy lines in Fig. 6. Again we
emphasize that many solutions exist; we have shown only the first
three modes.

The foundation reactions Ry, r1(0), r4(O) are plotted as a function
of noncontact length I3 in Fig. 8. ]

(D) Static Solutions. The solution for a stationary beam may
be obtained either by taking an asymptotic expansion for small speeds,
or by resolving the problem with w = 0 in (21), (22). For brevity we
simply list the results

D) d1(x1) = Bie®, yi(x1) =0, r(xy) =1+ Bie2t
Mode 2 dalxa) = By(1 + x2 + x3/2) = x3/6,

yolxs) = (By + 1)x3/2 + B1x3/6 — x§/24,

palxs) = Ayl ~ x5 +x3/2) — x3/6

1 3=9.47 yaas) = (1 — ADa/2 + Asxd/6 — x4/24

Cpalxg) = Agem*, yu(ag) =0, rlxg) =1—Age™

in which

) A= (12 -19/4(3 + Iy),
Fig. 7 (A-D) _ Displacement configurations for first three modes with w =
0.4, a = 1/+/3, normalized with respect to h and I, By = —[A41 +I3) + (1 —13)/2]/(1 + L),
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h = I3[(3 + I2)B; + 3 — 13/4]/6,
1+1+13/2 Al +13+13/2)+ (3 +13)/6
T+le | Adl+l+ @-1D)/2
Rn=Aq—By+lg+1y

’

where the foregoing is valid for two noncontact regions. For one
noncontact region we have

Bi=13(s+ 3)/12(1 + 1z + 13/4),
A4 = l%/z - 31(1 + lz),
Ry=A34—Bi+ 1z

and the requirement of positive foundation reactions leads to 44 <
1 and consequently 1§ + 413 — 2415 ~ 24 = 0, which has a real positive
root [3 = 2.3284 and h = 3.9604.

Comparison of Results and General Discussion

In Fig. 9, we show a plot of w*h versus wlz for Mode 1 at different
dimensionless speeds w. Also shown are the corresponding results for
the Euler-Bernoulli beam which are valid at any speed. Notice that
the dimensionless variables x and ¥ have been defined somewhat
differently for the two beam theories (3), (23) which is why the
Euler-Bernoulli results of Fig. 9 may appear to be different from those
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of Fig. 2. The results of the two theories agree to within graphing ac-
curacy for w = 0.1 but begin to differ much more significantly at higher
speeds. This hehavior is not unexpected.

Using Euler-Bernoulli beam theory we always have two noncontact
regions. Additional free mode noncontact regions can occur but are
decoupled from the other regions. Using a Timoshenko beam, the
results are more complex as has already been discussed. Free mode
solutions ean occur but are coupled to the other regions.

The nonuniqueness of the solution is characteristic of this as well
as other problems [1-6)]. This is due to the nonlinearity associated with
the existence of noncontact regions, which allows different sets of
initial conditions to result in different steady solutions. This type of
nonuniqueness is different from that associated with, for example,
a steadily moving lead on an infinite beam which is not supported by
any foundation. In that case, different initial conditions can give rise
to different steady solutions. However, the different steady solutions
have different behaviors at infinity and hence each solution can be
viewed as the solution of a different problem in which particular
boundary conditions have been applied at infinity.

Also characteristic of this problem as well as [1-6] is that the re-
sponse of these systems is not always continuous with increasing step
height (load in [1-6]). At any finite speed there exists values of h for
which there is a sudden change from one deflection configuration to
another (e.g., the sudden change from Mode 1 to Mode 2 at wth =
10.681, Fig. 2).
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Response of Periodic Systems to a
Moving Load

The motion of a beam or a plate resting on an elastic foundation and subjected to a mov-

ing load has been studied by numerous authors. But the extension of these studies to the
case of periodic structures is difficult. In this paper, a method allowing the calculation
at low numerical cost of periodically supported beams subjected to a moving force, is pro-
posed. The interpretation of this method on the basis of the free-wave propagation equa-
tions in periodic structures has led to the definition of the predominant, so-called “pri-
mary,” critical speeds. Individual examples were used to test the method. It was also pos-
sible to define the limits of a Winkler continuous model in representing the support reac-

tions.

Introduction

Initial research into a steadily moving load on an infinite continuum
was carried out by Schwedler {1] and Hovey [2]. These authors studied
the steady-state response of an Euler-Bernoulli beam on a Winkler
foundation. In recent years considerable attention has been paid to
the problem of beams and plates subjected to moving loads [3-16].
The models of structural elements and foundations employed are
increasingly complex but in all these studies the method of resolution
adopted is identical. The deformation pattern is time invariant rel-
ative to a coordinate system moving with the load. By transforming
the equilibrium equations to the moving coordinate and further by
applying the Fourier transformation the solution is obtained. The
inversion of the Fourier transform in conjunction with the integral
contour is made problematic by the existence of real poles in the un-
damped cases. Double real poles are linked with a critical velocity for
which displacement is unbounded. In their study of moving loads on
an elastic plate strip, Adler and Reismann [11] present two methods
for calculating response when the poles are real. The first is by in-
troducing damping and the second is based on an application of the
principle of causality by which the phase velocity is compared with
the group velocity on the basis of the dispersion relations for free
flexural waves.

The present work aims to study a traveling load on an infinite pe-
riodic system. Motions of vehicles on flexible guideways have been
studied by Doran and Mingori [17], then by Chung and Genin [18] in
the case of independent spans. This hypothesis eliminates the influ-
ence of wave propagation along the beam. For the calculation of the
response of continuous, periodically supported beams to traveling
loads, Smith and Wormley have proposed two methods [19]. The first,
based on the Floquet principle, consists in calculating the Fourier
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transform of the displacement and the second only considers a finite
number of spans before and after the moving load. Recently, Genin
andChung [20] have proposed a numerical algorithm to analyze the
dynamic response of the continuous guideway structure subjected to
a moving vehicle. But all these numerical methods do not greatly
advance the study of the solution near critical speeds where the waves
are propagated at a great distance from the load. The introduction
of damping facilitates the calculation but greatly influences the so-
lution for high speeds and continuous guideways often have very low
damping.

The method proposed in the first part of this study is analytical and
takes into account the real phenomena of propagation. Critical speeds
can thus be obtained as in the case of nonperiodical systems [1-16].
In the second part this method is discussed in the light of recent
studies on free wave propagation in periodical structures. In particular
the existence of bands of propagation and wave groups which result
from reflections on the supports has been clearly demonstrated in
references [21-30]. Mead has calculated the bounding frequencies of
the propagation zones in terms of the receptance matrices of single
elements [27, 28]. The work by this author on the response of a peri-
odic beam to a uniform convected harmonic pressure field [25, 29]
permits the justification of our method and the definition of the so-
called “primary critical speeds.” In the third part the conditions which
permit the assimilation of the periodical supports to a foundation
continuous model are specified. Individual examples are used in the
last part to test the method.

Method Exposition

An Euler-Bernoulli infinite beam resting on elastic supports is
taken as an example to demonstrate the method—Fig. 1. The stringers
have a rotational stiffness K, and a transverse elastic stiffness K; and
are spaced at an equal distance ! apart. A concentrated force f is
moving with a constant speed v in the positive x-direction. The origin
of the fixed coordinate system coincides with one end of a span. The
stringer situated at the point x = NI is subjected to a force Fiy and a
moment Cy, solely function of the speed v and the distance between
the load and the support in steady state.
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Beam-type periodic structure subjected to a moving force

Fy = F(Nl —vut,v) Cy=C(NIl—uvt,v) (1a,b)

The equilibrium equation for the bending theory of an Euler-Ber-
noulli beam is

ElI—=-M 2)
ox2
In this notation E represents the elastic modulus, I is the moment of
inertia of the beam, and y is the beam’s deflection.
The derivative with respect to space of the bending moment M,
considered as a generalized function, can be written

W—=Q+ II(x)C(x — v, v) (3)
ox

The transverse shear force Q is a generalized function. II is a row of
equal Dirac’s delta functions

Fow
Wxy= 3 d(x —NI) 4)
N=—o
The derivative of the generalized function defined in equation (3)
is
M 0

0 C
—a—x—2~=r+H(x) F(x—vt,u)+-a—x(x—vt,v)

+ C(x —vt, v) ol (6)
dx

The distributed load r is constituted by the moving force f and
transverse inertial forces

2y
r=—mgﬁ+f6(x —vt) 6)

Equations (2), (5), and (6) give the differential equation for the
bending of an infinite supported beam

oty oy
El—+m—==fi(x — vt)

oxt ot2 ot

+ I(x) [(F(x ~vt,v) + b_C (x — vt, v)
ox »

+ C(x — vt,v) ant (7
dx

In this last equation the flexural rigidity EI is taken to be constant.
The equation for the displacement y in a coordinate system that
moves with the load, is obtained by using a Galilean transforma-
tion.
X=x—uvt .
{ (8)
Y=y
Supplementary terms appear in the equilibrium equation coming
from the derivative with respect to time.

22 2
mu————Y— + mvza—z = f6(X)
oX ot - 2X2

dc RII .
F o —
+10 [ (X,0) + = (X,0)| + =2 C(X,0) @
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In a steady state the displacement at the coordinate X is a periodic
time function. The period T' depends on the speed of the moving load:
T =l/v. B

The solution Y(X, t) can be found in the form of a Fourier se-
ries:

Y =Ao+ ¥ [4 cos @m(X + vt)/l)
j=t

+ B;j sin (2j7(X + vt)/l)] (10)
The Fourier coefficients A; and B; are functions of v and X.
Aj = A;j(X,v) B;=B;(X,v) (11a,b)

The generalized function given in equation (4) and its derivative are
periodic with period [ and can be developed in a Fourier series:

1= % +% i cos (2jm(X + vt)/l) (12)
i=1
oIl dr = .
X jglj sin (277 (X + vt)/l) (13)

By incorporating equations (10), (12), and (13) in equation (9) and
identifying the coefficients of the Fourier series, the following equa-
tions may be obtained

(F+ C)+ f6(X) = EIAy"" + mv2A¢y”
(F + C/)2/l = EI(A]_//// + 4Bj/”pj — 6Aj”p12 — 4lepja
+ Ajp;Y) — w;2mA; + mu2(A;” + 2B;'p; — Ajp;?)
- 2mu(w;B;’ ~ A;jpjw;) (15)
— 4wjC/I2 = EI(B;"” — 44;”p; — 6B;"p;* + 44;'p;?
+ ijj“) - wjszj + mUZ(Bj” —2A;'pj — ijjz)
+ 2muv(w;A;" + Bjpjw;)

(14)

(16)
with
wj=2wju/l pj=2xj/ll j=1 (17a,b)
where
()y=d()/dX

The two supplementary equations which will enable us to determine
the reactions C and F are obtained by imposing the force conditions
at the supports

Fy =F(X,v)=—-K;y(X,t) (18)
oy
Cy=C(X,v)=-K,—(X,t 19
N = C(X,v) aX( ) (19
with
X =Nl -t (20)

By using equation (10) and these last three relationships we ob-
tain

F(X,v) = —K, Li Aj(X, u)] 1)
L
C(X,v) = —K- Lio Af(X,v) + iijj(X, u)] (22)
> P2

Equations (14)—(16), (21), and (22) can be solved by using the Fourier
transformation with respect to X defined as

fo
= [ g(0e-#¥dx (23)
A system of linear equations is obtained
uOZO = f + (F + Lké)/l (24)
uij - LUjEj =2F+ikCYl j=1 (25)
szj + quj =—4xjC/12 j=1 (26)
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F=-K, Y _j 27
j=0
C=-K, [, ik_J + > pJEJ (28)
=0 j=1
with
ug = EIk* — mv2k? (29)
u; = EI(R* + 6pj2k2 +pjY) —muvk? j>1 (30)
wj = tkp;AEI(R2+ p;?) j>1 (31)

An approximate solution is obtained if only a finite number of terms,
n, is taken in equation (10).

The influence of this truncation will be studied in the following
paragraph. After omitting the details one finally obtains the unknown

functions Ag, 4 j, and Ej as a solution of a linear system of order
2n +1

FZO- FQf_
Zl (o]
El (o]
[Hij] . = (32)
A, o
LB- ] Lo ]
with
FZu ]
ui —wy
wy Uiy
[H] = + [ay] (33)
Up ™ Wy
- Wn  Un =
2
% =7 (K, — KkP)eicj ~ pipmK.did;
+ ikKr(pmeid; — picjd;)]  (34)
where
I=@2~-1/2 m=(@2j-1)/2 (35a,b)
ct=1 dy=0 (36a,b)
and forj > 1
cj =1+ (=1))/2 dj=Q1-(-19)/2 (37a,b)
The solutions are obtained by inversion of the matrix [H]|
2]
Ay (o]
—El o
= [H™1] (38)
A, 0
| Bn_J [ 0 ]
Functions A; and B; are rational algebraic fractions
- G4 - (@B
j=—2 B;=— (39a,b)

A T A

Journal of Applied Mechanics

The symbol A stands for the determinant of the matrix [H]. Itis a
polynomial in k2 whose real or complex roots are called k;

ARY)=0 1=1<4@2n+1) (40)

These roots can be obtained as the solution of a nonlinear eigenvalue
problem

{[Eo] + [E1]k + [Eo)k?® + [Es]k® + [Efk4Z = 0 (41)

Z is an eigenvector of order 2n + 1. The matrices [E;] are constant
and
If j is even:

[Ej] = [E;]T (42q)

If j is odd:

[E;] = —[E;]" (42b)
The various methods of resolution are studied in reference [31, 32].

If the poles k; are not real, functions A; and B; are obtained by
contour integration using Cauchy’s residue theorem in conjunction
with Jordan’s lemma [33]. For instance we have
iSA;Y, X <0
—iSA;-, X>0
Where SA;* and SA;~ denote the sum of the residues of 4; at its poles
k; in the upper and lower half plane, respectively. If the roots in
equation (40) are real, an energy dissipation mechanism can be in-
troduced into the equilibrium equation (7) or into the support reac-
tions (18) and (19). The poles k; have in this case an imaginary part
and the undamped case is considered as a limit when the damping
terms are made to vanish. In reference [11] a method of perturbation
is proposed in order to define the half space concerned in the integral
contour. When the polynomial A(k?) has a double real root, the in-
tegral in equation (43) does not exist, not even in the sense of a Cauchy
principal value. This case corresponds to an unbounded solution as-
sociated with a critical speed for the load. The introduction of
damping makes it possible to obtain a physically acceptable solu-
tion.

When functions A; and B; are known, the displacement Y at any
point can be calculated with equation (34). With the help of equations
(8), (21), and (22) the support reactions can be calculated.

+m-—-— .
A,-=(27r)‘1f AjetikX d = (43)

Justification of the Method in Terms of Wave Groups

To obtain the dispersion relations for free flexural waves propa-
gating in the positive x-direction with frequency w and wave nurmber
k, we assume

Aj = ajei(kx—vt) B]. = bjei(kx—vt) (44a,b)

This displacement is obtained by replacing v by w/k in equation (10).
By making cos and sin explicit, the wave group defined in references
[24, 29] is obtained
Y, )= Y [y jeitlet2miiz—ot) 4y pilth—2mi/Dx=wb))
j=0

(45)

By substituting a;, b;, for 4;, B; and when f = 0 equation (32) corre-
sponds to the free wave equation when a finite number of components,
2n + 1, in the wave group is considered. The exact dispersion relations
in periodic systems reveal the zones of propagation, references [21-30].
In Fig. 2 a plot of nondimensional wave number K = ki/m versus
frequency parameter () is shown over the first and second bands of
free propagation in the case where K; = « and K, = 0. The nondi-
mensional frequency  is defined with respect to the first resonance
frequency in a simply supported span £ = w/we. For a speed v of the
moving load the response of the beam is the superimposition of the
wave groups seen in equation (45) where k/v is substituted for w. The
solution corresponds to the intersection of the curves in Fig. 2 and a
straight line of slope 1/V. The nondimensional speed V is defined with
respect to the Timoshenko critical speed
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Fig. 3 Phase velocity versus wave number for K; = © and K, = 0
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A plot of V versus K is shown in Fig. 3. Each continuous curve cor-
responds to a propagation zone. For a value of v there is an infinite
number of k& solutions, each being associated with a wave group. In
the case of free propagation and coincidence effect with a convected
pressure, Mead has shown that the greatest amount of flexural energy
is transmitted by a component of the wave group, the wave number
of which is considered as the “primary value” for a given frequency
[25, 29]. Thus, for a load speed v, the predominant wave groups will
be those which correspond to a k-value close to a “primary value.” The
minimum and maximum values of the curves in Fig. 3 are associated
with critical load speeds defined in the preceding section. The primary
value of nondimensional wave number K associated with each prop-
agation band belongs to the interval [N, N + 1] preceding the smallest
value of the wave number K giving a minimum phase velocity. This
minimum value corresponds to the so-called “primary critical speed”
(points M and M, in Fig. 3). The “nonprimary critical speeds” can
be discounted as long as a low damping is introduced, since energy
is difficult to transmit for such wave numbers. In the proposed method
the number of components in a wave group is limited to 2n + 1.
Equation (40) is thus an approximate implicit relationship between
the phase velocity v and real wave number £ for free flexural waves
propagating in the positive x-direction. The approximate solution
is thus only valid for values of K even lower than n. Thus, if the so-
lution in equation (10) is truncated at order n, only the primary critical
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speeds associated with the n first propagation bands can be approx-
imated. Thus, in Fig. 4, in the case wheren =1, K, = 0, K; = =, the
approximate dispersion relation is close to the exact curve traced in
Fig. 3 for low wave numbers. As the primary critical speeds increase
with the critical wave number, the low values of n correspond to the
low load speeds v.

Transfer to a Continuous Foundation Model
Where n = 1 and K, = 0, the characteristic equation (40) can be
written in the following way:

®(S,V)+RY¥(S,V)=0 (46)

with

R = K, B3/(ElrY) S =K? (47a,b)

® and ¥ are sixth and fourth-degree polynomials in the S. The cal-
culation of the positive real poles in S gives the dispersion relationship
of the free waves. For R = 0.2 the dispersion curves shown in Fig. 5
reveal three minimum phase speed values V', V3, and V3. The form
of the curves varies according to the values of stiffness parameter K.
For instance, the minimum value Vs disappears for R > 0.33. When
K — o the point P; associated with V tends toward the point M7 in
Fig. 3. In the case where the stiffness K;!? and K, are less than the
flexural rigidity EI, the reactions of the elastic supports can be ex-
pressed by a Winkier foundation model. In the proposed method this
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Fig. 6 Wave number K, and test function € versus stiffness parameter R

assumption is equivalent to discounting amplitude A; and B; for j =
1. The equilibrium equation is therefore reduced to the first didgonal
term of the matrix equation (32)

[2(mv? — K,./1) + EIR* + K /1|40 = f (48)

This equation is identical to that obtained in the case of an Euler-
Bernoulli beam resting on a Winkler foundation with a distributed
vertical load K;/l and a distributed moment reaction K,/I. The latter
term has been proposed by Kerr to improve the stress analysis of
railroad tracks {34]. The dotted curve in Fig. 5 corresponds to the
dispersion curve for the Winkler continuous model with K, = 0. For
low values of K the phase speed Vs close to the critical speed of the
Winkler model. The influence of periodical support spacing can be
characterized by the ratio of A1 and By to the steady term Ag associ-
ated with the wave group whose wave number is close to the critical
value Ko

€= (A% + Bi2)/AH)1/? (49)

¢ increases rapidly beyond the value R = 0.1. In fact for such values
of R, the critical wave number Ky approaches 1-—cf. Fig. 6—the
stiffness parameter R = 0.1 appears to be the limit to the validity of
the Winkler continuous model.

Results .

In order to test the method we shall study the example of a simply
supported beam on rigid supports (K, = 0, K; = «) and the Fourier
series in equation (10) will be limited to the first order (n = 1).

The nondimensional beam deflection DD = y/y, calculated at the
center of a span for different values of nondimensional speed V are
shown in Fig. 7—yj is the midspan deflection of a simple pinned end
beam subjected to a static force f at midspan: y¢ = fI3/(48 EI). In the
static case (V = 0) the calculated value D, is close to the exact value
Dy:

D, =0.52452 D, = 0.53424
The equation (46) for V = 0 and R = » has four complex roots
S12 = (K1,2)2 = 0.829 £ 0.833
Sg4 = (K34)2 =6.16 £ i 4.87

Since the zeros K34 have a high value, their participation in the
solution may be discounted for points at a distance from the load. The
other zeros give a decreasing ratio for the support reaction 6, which
is practically real and very close to the exact value 0, obtained by the
three moment theorem

Journal of Applied Mechanics

Fig. 7 Nondi i beam defl

forR =

tion at midspan versus load distance

0, = Fyy1/Fn = —0.26795
B, = —0.27065 (1 + i 0.00394)

Fig. 4 shows that the calculated critical speed V. is very close to the
exact first primary critical speed V, (Point M, in Fig. 3).

Ve =0.92319 V., =0.92519
The same is true for the nondimensional critical wave number K

K, =1.17322 K, =1.16721

Conclusions

The proposed method has allowed us to calculate the critical speeds
of a moving force on a periodic structure. The form of the solution and
the convergence of the method have been justified on the basis of the
free wave propagation equations. The motion could be interpreted
as a superposition of wave groups and the “primary" critical speeds
were defined. In the case of rigid supports, the static deflection and
the first primary critical speed were calculated with high accuracy and
low computer cost. The limitation to a finite number of wave-group
components is analogous to modal truncation used in the Rayleigh-
Ritz method. But the latter can only be applied in the case of finite
structures. This study could be applied to more complex cases. For
instance, it should allow the study of vehicles in motion on flexible
guideways.
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1 Introduction

Numerous studies have been conducted to investigate the use of
passive vibration control techniques in structural systems (e.g., [1-
10]), and in some cases actual hardware has been installed in repre-
sentative building systems. However, while these devices are effective
vibration controllers under certain conditions, they suffer from a
limitation that is often inherent in most passive damping devices—the
impracticality of applying the vibration control concept to existing
structures. In many cases, these devices also suffer from the inability
to substantially control the response of dynamic systems to nonsta-
tionary stochastic environments (such as those generated by winds
or earthquakes) whose transient nature greatly reduces the efficiency
of passive methods as compared to their efficiency under periodic
excitation.

Analytical and experimental studies of impact vibration dampers

[4] indicated that these nonlinear devices, which rely on the mecha-

nism of momentum transfer and energy dissipation to accomplish
their work, offer distinct advantages over conventional linear auxiliary
mass dampers in attenuating the response of earthquake-excited
structures [5].

However, due to the transient nature of the earthquake ground
motion, the impulsive forces imparted by the impact damper to the
primary structure do not always occur at the optimum time from the
motion reduction point of view. A preliminary study indicated that
the performance of the damper can be enhanced considerably by ac-
tively controlling the damper parameters to apply the generated
impulsive forces at a time coinciding with the optimum phase rela-

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS. .

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until December 1, 1981. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by the Applied Mechanics Division, August,
1980; final revision, February, 1981.

Journal of Applied Mechanics

control pulse is applied. The optimum pulse characteristics are determined analytically
$0 as to minimize a non-negative cost function related to the structure energy. The pro-
posed control method is shown to be reliable in consistently mitigating the response of re-
alistic multidegree-of-freedom systems, whether linear or nonlinear, subject to arbitrary
stochastic or deterministic excitation.

tionship with respect to the excitation. The concept of using an aux- .
iliary mass to generate an impact-induced impulsive force to coun-
teract the motion of the primary structure (to which the damper is
attached) can be extended to the direct use of external energy sources,
as opposed to collision between two masses, to generate the needed
impulsive actions.

A relatively recent method to simulate dynamic environments on
test structures involves the use of a metal-cutting mandrel to generate
prescribed pulse trains [11, 12}. In the course of a current study [13]
to validate the concept of using pulse techniques to simulate the re-
sponse of structures to arbitrary dynamic environments, a gas pulse
generator is being built. This generator employs digital servo-con-
troller and hydraulic actuators in conjunction with a gas storage
system and a nozzle with a metered flow to furnish the needed
thrust.

In view of the preceding discussion, an alternative approach to the
exclusive reliance on passive methods to control the response of
structures in dynamic environments such as earthquakes is to utilize
active damping techniques. This paper is concerned with exploring
the feasibility of using the soon-to-be-available portable gas pulse
generators to actively control the response of structures during epi-
sodes of strong dynamic excitation.

1.1 Limitations of Active Control Techniques. The discipline
of feedback control is an extremely active area of research and ap-
plications, as evidenced by the numerous books and technical journals
devoted to the treatment of this subject. A recent survey [14] of just
the optimal control of distributed-parameter systems contains over
260 references. While active control has been widely applied in many
engineering areas and while some pioneering work has been done by
Leipholz, Yao, and others [15-20] in the structural engineering area,
they have yet to have meaningful applications in the active control
of civil engineering structural systems to earthquake-like excita-
tions.

Among the major difficulties encountered in the application of
modern control techniques to building structural systems are the
following: :
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1 Active control requires the ability to generate and apply large
controlled forces to the structure.

2 Modern control theory often leads to feedback control laws, thus
requiring on-line measurement (or estimation) of all the system state
variables.

3  On-line control requires that both measurement and control
be performed in real time.

4 Standard methods of control do not lend themselves readily to
restricting the class of control signals to relatively narrow, high-energy
pulses of the type suitable for active control of buildings and similar
structures.

1.2 Proposed Active Control Strategy. Preliminary analytical
and experimental studies by the authors [21] yielded promising results
regarding the on-line pulse-control of building response under the
action of nonstationary random excitations resembling typical
earthquake ground motion.

The proposed control algorithm in [21] is designed to overcome the
limitations of the existing controller design techniques. The algorithm
requires a continuous monitoring of the state variables and the esti-
mation of the energy content of the earthquake ground motion record.
Following determination that some specified threshold has been ex-
ceeded, an open-loop pulse control is applied. The determination of
the optimum pulse magnitude is based on a performance criterion
which depends in a nonlinear way on both the deterministic and
stochastic components of the response.

2 Pulse Control Method

2.1 Introduction. The proposed control method is applicable
to arbitrary distributed systems with dynamic excitations which are
directly applied or supplied through base motion. However, for the
sake of clarity in explaining the procedure and illustrating its appli-
cation, a base-excited building-like model of the type shown in Fig.
1 will be used.

The main idea behind the method is that the gradual rhythmic
buildup of the structural response can be destroyed by applying pulses
of suitable magnitude and proper direction at several locations dis-
tributed throughout the structure. Thus the control force need not
be very large to completely counteract the massive amount of energy
being applied to the structure; only a relatively small amount of
control force is sufficient to interfere with orderly resonance phe-
nomena which require many system.periods to reach peak response
levels.

Furthermore, in order to minimize the amount of control energy
utilized, the control should be applied only when the structural re-
sponse exceeds a certain threshold related to the resistance of the
structure. Thus the control strategy requires that

1 The system be pulsed every time its response, which is moni-
tored at several selected locations, crosses a threshold.

2 The minimum spacing between pulses be kept of the order Ty,
the fundamental period of the structure.

3 The amplitudes of the pulses furnished by the controllers, which
are placed at specific locations within the structure, are to be chosen
so as to minimize an appropriate cost function.

2.2 Formulation. Consider the linear structure shown in Fig.
1, which is subjected to arbitrary base motion S(t). The absolute
displacement of location i is x;(¢) and its relative motion with respect
to the base is given by

i) =x8)—S@E), i=12,...,n 1)

In the context of earthquake engineering, the problem is to mitigate
the damage to the structure resulting from excessive deformations
y:i(t), relative to the foundation which is undergoing an earthquake
ground motion S(¢).

Assume that, on the basis of design considerations, threshold levels
yr; (¢ = 1,2, ..., n) have been established for the locations whose

motions are to be monitored. These levels will be used in conjunction .

with the control logic (to be discussed later) to trigger the control-
lers. '
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Fig. 1 System model

In the absence of control forces, the equation of motion of the sys-
tem shown in Fig. 1 is

[mly + [cly + [kly = —[m]e S(t) (2)

where y(t) = col (y1,¥2,- - . , ¥»); Im], [¢], and [k] are mass, damping;
and stiffness matrices, e = @ unit vector of ordern = (1,1,...,1),and
$ = ground acceleration.

Assume that at time ¢o (Fig. 2), a decision has been made to trigger
an array of pulse controllers located at selected points in the structure.
The problem now is to select the optimum pulse characteristics so as
to minimize an appropriate cost function. The control pulses to be
used are constrained to satisfy the condition

Pi(t) = pipo(t), i=1,2,...,n (3

where p; is the amplitude of the pulse at location i, and po(t) is an
arbitrary time history. Note that equation (1) implies that (a) all the
pulses are initiated at the same time and (b) they maintain a constant
amplitude ratio, with respect to each other, every time a pulse is ini-
tiated.

In order to optimize (minimize) the motion of the system over &
relatively short time segment T'ope, it will be assumed that the system
motion consists of a stochastic component superimposed on top of
a deterministic component. The pulse amplitudes are to be selected
to minimize the deterministic (expected value) component of the
motion.

Let

P(t) = ppo(t) (4)
where p = col (py, ps,. .., pn).
In order to account for the cases where controllers are to be applied
only at certain locations NP, the reduced-order vector P, is related
to p by
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5)

where [wo] is a constant matrix of order n X NP, and P, is a vector of
order NP, containing the amplitude of the operating pulsers.

Neglecting the mean value of the earthquake excitation during the
period to to T = (to + Topt), the system response is then given by the
solution of

P= [w2]pr

[m]y + [ely + [kly = p(¢) = ppo(t), (6)
subject to theémitial conditions
y(to) =yo, ¥(to) = Yo. (7)

Under the assumption that the damping matrix is proportional to
[m] and [k], the modal approach will yield

y() = [G:(®O)]y(t0) + [Ga(D)]§(t0) — [Gat)][me + [Gs(t)lp (8)
where
[Gi(t)] = [o][U(t — to)][Qu]
[G2(8)] = [¢][V(t — to)][@1]
[G5)] = [BIH®)][$]T

OEN) ‘ [Ga(t — DIS()dr

(G0 = f t [Ga(t ~ 7)]po(r)dr
Q1] = [M]{¢]7[m]

Journal of Applied Mechanics

[U], [V], and [H] are diagonal matrices with elements

u;(t) = exp (—{wit) [(ﬁ) sin w;n;t + cos wmit}
7

L
vii(t) = exp (= {wit) |—sin wmitl

i

hii(t) = MI— i (0)

i

C; C;
P =4/1 — .2’ Y = B et
"‘ &5 G Coy 2VEM;
K;
w; = —
M;

[M] = [¢]T[m][¢]
[C] = a|M] + BIK] = [¢]"[c]I#]
(K] = [4]"[%][9]

[#] = eigenvector matrix associated with [m]}~1{k).

In view of the assumption that the ground excitation S(¢) can be
treated during period T'opt as a zero-mean random process, then the
expected value of y(¢) as given by equation (8) will not depend on §.
Hence

Efy(t)] = [G1(t)lyo + [Ga(t)]yo + [Gs(t)]p )
Let the cost function to be minimized be
Te
J@) = [ Ot (10)
to

where [w1] is an arbitrary weighting matrix. If the strain or kinetic
energy of the system is to be minimized, [w,] can be chosen as [w,] =
[m] and e(t) = E[y(t)].

Making use of equations (5) and (8), equation (10) becomes

To
JPy) = f {Ga(t) + 2 GroT(t)P, + P, T[Gua(t)]PJdt  (11)

to
where
Ge(t) = [G1()]yo + [Ga(&)]yo — [Ga(t)][mle
Gr(t) = GeTw1]Ge(t)
Ga(t) = [Gs(1)]T[w1]G6(t)
[Ge()] = [Gs(O)] T Tw1)lGs(t))]
Gio(t) = [we] T[G5(2)] [w1lGe()
[G11(2)] = [wo] T [Go(t)] [w2]
For J(P,) to have an extremum value,
oJ
Py,

Application of equation (12) to (11) results in the optimum values
of P,

=0, k=1,2,...,NP. (12)

P =~ [Gis]™ 1 G12 (13)

where

To
G2 = J: Gio(t)dt
To
[G1a] = j:o [Gi(e)]dt

To
Gra= f G(t)dt
to

Note that, due to the assumption that the base excitation has a zero
mean, the expected value of matrix [G4(t)] is zero.

For the special case of a single-degree-of-freedom system, equation
(18) reduces to
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N T -1
B=- U;o °xp2(t)dt]
To
X {f xp(t) [u(t — to)yo + vt — to)b'/o]dt} (14)
to

where

T
1p(t) = j; *h(t — T)po(r)dr. (15)
0

2.3 Computational Considerations. In view of the fact that
on-line application of the control algorithm requires fast computation
time, certain steps can be taken to reduce the computational tasks.
For example, the matrices appearing in equation (13) contain many
terms that depend only on the nominal pulse time history. Thus these
terms can be evaluated just once and then stored for reuse whenever
a pulse application is called for.

These ideas can be clarified by referring to equation (14) which
applies to a SDOF system only. From this it is seen that once the
nominal pulse shape po(t) is selected (on the basis of physical con-
siderations and limitations), the response term x,(t) appearing in
equation (15) can be analytically evaluated and later used whenever
needed. .

Note from equation (14) that the optimum pulse amplitude is a
function of two groups of terms: (a) the term x,(t), which depends
on the particular choice of controller force po(t), and (b) the bracketed
group of terms, which depend on the system memory as reflected by
terms u(t) and v(t), and on the “initial” conditions yq and yg at the
pulse initiation time #q.

As a further simplification, the dynamic response of the structure
due to the pulses with finite duration Tq can be accurately estimated
on the basis of the impulsive response of the structure when subjected
to an impulse of magnitude {074 po(7)dr.
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Fig. 4 Relative velocity response

3 Simulation of Control Strategy

Consider a model in the form of Fig. 1 of a three-story building
frame that has been extensively analyzed, both analytically and ex-
perimentally {22, 23] at the University of California, Berkeley
(UCB).

If this linear model of the UCB frame (henceforth referred to as
model UCB-1) is subjected to a representative sample (earthquake
B1) of a widely used set of artificial earthquakes [24] the relative
displacement response of model UCB-1 without control will be as
shown in Fig. 3(a—c). The three natural frequencies of model UCB-1
are ~2, 8, and 10 Hz. Thus the time history segment shown in Fig. 3
corresponds to about 50 fundamental periods 7'y of the system.

Applying the control strategy just discussed to this structure with
a threshold crossing level of yrer; = £0.44, yyer, = £0.88, and yyef, =
+1.0, the controlled response shown in Fig. 3(d-f) is obtained. This
particular choice of yrer corresponds to yor = dag® where ¢() = {0.64,
0.88, 1.0} is the system eigenvector corresponding to the first mode,
and d3 (equal 1.0 in this example) is the scale factor corresponding
to the absolute threshold level at the third (top) story. The pulse shape
function po(t) is rectangular and its duration is chosen equal to 0.01
sec, approximately equal to 2 percent of T, and the optimization time
segment is taken as Topt = 0.5 sec = T';, There is a sensor and a con-
troller at each of the three mass locations.

It can be observed from Fig. 3 that the relative displacement at each
location is closely bounded by the selected threshold levels, and that
approximately the same percentage reduction is achieved at each
location (each of the controlled locations has a peak response ~35
percent of the corresponding uncontrolled response). Fig. 4 shows the
relative velocity of the same structure with and without control under
the same conditions shown in Fig. 3. The optimum pulse trains to be
applied at the three locations are shown in Fig. 5.

Inspection of the results shown in Fig. 4 indicates that the peak
relative velocity of each of the controlled locations is 40 percent of
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the corresponding uncontrolled response. Also, it is seen from Figs.

$=E.0. B LOTATION = {1, 1, 1)y ¢ = (0.64, 0.88, 1.0 3 and 4 that the percentage reduction in the rms level of the different

Tg= 001 Topp = 0.5 L Py response quantities is approximately the same as the corresponding

-~y reduction in peak levels.

l It is seen from Fig. 5 that the amplitude ratios of the control pulses

, e at the three locations are approximately equal to the corresponding

ol oy ratios of the fundamental mode of vibration ¢V, In fact, the average

of the ratios for the 33 pulses applied in this case at each of the loca-

tions is {0.58, 0.84, 1.0}, which is fairly close to the ratios associated with

-10° v s (). In other words, the optimization scheme indicates that it is more

TIME efficient to apply the larger control forces at locations which can exert

more control action by virtue of the amplification effects associated
with the effective “moment arm” of each controller location.

The results of Figs. 6 and 7 illustrate the effects of adjusting the
ol m - | threshold level on the controlled response and the required pulse
L i ' trains of model UCB-1, using the same excitation (E.Q. B1) and the

same values for the rest of the control parameters shown in Figs.
3-5.
o e 25 In the limiting case of d3 = 0, the number of pulses used will be
) determined by the available control energy and can be constrained
not to exceed a certain number of specifying Tyin, the minimum
spacing of the pulses. At the other extreme, if dg = «, the response
will not be constrained and, consequently, no control action is called
[ S P . for. In between those two limits, the controlled response is seen to be
held fairly closely to the governing threshold levels. Of course as the
control limits are relaxed, there is less demand to take corrective ac-
-1050 s tion, thus less control force is needed. This fact is confirmed in the
TIME representative results shown in Fig. 7.
(e) Since energy requirements are crucial for the feasibility of the
proposed control method, determining the optimum pulse controller
Fig.5 Optimum pulse trains location for minimizing the needed control energy is an important

10° i

S =E.Q. Bl LOCATION = {1, 1, 1} Y

dy .[0.64, 0.88, 1.0} —P

—
]

0.01 T = 0.5

| il
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Fig. 6 Effects of threshold level on the controlled response of the UCB structure
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Fig. 7 Effects ot threshold level on control pulse magnitude

task. The results shown in Fig. 8 indicate the effects that can be ob-
" tained by using a single controller (instead of the three used previ-
ously). In Fig. 8(a) the controller is applied at the top floor (mg); in
Fig. 8(b) the controller is at the middle floor (ms); and in Fig. 8(c) the
controller is acting at the first floor (mq).

Comparing the controlled response of the top floor in each of the
three cases shown in Fig. 8 with its uncontrolled level, it is seen that
approximately the same level of control can be achieved regardless
of where the controller is applied. However, from the control energy
point of view, there is a substantial difference in the requirements.
The total impulse I applied by the controller used in Fig. 8(a—c) is I's
=7.14 X 103 Ib-sec, I3 = 10.2 X 103 1b-sec, and I; = 12.5 X 103 1b-sec.
These values compare with I = 9.24 X 103 lb-sec used by the three
controllers when applied simultaneously to the case shown in Figs.
3-5.

Thus it is clear that for this example structure, the optimum con-
troller location is at mg, and it is more energy-efficient to use one in-
stead of three controllers. However, from the structural design point
of view, it is more efficient to distribute the required control action
over a large area of the structure.

Since the practical use of this method depends on determining some
design parameters for the controller that can be derived from simu-
lation studies, it is useful to investigate the response of model UCB-1
if its various control parameters are kept identical to those used in
Fig. 3, and if it is then subjected to a variety of test excitations in-
cluding stochastic as well as deterministic types.

The test excitation, comparison of the motion of mj with and
without control, and the optimum pulse train at mg are given in ref-
erence [25] for each of the following cases:

1 Artificial earthquake A; [24].

2  Artificial earthquake Dq [24].

3 Recorded ground motion corresponding to 1940 El Centro
earthquake.

4 Stationary random excitation.

5 Swept-sine excitation.

The results shown in reference [25] together with Fig. 3 are indic-
ative of the reliability of the proposed active control method in suc-
cessfully limiting the structural response to predetermined levels,
under a wide selection of text excitations.
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Fig. 9 Response of 25-DOF system under earthquake D1
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Fig. 10 Nonlinear system characteristics

In order to illustrate the application of this method to more com-
plicated structures, consider an example of 25 DOF building model
which is representative of modern tall buildings [26].

Using earthquake D; as a hypothetical disturbance and placing
threshold level detectors and controllers at locations 8, 13, 18, and 28,
the control results shown in Fig. 9 are obtained. Note that substantial
reduction is obtained in the response throughout the structure and
the peak response levels are kept very close to the selected bounds.
The optimum pulse trains shown in Figs. 3(i-1) confirm the expec-
tation that it is more efficient to apply control forces at points that
are farthest away from the point of fixity of the structure.

As a final example, consider a modified version of UCB-1 where it
is assumed that the first restoring force element has a hardening-
spring characteristic, the second element is hysteretic in nature, and
the third element has a softening-spring nonlinearity. A plot of the
restoring forces of the various elements of this structure versus their
respective interstory displacement result in the nonlinear curves
shown in Fig. 10. This structure will be referred to as UCB-2.

Subjecting structure UCB-2 to artificial earthquake D; and using
equivalent linear properties to determine the optimum controller
forces, results in the response shown in Fig. 11. It is clear that even
though the control algorithm is devised for a linear distributed system,
it is also successful in controlling the structural response of nonlinear
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Fig. 11 Response of nonlinear 3-DOF System under earthquake D1

systems provided reasonable equivalent linear properties are used
to represent the nonlinear structure.

4 Summary and Conclusions

A simple yet efficient active control method is presented for re-
ducing the oscillations of distributed parameter systems subjected
to arbitrary deterministic or stochastic excitations.

This algorithm requires a continuous monitoring of the system state
variables. Following the determination that some specified threshold
has been exceeded, an open-loop control pulse is applied. The opti-
mum pulse characteristics are determined analytically so as to min-
imize a non-negative cost function related to the structure strain
energy and kinetic energy. The performance index is evaluated, and
a control signal is calculated and applied for succeeding time inter-
vals.

The determination of the optimum pulse magnitudes as well as the
optimum spatial location of the controllers is based on a performance
criterion which is linearly dependent on the deterministic (temporal
mean) components of the response. The analytical solution for the
optimum pulse characteristics uses the modal approach, and is shown
to be computationally efficient and suitable for on-line implemen-
tation in controlling realistic structural systems.

Results of this investigation are applied to three example struc-
tures:

1 Alinear model of a three-story frame that has been extensively
investigated both experimentally and analytically by other re-
searchers. :

2 A linear mathematical model of a 25-story building which is
representative of modern tall buildings.

3 A nonlinear three-degree-of-freedom system with components
found in typical structures.

The test excitations used included several artificial earthquakes, an
actual earthquake ground motion, stationary random excitation, and
swept-sine signals.

It is shown that the proposed control method is reliable in consis-
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tently mitigating the response of realistic structures subject to arbi-
trary dynamic environments.
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Two related problems are investigated in order to study via a simple example the influ-
ence of gyroscopic forces on nonlinear harmonic oscillations of rotationally symmetric
shell structures. First, the amplitude frequency equations are calculated for circumferen-
tially traveling waves in a circular ring rotating about its geometrical axis. The results
show that in the range of rotational speeds considered the backward traveling waves ex-
hibit hardening type of response, whereas for the forward traveling waves there is a tran-
sition from hardening to softening type of behavior as the rotational speed increases, The
second part of the paper is devoted to an analysis of interaction between the two traveling
waves which is expected at low angular speeds. The results, valid for arbitrary shells of
revolution, reveal the existence of secondary bifurcation points on the branches corre-
sponding to the traveling waves, and the response on the secondary branches is found to
be close to standing waves which do not appear at all as solutions of the linear free-vibra-

tion problem for the rotating shell.

Introduction
Due to Coriolis acceleration the linear problems of free vibrations

of shells of revolution rotating about their geometrical axis admit only

circumferentially traveling wave type of solutions. Motivated by the
need for an elucidation of this phenomenon of disappearance of
standing wave solutions of the linear problem even for arbitrarily
small but nonvanishing speeds of rotation, this paper is devoted to
an investigation of the effect of gyroscopic forces on steady nonlinear
harmonic oscillations of elastic structures. Although the methods
developed herein for our purposes are quite general, we have utilized

them for analysis of an inextensible-circular ring due to obvious rea-.

sons of simplicity.

The earliest investigation of the influence of rotation on vibration
of a shell is apparently due to Bryan [1] who was interested in the beat
phenomenon that occurs due to small difference between the
frequencies of forward and backward traveling waves in a shell ro-
tating at relatively small angular speeds. Although Carrier’s study [2]
is the most comprehensive one on the linear vibration of a rotating
ring, there are some other treatments which include illuminating
accounts of technical applications such as aircraft engine shells [3}
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and electromagnetic shields for superconducting electrical machines
for power generation [4] wherein the influence of gyroscopic forces
on vibration of shells is an important consideration for engineering
design.

In this paper we first derive the amplitude frequency equations for
the traveling waves in a rotating ring on the basis of a perturbation
technique which is an application of the Lyapunov-Schmidt method
[5]. For the limiting case of vanishing rotational speed our results
complement the earlier analyses [6, 7] of standing waves in an elastic
ring. Insofar as the amplitude frequency equation is concerned, our
results indicate that for the stationary ring the traveling wave solu-
tions are significantly different from the standing wave solution, and
for the rotating ring the forward and backward traveling waves exhibit
markedly different nonlinear charcteristics.

Another aspect of the problem that we have addressed in the sequel
is the interaction that occurs between the two traveling waves at low
speeds of rotation of the ring. Application of the Lyapunov-Schmidt
method to the interaction problem for rotationally symmetric
structures yields results which are quite general and, even for the case
of stationary shells, have been obtained hirtherto in the context of
specific examples only [e.g., 8]. The picture that emerges from our
analysis—and which, retrospectively, is not quite unexpected—is the
following. For the undamped free-vibration problems of rotationally
symmetric stationary shells there are four solution branches, two
corresponding to traveling waves, and the rest to the standing waves.
Due to Coriolis acceleration, mode-splitting occurs in rotating shells
and only traveling waves occur as solutions of the linear problem.
However, when nonlinearities are taken into account, secondary bi-
furcation points appear on one of the branches corresponding to the
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traveling waves, and the solution branches that emanate from the
secondary bifurcation points approach asymptotically the standing
wave solutions for large values of amplitude of oscillation.

Formulation

We use the theory of an inextensible! circular ring derived by
Budiansky [9] and write the governing equations by first defining a
functional

Vig) = Val@) + Vila) + Vi) W
where
vilg) =3 {17716 = w0 + 2w+ 00, ®
V@ =3 [ vl + v+ W = v)ao, ®)
Vi@ = £ 6 — w2 - wyds, @

which represent the strain energy of the ring appropriately augmented
to account for the inextensibility condition. In (2)—(4), w and v denote,
respectively, the radial and circumferential displacements, both
nondimensionalized by the ring radius R; » is the Lagrange multiplier
associated with the inextensibility condition, g represents the triple
(v, w, ¥)T and superposed primes denote differentials with respect
to 6. With the definitions just given the equilibrium equations for a
ring rotating at a steady speed {2 and oscillating at a frequency & can
be written in a coordinate frame rotating with the ring in a variational
form as

2
oVig) + f {ardw + apdv]dd = 0, (5)
0
where
a =0 — Q2 (1 +w) — 20y, (6)
ap = w2 — Q% + 200, 7

are the acceleration components. The dots in (6), (7) denote deriva-
tives with respect to the time coordinate nondimensionalized by using
the frequency of oscillation, and

(@, @) = (Q, &)phR*/D, (8)

where p, h, and D denote, respectively, the density ring thickness, ring
thickness, and the bending stiffness, and 6V (q) is the first variation
" of the functional with respect to q.

It is easily shown that the equation (5) has a time-independent
solution

by = QZ, Do=Wo = 0. (9)

We shall now investigate nonlinear steady harmonic oscillations about
the steady solution (9). For this purpose we write

q=qo+q* (10)

where g denotes the triple (wo, vo, o) 7, ete. The equations governing
q* are obtained by substituting (9), (10) into (5) and the result of this
procedure can be written succintly (in Koiter’s notation [10] for ho-
mogeneous functionals and their derivatives) in the form

R(g, 6q) = P11(g, 6q) + P21(q, 6q) + Pa(q, dq)

+ wGIl(q: 5‘1) + szll(q, 5(]) =0 (11)

where superposed star has been dropped from g* for notational
convenience, and

1 The introduction of the inextensibility condition introduces errors of the
order of the square of the thickness to radius ratio, as is shown in [7].
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P1i{q, 8q) = 0Va(q)
1 2r
—~ Q02 AV YA 2
+295f0 [(w+v)? + (W’ — v)?]df

27

— Q2

‘J; fwow + vovlde, (12)

Poi(g, 6q) = 6Vs(q), Palq,0q) = 8V4(q), (13)
2

Gulg, dq) = j; 20[ — véw + wov]do, (14)
27

Mui(g, 6q) = j; [wow + 6ov]de. (15)

It is evident that of the bilinear functionals introduced above, Py; and
M, are symmetric, whereas G 13 is antisymmetric with respect to the
arguments. Moreover, although (11) has been derived in the context
of a specific example, insofar as it requires that the first variation of
the transitional strain energy be balanced by the acceleration of the
structure, it is applicable, with appropriate definitions of g and various
functionals, to the general problem of oscillation of a rotating struc-
ture. We shall first describe, for the solution of the general problem,
a procedure that results from the application of the Lyapunov-
Schmidt method and which is only a slight modification of the de-
velopment given in an earlier paper [6]. The technique will then be
utilized for the precise problem which has motivated the analysis
presented in the next section. V -

Asymptotic Analysis for the General Case
Since we seek time periodic solutions of (11), the equation has to
be complemented by the periodicity conditions

q(0) = q(2m), ¢(0) = ¢(@m),

where the spatial dependence of ¢ has been suppressed for brevity
of notation. Thus, in the time domain, we have a two-point nonlinear
boundary-value problem in which the frequency of oscillation w ap-
pears as a parameter. Equations (11), (16) have the trivial solution
for all values of w and the condition for the existence of bifurcation
points on the trivial solution branch yields the equations for the
natural frequencies and free vibration modes of the structure, to
wit '

(16)

wo?M 11 (%, 8q) + woG11(w, 6q) + Pyi(u, 6q) =0, (17a)

u(0) = u(2r), u(0)=u(2w). (17b)

which is the linear part of the original equations (11), (16). Equation
(17) has the solutions (with overbar denoting the complex conju-
gate)

u=yet, g=7ye it (18)
where y, whose components are functions of spatial coordinates only,
is the free-vibration mode. It satisfies the quadratic eigenvalue

problem
—wo?M11(y, 8q) + iwoG11(y, 89) + P1a(y, 8¢q) =0,  (19a)
Tuly,¥) =1, (19b)

The condition (195} is basically a normalization condition in terms
of the first variation T'y; of a functional T’s. As in [10], choice of Tq is
arbitrary except that it is required to be positive-definite.

Since the subsequent analysis is similar to one presented in [6], with
the modifications arising due to the presence of gyroscopic terms, we
shall only outline the steps leading to the amplitude frequency
equation near any natural frequency wp which is such that (i) the
associated eigenmode is unique within a sigh and (f) none of the other
natural frequencies is an integral multiple of wy.

The solution of (11) is first written in the form

. 27
q = (aye™ + c.c.) + 2, j:) e~itT (2, y)dt =0, (20)
where « is the (complex) amplitude of oscillation and “c.c.” denotes
the complex conjugate of the term immediately preceding it. When
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(20) is substituted into (11), the resulting equation can be written in
terms of two equivalent ones:

wo?M11(2, 8q) + woG11(2, 8q) + P1a(z, oq) = E (g, 89)

1 ., 2r
- {—-— ettT1(y, 6q) f e iR(q,y) dt + c.c.] (21a)
2 1}

2 -
S etRia 7 dt =0, (21b)
0
where
~R(q,6q) = (w2 — woDM11(g, 8g) + (@ — we)G11(d, 8q)
+ Pailg, 6q) + Pai(g, 0g), (22)

with g given by (20). Equation (20) is merely a decomposition of the
solution in terms of the natural mode of oscillation and its orthogonal
component, whereas (21) reflects the same decomposition for the
equation itself, following the Lyapunov-Schmidt method [5]. It is
evident that when (11) is decomposed in the form of (21), secular
terms are automatically eliminated from (21a). Thus the latter
equation can be solved in an asymptotic series in the amplitude of
oscillation and (w —~ wp). This solution when substituted into (21b)
yields the desired amplitude frequency equation. The lowest order
solution of (21a) which allows one to obtain the essential character
of the nonlinear solution near wg is given by

z = {022tz @ + cc.) + apz®, (23)
In (23), 2® and 2(® are obtained from the solution of the linear
time-independent problems

—dwo? M11(z®, 8q) + 2iwoG11(2®, 8q)
+ P11(z®, 8q) + Pai(y, 8g) = 0,

Py1(z®, 8g) + P111(y, ¥, 6g) = 0.

(24)
(25)
These equations (23), (25) are simply obtained by expanding the

quadratically nonlinear term (21a), (22). Substitution of (23) into
(21b) yields the desired result

—(w? — wo?) ma + (w — wo)ge + y102a = 0, (26)
where
m=Muly,y), (27a)
g =iGu®,y), (27b)
v1=2Pn(7,29) + Pui (v, 7,29)
+ Pani(y, ¥, ). (27¢)

The aforementioned analysis could be carried through without any
significant changes even if damping and a time periodic forcing
function were present. In such a case equation (11) is modified to

R(q,8q) + uCulg, dq) = £F(f, 8g)e™ + c.c} (28)

where ¢ and £ are scalar measures of damping and applied force, re-
spectively, with both the measures assumed to be small. The lowest
order result which contains all the significant terms turns out to be

—(w? — we)ma + (w — wodga + ipca + yio%x = ¢, (29)

where

¢=EFulf, y). (30)

In summary, in order to obtain the response of a rotating structure
one has to solve the eigenvalue problem (19) and linear boundary-
value problems (24), (25). These solutions can be used to obtain the
numerical coefficients in the response equation (29) by utilizing (27),
(30). This procedure shall now be illustrated by an analysis of the
rotating circular ring problem formulated in an earlier section.

¢ = Cll(y’ 7)1

Journal of Applied Mechanics

Amplitude Frequency Equation for Traveling Waves
in a Rotating Ring

We first calculate the natural modes of a rotating ring by using (12),
(14), (15), and (19), which yield

L(wo, 05 Ry =0, (31)
where L is the matrix differential operator defined by
‘1 00 0 -2 0
[L]=——w02 01 0 +ion 2 0 0
0 0 0 00 0
—6,94 093 ~1 “'602 200 0
—1-2% o2 oyl +22)1-20 -0 0| (32
-1 -9 0 0 0 0
On substitution of
¥ = (1,iBy, C1)Tein?
=Yei, pn=23..., (33)
equation (31) yields the matrix eigenvalue problem
L(wg, in; Q)Y = 0. (34)
The solution of (34) is found to be
wo=—228 \/1+ o (35a)
= wsn 3
* T ht1 n2+1 ¢
By =1/n, (35b)
C1=wo+n2—nt+ (2 — n2)Q2 - 2w,Q/n, (35¢)

where w;, is the natural frequency of the stationary ring associated
with a given circumferential wave number and is given by

wen2 = n2(n? ~ 1)%/(n? + 1). (35d)

It is evident from (20), (33), (35) that due to rotational effects there
are two different natural frequencies, one positive and other negative,
corresponding to a given value of circumferential wave number n, and
these frequencies correspond to traveling waves, since, in terms of the
dimensional variables,

W = eitn0ted gie, (36)

This result is in contrast to the stationary case wherein both the
traveling waves have the same frequencies.

Further computations require the calculation of the forcing terms
in (24), (25). On using (3), (13), (33), (35) these turn out to be

2%
Pyi(y, 6g) = j; [bwGy +i6v G+ v Gg] €278dh, (37a)

where
G1=2nCi(n — By), (37b)
Gg = —Ci(n — By), (37¢)
G3 = —(n — B1)?%/2, (37d)
and
27
Pun,3,80)= {7 (n— Bu)2 ovo. (37e)
From.(24), (36) and (25), (37) it follows that
) 22 = (Ay, iBy, Cs)Teind = Z(2) g2ns, (38)
2 = (Ag, iBo, Co)T = ZO), (39)

where
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Fig. 1 The coefficient of the nonlinear term In the amplitude frequency

equation (44) for a rotating ring; circumferential wave number n = 2

(40)
(41)

L(2wg, 2in; Q) Z@ + (G4, iG, G3)T = 0,
L(0,0; Q) Z© + (0,0, {n — B)T =0,

and L (wo, dy; ) is defined by (32). Equations (40), (41) are linear al-
gebraic equations which can be solved readily. The solutions of these
equations together with (4), (13), (27), (36)-(39) yield

;Ll = 2(A9G1 + BoGs + CsGa) + 2 (n2 — 1)4/n2, (42)

Y8

The other constants in the amplitude frequency equation (26)
are

R (1+Bo), £ =408, 43)
2 2m

which are obtained from (27), (33), (35). It is convenient to put the
final result in the form

i 1 2(A2G1 + BQGZ + CzG3) + 2(712 - 1)4/n2

wp - 4wo[4QB;1 — 2wo(1 + B12)] A7
=14 CA? (44)
which follows from (26). Furthermore, in (44) we have set '
A? = doo (45)

which is the square of the amplitude of oscillation.

We have used the sequence of linear algebraic equations leading
to (44) to compute the coefficient C which determines the essential
effect of including the nonlinearity. Typical results for n = 2 are given
in Fig. 1. Numerical results were also obtained for other values of
cricumferential wave number (2 < n < 10) in the range of rotational
speeds 0 < Q < 2ws,. The results are qualitatively similar in that for
the forward traveling wave the nonlinearity coefficient C defined by
(44) is positive at zero and low rotational speeds and then changes sign
as the speed increases, whereas for the backward traveling wave the
nonlinearity is always of the hardening type. (Note that wp < 0 for
forward traveling wave and wo > 0 for backward traveling wave, cf.
(36).) These numerical results also indicate that for a stationary ring
C =~ (3/16) n? for large values of the circumferential wave number (see
Table 1) which is the reason why the quantity 16C/(3n2) has been
plotted in Fig. 1.

The result for traveling waves in stationary ring is in sharp contrast
to what was obtained earlier [6,7] for standing wave pattern, for which

the coefficient in amplitude frequency equation (36) was found to be -

approximately given by C ~ —n4/8 for large values of . It is evident,
therefore, that the interaction between the two traveling waves which
gives rise to the significantly different nonlinear character of the
standing wave pattern plays an important role in the determination
of nonlinear dynamic response of the ring and, generally, of geomet-
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Table 1 The coefficient in the amplitude frequency equation (44) for traveling
waves in a stationary ring
n 16 C/3n2
2 .550
3 776
4 » .868
5 .914
6 .940
7 .955
8 .966
9 .973
10 .978

rical similar rotationally symmetric shells of revolution. Further, it
is also expected that the interaction would give rise to qualitatively
interesting behavior in such structures even when they are rotating
about their axis of symmetry. The aforementioned considerations
have motivated the analysis of the next section.

A Mode Interaction Analysis for Slowly Rotating
Shells of Revolution

In what follows we consider the general equation of motion (11)
under the restriction that the rotational speed { which is implicitly
contained in the functional associated with the gryoscopic forces and
in the strain-energy functionals is sufficiently small. Moreover, we
restrict our attention to rotationally symmetric shells for which all
the functionals in (11) are of the type

[ F@as

where F represents any of the functionals and q is dependent on 8,¢
and one other spatial coordinate subsequently referred to as the axial
coordinate, and all the components of ¢ are periodic with respect to
6. Since (11) is a variational statement, it implicitly includes any
natural boundary conditions at the ends of the shell and requires that
all the admissible variations satisfy the imposed kinematic conditions.
As aresult, at Q = 0, the equations for natural frequencies and natural
modes for (11), '

wo? M11(i1, 6q) + Py1(u, 6g) = 0, (46a)

2
j; To(u)dt # 0 (46b)
have for the same value of wg the following four linearly independent
solutions

9 eind git, § p=ind it § gind g—it T p—ind p—it
where components of 9 are independent of both # and ¢ but are
functions of the axial coordinate. These functions satisfy the linear

eigenvalue problem
—wo? Mu(y, 8q) + Pi(y, 6q) = 0, (47a)

Tuly,y) =1, (47b)

‘where y = § e*in, To obtain the solution of the nonlinear problem

we write
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q = (aye’ + c.c.) + (Byeit + c.c.) + 2, (48a)

27 X 27 i
. J; e=itTy(z, y)dt = j; e=itTy\(z,y)dt = 0.  (48b)

The decomposition (48a) is similar to (20) except that the multi-
plicity of solutions of (47) has been taken into account. Further, just
as in (21), (22), we decompose (11) into three equivalent equations

wo? M11(£, aq) + P1i(2, 8q)

= R(qg,3¢) ~ L ’e”Tu(y, 6q) fzw e~iR(q,y)dt + c.c.]
2T 0
1. 2
- g [e”Tn@, 6q) j; e~itR(q, y)dt + c.c.) (49a)

j; " e-ith(q, 7)dt = 0, (49b)

J;zr e”R(g, y)dt = 0, (49c¢)

where

—£R(g, 8g) = (@ — w®)M11(d, 8q) + wG11(4, 8q)
+ Pai(q, 6q) + Pailq, 6g), (50)

and the difference between (49a), (50) on the one hand and (21a), (22)
on the other arises due to the fact that now we are seeking a pertur-
bation solution about @ = 0 as well. Once again it is easily shown that
(49a) does not contain any secular terms so that its solution z can be
obtained as an asymptotic series in the amplitudes of the two traveling
waves, (w — wp) and 2. The solution adequate for the purpose of ex-
tracting the essential nonlinear behavior is given by

2= (a2211® et + c.c) + o 214©@
+ (B2 209® %t + c.c.) + 88 z05®
+ (af 2129 €2t + c.c) + (0B 2150 + c.cl),  (51)

where various time independent quantities are given by solutions
of -

—~4wo?M11(211?, 6q) + P1(z11®, 8q) + Pai(y, 8q) =0, (52a)
P1(z1/9, 8q) + P1a(y,7, 8q) = 0, (62b)
—4wo?M11(2221?, 8q) + P11(222?, 8q) + P (5, 8¢) =0, (53a)
P11(222®, 8q) + P11:(7, y, 8q) = 0, (53b)
—4w?M1(212", 8q) + P11(2121?, 8q) + P1ua(y, 7, 6,g) = 0, (54a)
P1i(z129, 8q) + Pini(y, v, 6g) = 0. (54b)

Further simplification is achieved on noting that
y = 5) eind

so that on examination of nonhomogeneous terms in (52)-(54) one
finds that

209®@ =21, = 5, @e2%n0 000 = 5, 0 =32, (55a)

and

219 = 2193, 2150 = £,)(0) 2ind, (55b)

In (55) the terms with superposed caret are independent of 8 and ¢,
but are functions of the axial coordinate. We now substitute (48a) in
(49b,¢), and use (55) with the fact that in evaluation of the functionals
in (49b,c) one has to integrate in the domain 0 < § < 2. These con-
siderations lead to the remarkably simple result

—-m(w? — wede + wger + yia%x + ygﬂﬁa =, (56a)
—m(w? = w?)B — wgB + 71?8 + yoo@B =0,  (56b)

where
m =M11(ysy)1 g= iGll(yyy)y (57ayb)
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71 = P11z 119, 7, 5) + P11z, 5, 5) + Pann (%, 7, 5) (58a)
¥z = P111(z11?, ¥, 5) + Pu11(z12?, 3, ¥)
+ P131(2159, %, %) + 2P21(y,5,5).  (58b)

Equations (56a,b) are the desired coupled amplitude frequency
equations for the (complex) amplitudes « and f3 of the two traveling
waves which have the same frequency when = 0 and when non-
linearities are not taken into account, To compute the constants in
these equations one has to solve the four linear boundary value
problems (52), (54). Since these problems as previously stated are in
terms of vanishing of first variations of functionals, their solutions
depend upon the imposed boundary conditions which are implicitly
contained in the variational statements (52), (54). It is worthwhile to
note here that for the case of a stationary shell if one sets

a=qa+ibe¥, B=aqa—ibe¥
one can obtain from (56) the amplitude frequency equations of the
type derived by Ginsberg [8] for the special case of a circular cylin-
drical shell. Moreover, addition of damping and forcing terms in the
original equation (11) changes the final form of the amplitude fre-
quency equation only to the extent that two more easily computable
terms have to be added to each of (56a,b) just as in (29). Though these
terms are expected to endow interesting qualitative features to the
dynamic response curves as in [8] we restrict our discussion to the case
of undamped free vibration only.

Solutions of the Amplitude Frequency Equations. We first
dispose of the case of the stationary shell wherein g = 0. It is seen from
(56) that there are only four solution

w?=we?+ vy ox/m, (=0, (59a)
w? = we +v188/m, a=0, (59b)
@? = W+ (y1+ o) ad/m, (= *a, (59¢)

the first two of which correspond to traveling waves and the rest to
standing wave patterns. As is generally true for free-vibration prob-
lems the phase of these solutions is arbitrary.

For the slowly rotating shell (g # 0) two solutions of (56) are im-
mediately obvious

w?=we? + Lo +vio0z/m, B=0, (60a)
m

w —
2= o =%+ 5, B/m, a=0, (60b)
m
which represent traveling waves whose frequencies at zero amplitudes
differ due to gyroscopic forces, as expected. Another set of solutions
of (56) occurs when both o and 3 are nonzero in which case the solu-
tions satisfy

A2 B

—2(w? — we?)m + (y1+ v2) I + I’ =0, (61a)

A2 B?
2008 + (v1— v2) (— - —) =0, (61b)

4 4

where

2 _ B2
B=—, == 62
o p 88 p (62)

If g is positive, it follows from (61b) that real solutions of (61) exist

for
. B? 2w,
@ > (- y>0), (63a)
4 vyi—172
or for
A2 2w
(i) Z>-Z2% (i —g<0). (63b)
4 ve-m

Thus, in Case (i) there is a secondary bifurcation point on the branch
given by (60b), occurring at
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2wog o4 Y1t Y280
b 0 — .'—_’

Y1~ 72 Yi—7Y2 m
In Case (if) the secondary bifurcation point occurs on the branch (60a)

atZ .
A2 _ 20 11t 1289 4
4 ya—vd Yo=y1 m’
A similar analysis for g < 0 reveals that secondary bifurcation point
occurs at one and only one of the two traveling wave solution branches.
Of course, the secondary branches are given by simultaneous solutions

of (61a,b). From (61b) it is concluded that along the secondary
branches, for g > 0,

A=0. (64a)

2= @

,;;|c:u
N

=0. (64b)

5)2 = w20+

. A B 4wog
e e e 65
© 2 * 2 (v1— 72)B2] (65a)
or
. B 4wog
RO Wi | ihad.. - SR 6bb
@) 5 + 2 [1 Ve 71)A2]’ (65b)

so that for large amplitudes these branches asymptotically approach
the standing wave solutions along which A = xB.

We conclude this section by noting that, based on (56), a number
of qualitatively different free-vibration response curves in the 4, B,
wspace can be drawn with the differences depending on the relative
magnitudes and signs of the coefficients y; and ys. For the sake of
brevity, however, we shall present the result only for the case of a
rotating ring.

Mode Interaction in a Slowly Rotating Ring

The analysis of mode interaction in a rotating ring on the basis of
the procedure derived in the last section begins with the solution of
the eigenvalue problem (47) specialized to the functionals given by
(12), (15). The solution is similar to that of (31), i.e., :

¥ = (1, iB1g, C10) e, (66a)

(66b)

w02 = wsnzy

where Big, C1g, and wp are given by (35) with Q = 0.
Similarly, the solution of the higher-order problems corresponding
to (52), (54) are of the form (55), with

1@ = (A @, iB;;®, C11M) 7, ete., 67
The quantities #1112, 21,9, 215®, and 21> in (55) satisfy
L(2wq, 2in; 0) 211? + (G1o,i Gao, Ga0)T = 0, (68a)
L(0,0;0) 119 + (0,0, {n — B1o)T = 0, (68b)
L{(2wg, 0; 0) 212 + (0,0, {n — B1o)T = 0, (69a)
L0, 2in; 0) 2129 + 2(G10, iGo0, G30)T =0, (69b)

where Gio, [ = 1, 2, 3 are given by (37b-d) with Cy and B; replaced by
C1o0 and Bjg and the matrix L is defined by (32). Finally, equations
(67), (58) furnish

Y1

== =2(Byo—n)?(~nByy+n??
2w

+ 2 (G10411@ + G20B11? + G3C11®), (70a)

;_Y_g = —4(n — B1o) wo? + 2 (G10412/® + GoB12® + G30C11®)
T

+ 4(Bio— n)2(—n By + n22, (70b)

and m and g in (56) are given by (43). In (70) we have used the explicit
solutions of (68b) and (69a) but A11®, B11?, etc. in these equations
are given by (68a) and (69b). Thus the coefficients vy and 7y can be

2 It can be verified that (4, B, @) defined by (64a)‘satisfy both (60b) and (61)
and similar result holds for Case (ii).
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Fig. 2 Free-vibration response curves for a rotating ring (n = 2),[A = (w/wp
— 1/(/wq), (A®, B*) = (A, B)/B, with B defined by (64)]

Table 2 The coefficients in the amplitude trequency equation (56) for the
mode interaction problem for a circular ring

n y1/2m§m Y2/2¢3m
2 1.650 ~0.0432 x 102
3 5.240 -0.781 x 102
4 10.420 -3.457 x 10%
5 17.134 -9.764 x 10°
6 25,363 -2.187 x 10°
7 35.100 -4.241 x 10°
8 48,341 ~7.451 x 103
9 59.086 -1.218 = 10
10 73.331 -1.883 x 10%

obtained through a sequence of linear algebraic calculations which
are best done numerically. The results are given in Table 2. A typical
free-vibration response curve, which exhibits the type of character-
istics described in the last section has been shown in Fig. 2. In this
figure the coordinates have been chosen so that the plots are inde-
pendent of speed of rotation and valid for small nonvanishing values
of .

Concluding Remarks )

Perturbation procedures based on the Lyapunov-Schmidt method
have been presented in this paper for the analysis of nonlinear har-
monic oscillations of structural systems with gyroscopic forces and
the technigues have been illustrated by analyses of the simple, yet
nontrivial, problem of a rotating ring. The procedure for mode-in-
teraction analysis of rotationally symmetric structures appears to be
particularly useful for further applications to shells of revolution as
it can provide a basis for efficient computational schemes for solution
of a class of problems which have not been treated before in a general
framework.
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The simple theory of cell mapping and the associated algorithm presented in [1, 2] have
been found to form a very effective tool for the global analysis of nonlinear systems.Tn this
paper we generalize the theory by allowing the mapping of a cell to have multiple image
cells with appropriate individitdl mapping probabilities. This generalized theory will be
able to deal with very fine and complicated global behavior patterns, if they exist, in a
more attractive way without having to utilize extremely small cell sizes. It is found that
such a generalized cell mapping can be identified with a Markov chain ard the well-devel-
oped mathematical theory of Markov chains can be immediately applied. Similar to the
simple theory of [1], the generalized cell mapping theory is also eminently suited as a the-
oretic base for computer alogorithms which will be needed when dealing with systems in-

volving a very large number of cells.

1 Introduction
In [1] a primitive theory of cell-to-cell mapping has been introduced.
In essence, the cell-to-cell mapping of that theory is described by

Z(n + 1) = ¢(Z(n)) 1)

where, without any loss of generality, the cell vector Z can be taken
to be integer-valued, and € is an integer-valued vector cell mapping.
By confining the total number of cells to be treated finite, a very
simple algorithm has been devised for studying the global properties
of nonlinear systems [2]. The algorithm is easy to implement and has
been found to be very effective.

The theory offered in {1} is a simple one. However, it is also a coarse
one. When it is applied to point mapping systems or to systems gov-
erned by ordinary differential equations, it could not disclose the fine
structural details of the global behavior if they exist, unless the cell
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size is taken to be very small. In this paper we offer a generalized cell
mapping theory by bringing into the theory certain new ingredients.
When compared with the simple theory of [1] the new theory is much
more complex, but, on the other hand, it will have the capability of
describing any intricate global behavior in a more satisfying manner,
Just like the theory in [1] the new theory also lends ifself well as a
theoretical base for computer implementation.

“The theory offered here is believed to use an entirely new approach
to the global analysis of nonlinear systems. In this regard, it is indeed
unusually fortunate that the analytical techniques required to de-
velop this theory are found readily availahle in the mathematics lit-
erature in the form of Markov chains. After bresenting the basic ideas
of the generalized cell mapping theory we summarize some results.on
Markov chains, Thereafter; we discuss a few simple examples in-
volving very few cells in order to illustrate the idea and application
of the theory, Our ultimate aim is of course to analyze systems with
very large number of cells. This will require a special algorithm similar
to the one presented in [2].

2 New Ingredients: Multiple Mapping Image Cells
and Their Probabilities

The basic idea of the cell mapping theory presented in [1, 2] is that
a cell Z(n) is mapped by the mapping € into a single image cell Z(n
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+ 1). In the generalized theory we remove this restriction. Instead,
we allow the mapping of a cell Z(n) to have several possible image cells,
each image cell having a definite fraction of the total possibility. In
other words, if the system is at cell Z(n) when t = n, the state at the
next evolution step ¢ = n + 1 can be at Z(n + 1) with probability p@,
at Z®(n + 1) with probability p(®, and so forth. Of course, we must
have £;p® = 1 where the sum covers all the possible image cells. With
these new ingredients it is no longer adequate to specify the state of
the system to be at a certain cell Z(n) at t = n. Rather, the state of the
system should be described by the probabilities according to which
the state of the system may be found in various cells.

Now let us formalize the foregoing notion in mathematical terms.
Let $ be a closed set of cells of interest. In application of the theory
we shall always deal with a finite number of cells. However, for the
general discussion in this section, we take S to be a denumerable set.
Moreover, we assume that the cells are labeled! 1,2, . .., N according
to an appropriate procedure, with N possibly being infinite.

Cell Probability Vector. Let {;(n) denote the probability of the
state of the system being in cell i at ¢ = n. The vector {(n) with com-
ponents {;(n),{ =1,2,..., N, will be called the cell probability vector
or simply probability vector.

Transition Probability Matrix. Let p;; denote the probability
of cell j being mapped to cell i in one mapping step. The matrix P with
components p;; will be called the transition probability matrix, or
mapping probability matrix, or simply mapping matrix.

In general, P may depend upon n, the time of the mapping step. In
this paper we consider, however, only cell mappings whose transition
probability matrices are independent of n. These may be appro-
priately called stationary cell mappings.

It is evident that {;(n) and p;; have the following properties:

§i(n) 20, (2
gsi’i(n) =1, 3
piiz0, 4)
iEZS pij=1 {5)

‘We can now describe the generalized cell mapping by the following
evolution equation:

$n+1) = P{(n). (6)

For a specific evolution we need to have the initial cell probability
vector {(0). Once {(0) is given the subsequent evolution is simply given
by

$(n) =P{(0) (M

Thus one sees that the mapping matrix P completely controls the
whole evolution process. For this reason it is helpful to examine P more
closely. Besides the properties (4) and (5), one notes that there can
be no zero columns in P. There can however be zero rows. A zero ith
row means that cell 7 is not accessible from any cell of S; therefore,
¢i(n) =0forn =1,2,....Forany column, say the jth, the nonzero
elements represent the possible image cells of cell j under the map-
ping. Because of (4) and (5) P is a so-called non-negative matrix and
the latgest value any of its elements can take is 1. There are special
properties for matrices of this kind; they will be discussed further
later.

It is now of interest to examine the simple theory presented in [1,
2] within the framework of the generalized one. It can readily be seen
that the simple theory is nothing but a special case of the new one with
two special features. One is that the transition probability matrix has

1Tn some instances we may elect to label the cells 0,1,2,...,N — 1.
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only one nonzero element in each column and the other is that the cell
probability vector has also only one nonzero element. These nonzero
elements always have the magnitude 1.

3 A Simple Example

Before proceeding further it might be instructive to look at a con-
crete simple example of such generalized cell mapping systems in
order to gain some acquaintance with them. One of the basic purposes
of developing the theory of cell mapping is to use it to study the global
behavior of nonlinear point mapping systems or systems governed
by ordinary differential equations. As an example, let us consider the -

- one-dimensional point mapping

G: x(n+ 1) =sx(n) {1 - %l-)-} ] (8)

and see how a corresponding generalized cell mapping system can be
created. The point mapping (8) has been used in the study of popu-
lation dynamics. It has very complex behavior despite the simple
nature of its nonlinearity [3, 4]. i ’

For definiteness of discussion let us take the cell size h to be 0.04.
Let us further assume that we are only interested in the system be-
havior when the state variable x remains in the range —0.02 = x <
4.02. Following the idea given in [2] we introduce a “sink cell,” to be
labeled number 0, to cover x < —0.02 and x = 4.02. For the “regular
cells,” [2], covering the range of interest, the labeling of the cells will
be as follows. Cell i will cover

. 8 .1
(l —E) X004 =x< (L —5) X 0.04. 9)

Thus there will be 101 regular cells covering (—0.02, 4.02). Altogether
we will deal with 102 cells labeled 0,1, 2, ..., 101.

The transition probability matrix for this cell mapping can now be
determined in the following manner. First, consider the sink cell, cell
#0. Since once the system gets into the sink cell we are no longer in-
terested in the further evolution of the system, the sink cell is assumed
to be mapped into itself, i.e., cell #0 is mapped into cell #0 with 100
percent probability. For cell #1 its end points x = —0.02 and x = 0.02
are mapped by (8) to x = ~0.0201s and x .= 0.0199s. Again, for the
sake of definiteness, let us take a specific value of s, say s = 2.7. Then
the terminal points of cell #1 are mapped into x = —0.05427 and x
= 0.05373. It is seen that this image range of cell #1 covers a part of
the sink cell (—0.05427, —0.02), cell #1 itself (—0.02, 0.02), and a part
of cell #2 (0.02, 0.056373). Thus cell #1 has three image cells, namely,
0, 1, 2. To aportion the probabilities of mapping among these cells,
different schemes may be used. The simplest one, and also the one
to be used in this example, is to approximate the mapping in this small
interval by a linear one determined by the end points of the cell and
to aportion? the probabilities according to the percentages of the total
image range which are occupied by the image cells. This leads to the
following: :

—0.02 — (~0.05427)

Cell #1 to Cell #0: = =0.3173
# # PO = 5 05373 + 0.05427
0.02 — (—0.02)
Cell #1 to Cell #1: = T 0.3704
# # P = G 05373 + 0.05427
0.05373 — 0.02
Cell #1 to Cell #2: P21 =0.3123

~ 0.05373 + 0.05427

In this manner the image cells of the other regular cells and the cor-
responding mapping probabilities can be determined, leading to the
following matrix P.

2 This method of aportioning the probabilities will be referred to in the future .
as the “linear interpolation method.”
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j= 0 1 2 50 51 100 101
t=0 1 0.3173 0 0 0 0 0.3173
1 0 0.3704 0 0 0 0 0.3704
2 0 0.3123 - 0.0593 0 0 0.0593 0.3123
3 0 0 0.3779 0 0 0.3779 0
4 0 0 0.3779 0 0 0.3779 0
5 0 0 0.1849 0 0 0.1849 0 (10)
68 0 0 0 1 1 0 0
101 0 0 0 0 0 0 0

By this process the point mapping (8) is recast into a generalized cell
mapping and the solution of (8) is to be reinterpreted in the form of
(7) with P given by the previous table.

4 Markov Chains

For a generalized cell mapping the dynamical properties of the
system are entirely contained in the transition probability matrix P.
Our task is therefore to examine P and to discover in what manner P
controls the global behavior. In this connection it is indeed remarkable
and fortunate to find that there is already a body of mathematical
development which can be used directly for this purpose. This is the
theory of Markov chains.3 There are many excellent reference books
on this subject; here we cite [5~7). Tt is easily seen that mathematically
our generalized cell mappings can be identified with Markov chains.
In what follows we shall summarize, without citing any proofs, some
of the known results of Markov chains which are found useful for our
purpose. The summary is provided here because it is believed that
this is the first time the theory of Markov chains is being employed
in the global analysis of nonlinear oscillation problems and that some
of the readers might not be familiar with this subject matter. In order
not to complicate the discussion unnecessarily, we restrict the treat-
ment in the remainder of this paper to finite Markov chains. The total
number of the cells in 8 is now assumed to be finite.

First, let us dispose of a preliminary item of terminology. For
Markov chains the state space S is a denumerable set of discrete states
and one sees in the literature the usage of “from state : to state j.”
However, in our application of the theory of Markov chains to dy-
namical systems, we often need refer to certain originating systems
for which the state space is a continuum of state. In order not to use
the same word “state” in two different contexts in one problem, we
shall use the name cells as the elements of the space for Markov
chains, hence the usage like “from cell i to cell j.”

A Dilemma. In reporting and applying the results of Markov
chains we do face a serious dilemma with regard to the usage of a key
notation. In most of the mathematics books on Markov chains the
transition probability p;; is defined as the probability of transition
from cell i to cell j, and the cell probability vector is taken to be a row
vector a(n). With this notation a Markov chain is represented by

a(n+ 1) = a(n)P. (11)

i.e., a step of evolution is equivalent to a post multiplication by P.
However, in the theory of oscillations one usually takes the state
vector to be a column vector, and invariably uses premultiplication
when applying an operator, leading to a form like (6). T'o follow that
convention it is necessary to define p;; as the probability of mapping
from cell j to cell i, as is given in Section 2. We have adopted this
notation because this paper is intended to serve in the field of vibra-
tion and dynamical systems and, therefore, it is desirable to have a
notation consistent with the common usage in that field. The reader

is alerted to exchange the roles of the rows and the columns in the .

transition probability matrix when he compares the results cited in

3 The theory of Markov chains is, of course, related to the theory of
graphs.
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this paper with those given in the mathematical literature of Markov
chains.

n-Step Transition Probabilities. The n-step transition proba-
bility pg-’) is defined as the probability of being in cell i after n steps,
starting from cell j. It can be shown that pg-’) is the (i, j)th element
of P2, Bvidently, we have

pirtm = b piplp (12)
Here, p,(?) is taken to be d;;, the Kronecker symbol. In the theory of
Markov chains a matrix having the properties (4) and (5) is called a
stochastic matrix. One can easily see that if A and B are two stochastic
matrices then AB is also one. Hence, all P” with non-negative integer
power n are stochastic matrices.

Following Chung [5], we say cell j leads to cell {, symbolically j —
i,if and only if there exists a positive m such that p{*) > 0. The cells
i and j are said to communicate if and only if j — i and { — j; this will .
be denoted by i <> j. The property of communicativeness can be used
to divide the cells into disjoint subsets called classes. Two cells belong
to the same class if and only if they communicate. A cell which does
not communicate with any other cells is said fo form a class by itself.
The notation C(i) is used to denote the class containing the cell i. We
now describe the classification of the cells. Again we rely on [5-7].

Essential and Inessential Cells. A cell that communicates with
every cell it leads to is called essential; otherwise inessential, [5]. It
can be shown that an essential cell cannot lead to an inessential cell.
The property of being essential or inessential is a class property.

Period. Ifi — i, the greatest common divisor of the set of positive
n such that pf > 0 is called the period of i and denoted by d;, [5]. For
cells which do not lead to themselves the period is not defined. The
property of having a period equal to d is a class property, i.e., all the
cells in one class have the same period.

Definitions of f{}” and f;; Given that the system starts from cell
], the probability that it will be in cell i for the first time at the nth
step is denoted hy f. Given that the system starts from cell j, the
probability that it will be in cell i at least once is denoted by ;. Evi-
dently,

fii= X i (13)
n=1
We also have the following results relating p{}‘) to f,(}’) and f,?j:
n
=3 pl P (14)
. . N N ,
fii=1lm > pP/ ¥ pf (15)
N—e (p=1 n=0

Persistent and Transcient Cells, [6]. A cell i is called persistent
or transcient according as fi; = 1 or <1, The properties of being es-
sential or inessential and of being persistent and transcient are based
upon different notions, but they are related. Thus one can show that
an inessential cell is transcient and persistent cells are essential.

Expected Return Time. For a persistent cell j we define its ex-
pected return time as
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wi = T nfff (16)

Decomposition Into Groups. As stated before, the property of
communicating can be used to divide the cells into groups. All the
essential cells can be formed into isolated groups (or classes) By, B,
..., Bg such that the cells in one and the same group communicate
but those belonging to different groups do not. These isolated groups
will be called persistent groups. The inessential cells can also be
formed into groups B+1, Br+2, . . . , Bp4+m according to the procedure
that the system can go from the group Bxyp, h =1,2,...,m, to one
of the groups By, By, .. ., Bryp, but cannot go to the groups with a
higher subscript designation such as Bg4+h+1, - - - , Be+m. These groups
composed of inessential cells will be called transcient groups. Cor-
responding to this decomposition into persistent and transcient

groups is the possibility of interchanging rows and columns in the .

transition probability matrix so that it will take the form

Py 0 0 T1k+1 Tik+m
0 Pg 0 Tok+1 Tok+m
P= | 0 0 Pr  Thh+ti Thk+m 17
0 0 0 Qr+1 Tht1ktm
0 0 . 0 0 0 Qr+m
where P, Pg, ..., Py, Qpe1, . - -, Qpim are square matrices and Ty p+1,

vy Thtm—1k+m are, in general, rectangular. Once the system isin a
persistent group, say B;,j = 1,2,. .., k, it remains in that group for-
ever. Thus a persistent group B; is by itself a Markov chain and its
transition probability matrix given by P; is a stochastic matrix having
the properties (4) and (5). Qg+j,j = 1,2,. .., m,is associated with the
transcient group Bg+;. These are not stochastic matrices because,
although they satisfy (4), they satisfy

g =1
13

instead of (5). These matrices are sometimes referred to as substo-
chastic matrices. The matrices Ty, i =1,...,k;j=k+1,... B+
m, describe the manner by which the transcient groups are mapped
into the persistent groups. In a similar manner, the matrices T;;, i =
k+1,...,k+m—1,=k+2,...,k+ m,describe the transition
from transcient groups to transcient groups of lower subscript des-
ignation. These T matrices will be called transit matrices. Sometimes
when there is no advantage to have distinct transcient groups Br+1,
B9, . . ., Bhim, we shall lump them together and call it the transcient
group Br+1 with a substochastic matrix Qg4.1. In that case the number
of transit matrices will be simply k; they will be denoted by Ty x+1,
Tok+1, - - + » Tk k41 In actual application of Markov chains to the global
analysis of nonlinear systems we usually will be dealing with a very
large number of cells and there would be no attempt to put the tran-
sition probability matrix in the form of (17). However, to describe and
to discuss the properties of Markov chains this representation is of
immense help. Therefore, for easy reference we shall call (17) the
normal form of the transition probability matrix. We also note here
that the cells within each persistent group communicate; therefore,
each persistent group cannot be further decomposed and is sometimes
referred to as irreducible or indecomposable.

If the mapping matrix P is in its normal form, then the general
global behavior of the cell mapping is quite clear. If the system starts
in a persistent group Bj, i.e., {;(0) = 0 for i¢ B;, then the system re-
mains forever in B;. If the system starts from a transcient group B;,
then the system eventually gets out of that group completely. It will
settle into the persistent groups as the evolution proceeds. The final
probability distribution of the system among the various persistent
groups occupied by the system depends upon the matrices Qs and T's
and the initial probability vector {(0).

In essence, given P the global property of a Markov chain is found
by studying lim p}}‘) as n — =, The probability distribution p,(}‘) among
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(18)

the i cells gives us the long term behavior of the system with cell j as
the starting cell. In this connection two simple results are imme-
diate.

Theorem 1, [5]. If i is a transcient cell, then for every j

lim p{P = 0. (19)

n—>m
Theorem 2, [5]. If{ and j are two persistent cells but belong to
two different persistent groups, then

g‘) =, p}}') =0 for every n. (20)

In the next three sections we examine lim p},’-” as n — o« for other cases
where i is a persistent cell and j is either a persistent or a transcient
cell.

5 Absorbing Cells and Acyclic Groups

A cell i for which p; = 1 form a persistent group by itself. It will be
called an absorbing cell.

Next, we consider persistent groups composed of more than one
cell. Each persistent group B has a period d. In this section we study
persistent groups of period 1. These groups will be called acyclict

" groups and the cells in these groups acyclic cells. Persistent groups

of period d = 2 will be discussed in the next section; they will be called
periodic groups and their cells periodic cells. As stated in the last
section, a persistent group may be taken as a finite Markov chain by
itself. We shall state below certain properties of an acyclic group in
this context.

Theorem 3, [6]. Let P be the transition probability matrix for an
irreducible persistent acyclic finite Markov chain with a cell space

S. Then for eachi € 8, lim p,(;-’) as n — o approaches a limit which is

. independent of ;.

Let the limit be called the limiting probability distribution and
be denoted by p;. Then it can be shown that

1
pi = lim pff) =—>0 (21)

n— i
where p; is the expected return time for cell ;. This most important
result can also be discussed from the point of view of eigenvalues and
eigenvectors of P. First, let us call an eigenvalue of a matrix the
dominant one if it is of multiplicity one and it is larger than any other
eigenvalue in absolute value.

Theorem 4, [6]. The transition probability matrix P for an irre-
ducible persistent acyclic finite Markov chain has an eigenvalue equal
to 1 and, moreover, this eigenvalue is dominant. The normalized
right-eigenvector associated with this eigenvalue is equal to the lim-
iting probability distribution p = {p;}. Thus

N

p=Pp or p;=3 p;p; (22)
j=1
N

pi >0 foralli, ¥ p;=1 (23)
i=1

where the second equation of (23) is the normalization condition.

With these two theorems at hand we can elaborate further the
properties of an irreducible acyclic Markov chain. Theorem 3 states
that

P1 P . P1

lim p? = P2 P2 . P2

n—e

(24)

PN PN - PN

i.e., the limit of P" as n — o is a matrix with identical columns.

4 In [6] these are called aperiodic groups. However, since we have in mind to
apply the theory of Markov chains to dynamical systems we believe it is more
desirable to avoid the word aperiodic and adopt the name acyclic as is done in
{7
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Moreover, all components are positive. With P" possessing this
property (7) implies immediately that no matter what is the initial
probability vector {{0), the probability vector {(n) eventually ap-
proaches the limiting probability distribution p as n — «. Before
coneluding this section we mention here another result which is in-
structive in understanding the persistent groups.

Theorem 5,[6]. The multiplicity of the eigenvalue 1 of the tran-
sition probability matrix of a finite Markov chain is equal to the
number of the irreducible persistent groups (acyclic and periodic) of
the chain.

6 Periodic Persistent Groups

Next, we consider periodic groups. Each periodic group, being a
persistent group, may be taken as a Markov chain.

Theorem 6, [5,6]. Letj be a member of a periodic group B of pe-
riod d. Then to every member i € B there corresponds a unique resi-
due class r modulo d such that p{P > 0 implies that n = r (modulo
d).

In other words, the member cells of an irreducible periodic group
B of period d can be divided into d disjointed subgroups B, By, . . .,
Bg such that from B, A =1,2,...,d — 1, the system goes to B4 and
from By it goes back to B;. Let the number of cells in B, be N. Then
the foregoing result implies that the transition probability matrix for
this periodic group may be put in the form

0 0 . 0 Pra
Pg1 0 . 0 0
p= 0 P3,2 . 0 0 (25)
0 0 Pagd—1 0

where all the diagonal block matrices are zero square matrices, Pg;;
a matrix of order Ng X Ny, P33 .a matrix of order N3 X Ny. ..., and
Pj,q of order N1 X Ny.

This cyclic behavior means that R = P¢ (with components rij) maps
each subgroup into itself. Therefore, R is the transition probability
matrix of a Markov chain for which the subgroups By, Bs, . . . , B4 be-
come now d irreducible acyclic groups. Based upon this one can show
the following.

Theorem 7,[6]. Let P be the transition probability matrix of an
irreducible periodic persistent Markov chain with period d. Let R =
P< Then

d
lim r,(}') =—

n—>o Hi

if i and j belong to the same subgroup By, (26)

lim r{® =0 otherwise. (27)

f—
where u; is expected return time for cell { using P.

A slightly more general result which is also useful for our purpose
is the following. Let C,(j) be the residue class r discussed in Theorem
6.

Theorem 8, [5]. Ifi is a persistent cell with period d and expected
return time p; and if j belongs to the same irreducible persxstent group
as i sothati € C,(j), then

d
lim p{#4 = — (28)
n—>o 135
and
pP =0 if nsr(modulod). (29)

We note here that for an irreducible periodic Markov chain, unlike
for the acyclic groups, lim p(") as n — « does not converge. It con-
verges only along a properly chosen subsequence. This leads to con-
sider the limit of the Cesaro average of p{?, [5, 6].

Theorem 9, [5]. Let P be the transition probability matrlx of an
irreducible persistent finite Markov chain. Then

hm - Z p# = L (30)

norw 1 k=1 i
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The properties of periodic groups are also intimately governed by
the eigenvalues of P. We cite here the following two theorems.

Theorem 10, [6]. The dth roots of unity are eigenvalues of the
transition probability matrix of an irreducible periodic Markov chain.
Moreover, each of these eigenvalues is of multiplicity one and there
are no other eigenvalues of modulus one.

Theorem 11,[6]. Let P be the transition probability matrix of a
Markov chain. Then any eigenvalue of P of modulus 1 is a root of unity.
The dth root of unity are eigenvalues of P if and only if P has a per-
sistent group of period d. The multiplicity of each collection of dth

" roots of unity is the number of persistent groups of period d.

7 Evolution From Transcient Cells

In the last two sections we have seen how to evaluate lim pf}‘) asn
— o when and j are persistent cells. In this section we examine the
case where j is a transcient cell. Before doing so, it is however helpful
to introduce some new quantities. Let the period of cell i be d. For
every integer r, f1;(r) is defined as, [5],

fit) = % 1P 1)
ng(mo,cli d) -
Evidently, one has
d
21 fis(r) = fiy (32)
flom

Theorem 12, [5]. If i is a persistent cell with period d; and ex-
pected return time u; and if j is a transcient cell, then for every r

lim p{4*o = fi(r )— (33)
where
d;
fi(r)z0 and Y fH(r) =1 (34)
r=1

Again, instead of using a subsequence of p ,‘,’”, we can consider the
Cesaro limit of the full sequence and in fact obtain a general result.
Theorem 13, [5]. The Cesaro limit

hm = Z p‘k) =Ty (35)
n—o N p=1
exists for every i and j and
=L (36)
i

provided that we define u; = « in case cell i is transcient.

One may also study the evolution from a transcient cell by making
use of the transit matrix T and the matrix @ in the following normal
form of the transition probability matrix P.

Py 0 0
0 Pgy 0
p = . i . } [*]]| @
0 0 . Py
0 0 . 0 Q

Theorem 14,[6]. Let N = (1 —Q)~L, Then the sum of the elements
of the jth column of N gives the expected adsorption time of the jth
transcient cell to be absorbed into the persistent groups.

Theorem 15,[6]. LetN = (1 — Q)~t. Then the (i, j)th element of
TN is the probability of being absorbed into the pers1stent celli from
the transcient cell j.

As a matter of notation, we denote by »; the expected absorption
time of a transcient cell j being absorbed into the persistent groups.
The absorption probability from a transcient cell j into a persistent
cell i will be denoted by ;.

8 Analysis of Simple Examples
We are now ready to apply the theory of Markov chains to the
generalized cell mapping. In this paper we present only the studies

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of mappings involving very small numbers of cells so that the ideas
and the results of the evolution of the systems can be perceived di-
rectly and easily without the aid of a computer. Our main purpose is
to demonstrate the use of Markov chains as tools for global analysis
of our cell mapping systems. Five problems will be analyzed using the
same point mapping system (8). The range of interest of the state
variable x is taken to be from —0.2 to 4.2. Eleven regular cells, labeled
1 to 11, will be used; the cell size is therefore 0.4. The Oth cell is the sink
cell covering x < —0.2 and x = 4.2. In the five problems the parameter
s will be varied, but all the generalized cell mappings will be created
by using the linear interpolation method.

Problem 1. We take s = 2.5. The transition probability matrix of
the mapping is easily found and it will have an appearance similar to
(10) except with only 12 cells. This matrix P can be put in a normal
form as shown by the table (38) below where all the unfilled elements
below the diagonal are zero. One readily finds that besides the obvious
absorbing cell at cell 0, cell 7 is also an absorbing cell. These two are
the only persistent cells, The remaining 10 cells are all transcient.
Starting from any of the transcient cells the system moves eventually
toward one or both of the absorbing cells 0 and 7. Using Theorem 15,
one can find all the absorbing probabilities c;;:

Normal form of P:

stable P — 1 point of the point mapping is replaced now for the cell
mapping by an absorbing cell. '

(ii). For equation (8) all points in the range 0 < x < 4 are known
to converge eventually to the P — 1 point at x* = 2.4. Here we find
correspondingly that all cells 2-6, 8-10 are absorbed into cell 7.
Concerning the absorption time, consider cell 2. According to (8), of
all the points on the segment (0.2, 0.6) occupied by cell 2 those in the
lower 16.24 percent part take 4 steps to get into cell 7 while those in
the upper 83.76 percent take only 3 steps, resulting in an average of
3.162 steps. The present cell mapping gives vg = 3.208, only 1.5 percent
off despite the coarse cells used.

(tit). Cell 1 occupies (—0.2, 0.2). According to (8), half of the points
in this range will move to x* = 2.4 while the other half toward x = —«,
which is in the sink cell. Here the cell mapping calculation gives a1
= 0.542 and a3 = 0.458. The deviations of these values from 0.5 and
0.5 as required by the point mapping can be shown to be due to the
large cell size used here. )

Problem 2. For this problem we take s = 2.95. The mapping ma-
trix P can again be put in a normal form as shown in (41). Here we find

Row Column Cell Number
cllg | 0 7 6 5 4 3 2 1 11 10 9 8
0 | 1 6 0 0 0 0 0 0.325 0.325 0 0 0
7 1 11 0.188 0 0 0 0 0 0 0.188
6 0 0 0.812 0.125 0 0 0 0 0.125 0.812
5 0 0 0.667 0 0 0 0 0.667 0
4 0 0.208 0.344 0 0 0.344 0.208 0
3 0 0.500 0 0 0.500 0 0 (38
2 0.156 0.275 0.275 0.156 0 0
1 0.400 0.400 0 0 0
11 0 0 0 0
10 0 0 0
9 0 0
8 0
a; | j=1 2 3 4 5 6 8 9 10 11 (39)
i=0 0.542 0 0 0 0 0 0 0 0 0.542
7 0.458 1 1 1 1 1 1 1 1 0.458

These values indicate that starting from any of the transcient cells
2,3,4,5,6,8,9, 10 the system moves eventually to cell 7. Starting from
cell 1 or 11 the system will eventually go to the sink cell 0 with a
probability 0.542 and to cell 7 with a probability 0.458. One can also
use Theorem 14 to compute the expected absorption times v; for each

that cell 0 is an absorbing cell as it should be. Cells 7 and 8 now form
an acyclic persistent group and the limiting probability distribution
is given by

transcient cell j. p7= 0451, pg=0549. 42)

P = 2 4

i= | 1 3 5 6 8 9 10 1 )

vj = I 3.137 3.208 2.169 1.812 1 1 1.812 2.169 3.208 3.137
The interpretation of v; and »1; are not immediate because cells 1 and
11 are absorbed into two different absorbing cells. The meaning of Normal form of P:
the other »;’s is simple; for example, the expected (or mean) absorp- Column Cell Number -
tion time from cell 2 into cell 7 is 3.208 steps. Row Transcient

Next, we may try to see how these results from this cell mapping  -cell nu(;nber (1) g (8) cells
reflect the properties of the point mapping (8) with s = 2.5,

prop P pping 7 0 0 0.821 T

(£). Equation (8) is known to have an asymptotically stable P — ) 8 0 1 0.179 - (41)

1 point3 at x* = 2.4 which is located in cell 7. Thus an asymptotically Transcient 0 0 0 a
cells

5 For this terminology the reader is referred to {1 or 4].
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The other cells are all transcient cells. Their absorption probabilities
and expected absorption times are as follows:
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oj J =1 2 3 4 5 6 9 10 11
1=0 0.5639 0 Q Q Q 0 0 Q 0.539 (43)
7 0.171 0.371 0.018 0.821 0 0 0.018 0.371 0.171
8 0.290 0.629 0.982 0.179 1 1 0.982 0.629 0.290
j= 1 2 3 4 5 6 9 10 11
vj = 2.657 2.478 1.982 1 1 1 1.982 2.478 2.657 (44)
Again let us compare the result with those of the point mapping
analysis. (8) has an asymptotically stable P — 1 point at x* = 2.644. D& 0.148
This point is located in cell 8 covering (2.6, 3.0) but it is also very near ! s 0.505
to cell 7 covering (2.2, 2.6). Thus the asymptotically stable P — 1 point = for even steps.
for the point mapping is replaced for the cell mapping by an acyclic p7 0.347
group.® As a matter of fact, the limiting probability distribution for Pa 0 (46)
this group as given by (42) is a very good reflection of the location of : (Cont.)

x* in the combined range of cells 7 and 8. Of all the transcient cells,
cells 1 and 11 are eventually absorbed into the sink cell and the acyclic
group, but all the other transcient cells are absorbed only into the
acyclic group.

For the case starting from cell 9 the limiting behavior is again given
by (46) except that the conditions of odd steps and even steps should
be exchanged. The cells 1-4, 8, 10, 11 are transcient. Their absorption
probabilities and expected absorption times are as follows:

Q) i= 2 3 4 8 10 11

1=0 0.535 0 0 0 0 0 0.535

5 0.144 0.320 0.148 0 0 0.320 0.144
6 0.093 0.178 0.505 0 0 0.178 0.093 47

7 0.225 0.494 0.347 0.979 0.979 0.494 0.225

9 0.003 0.008 0 0.121 0.021 0.008 0.003

j= 1 2 3 4 8 10 11

vj = 2.734 2.919 1 4,132 4.132 2.919 2.734 (48)
Having a;; of (47) and the “limiting” probability distribution of (46)
Problem 3. Here we take s = 3.3. The normal form of P is given  at our disposal, the long term probability distribution of the system
by among the persistent cells can be ascertained easily if the starting

transcient cell is known. )
Column Cell Number With s = 3.3 the point mapping (8) has an asymptotically stable
Row Transcient P — 2 solution consisting of x*(1) = 1.918 and x*(2) = 3.294, which
cellnumbher | 0 5 6 7 9 cells are located in cells 6 and 9, respectively. Thus an asymptotically stable
0 1 0 0 o0 0 P — 2 solution of the point mapping is replaced by a periodic persis-
5 0O 0 0 0 0.148 tent group of period 2 for the cell mapping. Globally for the point
6 0O 0 o 0 0.505 T (45) mapping every point in 0 < x <4 is eventually mapped into the P ~
7 0O 0 0 0 0.347 2 solution. For the cell mapping we have the same general result. The
g 0 1 1 1 0 transcient cells 2-4, 8 and 10 are mapped eventually to the periodic
Transcient group while cells 1 and 11 are mapped into the sink cell 0 and the

cells 6 0 o 0 0 Q periodic persistent group.

Besides the sink cell as a persistent group of a single cell, there is a
periodic persistent group of period 2 composed of cells 5, 6, 7, and 9.
The limiting behavior of the system starting from cell 5, 6 or 7, or any
combination of them is as follows:

Ps
De

p1
P9

(46)

0

0
for odd steps,

0

1

6 Here, the reader may wish to refer to the discussion on pseudo periodic cells
given in {1).
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Problem 4. In this problem we take again s = 3.3 as in Problem
3, but in creating the generalized cell mapping we use G2, instead of
simply G of the mapping (8). The matrix P can be put in the following
form:

Column Cell Number
Row Transcient
cell number 0 6 9 cells
0 1 0 4}
6 0 1 0 T (49)
9 0 0 1
Transcient 0 0 0 a
cells

Here, we find three absorbing cells 0, 6, and 9. All the other cells are
transcient. Their absorption probabilities and expected absorption
times are as follows:
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a; | =1 2 3 4 5 7 8 10 11

i=0 0.617 0 0 0 0 0 0 0 0.617

6 0.211 0.727 0 0.533 1 1 0.533 0.721 0211  (50)
9 0.172 0.273 1 0.467 0 0 0.467 0.273 0.172

ji= 1 1 2 3 4 5 7 8 10 11

vi= | 2085 2.720 1 3.813 2.203 2.203 3.813 2120 2035 (51)

For the point mapping the P — 2 points for G are, of course, P — 1
points for G2 Thus it is interesting and satisfying to see that the cells
in which the two P — 2 points of G lie become two absorbing cells of
the cell mapping generated by using G2 The «;; and »; data from
Problems 3 and 4 cannot be compared against each other because the
data in Problem 4 ignore the history of evolution (or location of the
system in the cell space 8) at all the odd number steps.

Problem 5. Here we take s = 8.58. The normal form of P is

ties of generalized cell mappings can best be described. We also discuss
the relations between the properties of point mappings and the cell
mappings derived from them. Let B, be a persistent group and j any
cell in 8. We denote by a(By, j) the group absorption probability of
J into By,. Evidently, if j does not lead to any member of By, a(By, j)
= 0. If j is a member of B, a(By,, j) = 1. We also have

given by
Column Cell Number
Row Transcient
cell number | 0 3 4 5 6 7 8 9 10 cells
0 1 0 0 0 0 0 0 0 0 [ ]
3 0 0 0 0 0 0 0 0 0.279
4 0 0 0 0 0 0 0 0 0.349
5 0 0 0 0 0 0 0 0 0.349
6 0 0.436 0 0 0 0 0 0.436 0.023 T (52)
7 0 0.466 0 0 0 0 0 0.466 0
8 0 0.098 0.550 0 0 0 0.550 0.098 0
9 0 0 0.450 0.497 0 0.497 0.450 0 0
10 0 0 0 0.503 1 0.503 0 0 0 L _J
Transcient | o 0 0 0 0 0 0 0 0 a
cells
In this case we find that beside the sink cell as a persistent group of
a single cell, there is a huge acyclic persistent group consisting of cells a®y, )= ¥ ay (56)

from #3to # 10. These cells cover the range 0.6 = x < 3.8, which is
80 percent of the important range 0 = x < 4. This acyclic persistent
group has the following limiting probability distribution:

i= | 3 4 5 6

ic By

For each persistent group By, we can define its domain of attraction,

7 8 9 10

pi= | 0.080 0.074 0.074 0.116
There are only 3 transcient cells, #1, #2, and # 11. Their absorption

probabilities and expected absorption times are as follows:

o j=1 2 11
1=0 0.534 0 0.534
3 0.187 0.279 0.187
4 0.135 0.349 0.135
5 0.135 0.349 0.135 (b4)
6 0.009 0.023 0.009
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
j= 1 2 11
vy = 1774 1 1.774 (55)

Again let us compare the results of this crude cell mapping ap-
proximation with those of the point mapping analysis. According to
[3], with s = 3.58 the system (8) seems to have a “chaotic” behavior.
Corresponding to that, we have here a very large acyclic persistent
group. Interestingly, this generalized cell mapping technique gives
readily the limiting probability distribution of the group which in-
dicates, on a long term basis, the probability by which the system
occupies a particular cell in that acyclic persistent group. This kind
of information seems to be difficult to obtain otherwise.

9 Global Properties of Generalized Cell Mappings
In this section, we discuss the manner by which the global proper-
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(53)

0.119 0.147 0.196 0.214

Dy, as the set of all cell j such that a(By,, j) > 0. If there are k persistent
groups then there will be 2 domains of attraction, Dy, h =1,2,...,
k. However, we must note here that since a transcient cell may even-
tually be absorbed into several persistent groups, it may belong to
several domains of attraction. In other words, the domains of at-
traction may not be disjointed. For this reason the concept of domains
of attraction may not be as useful for cell mappings as in the classical
study of nonlinear oscillations. It is our current thinking that for cell
mappings it is more sensible simply to use the group absorption
probability distribution a(B, j),h = 1,2, ...,k and j all transcient
cells, to describe the global behavior of the system. For a given starting
cell, j, a(Bp, J),h = 1,2, ..., k, give the absorption probability dis-
tribution of the system among the persistent groups. We have, of
course,
k
2 aBy,j)=1 (67
h=1
This paper being introductory in nature for the generalized cell
mappings, we are not in a position to offer here a set of rigorous and
general mathematical results relating the behavior of a point mapping
to the behavior of the derived cell mapping. Nevertheless, we could
make some plausible general inferences. One might expect the fol-
lowing when the cells are sufficiently small:

1 Anasymptotically stable P ~ 1 point of the point mapping will,
in general, be replaced by an absorbing cell containing that point or
replaced by an acyclic group of persistent cells in the neighborhood
of that P ~ 1 point.
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9 An asymptotically stable P — K solution of the point mapping
will, in general, be replaced by a periodic group of persistent cells of
period K for the cell mapping. These periodic cells either contain or
are in the neighborhoods of the P — K points of that P — K solu-
tion. .

3 Let L, k, and K be positive integers such that L. = kK. Let G
denote the point mapping. Let the cell mapping be created by using
G% Then, an asymptotically stable P — L solution for the point
mapping G will, in general, be replaced by k periodic groups of per-

- sistent cells of period K. If the period K has the value of 1, then the
groups are either absorbing cells or acyclic groups.

4 In general, an unstable P — K solution for the point mapping
will not have its counterpart in the cell mapping. Because of the dif-
fusive nature of the evolution of the probability distribution near the
P — K points of that solution, all the cells containing these P — K
points can be expected to become transcient cells.

5 For a point mapping system which seems to have a “chaotic”
motion covering a part of the state space, the corresponding gener-
alized cell mapping is likely to have a large persistent group covering
the same part of the space. Depending upon the nature of the chaotic
motion, the persistent group could be acyclic or periodic.

6 For a point mapping the domains of attraction for its asymp-
totically stable periodic solutions are disjointed. However, they can
intertwine around each other in a very fine and complicated way.
Consider a cell j. If several domains of attraction of the point mapping
traverse this cell j, then for the derived cell mapping the system,
starting from cell j, is likely to be absorbed into the corresponding
periodic groups. The absorption probability distribution among these
groups is likely to reflect the extents by which the cell j is covered by
these various traversing domains of attraction. Here lies the attrac-
tiveness of the cell mapping approach. By using a(By, j) to describe
the global behavior, one obliviates the need to search for ever finer
structure of the global behavior of the point mapping in a seemingly
never ending process.

7 When using a derived cell mapping to ascertain the properties

642 / VOL. 48, SEPTEMBER 1981

of a point mapping, the accuracy can be expected to increase with
smaller cell sizes and with the use of higher-order interpolation for-
mulas in computing the transition probability matrix.

10 Concluding Remarks

In the paper we have presented the basic ideas of a generalized
theory of cell mappings. In the development the theory of Markov
chains is used as the basic tool of analysis. Our main aim is to use this
generalized theory of cell mapping to study the global behavior of
nonlinear systems governed by point mappings or by ordinary dif-
ferential equations. For that purpose we envision to employ a huge
number of cells and the methods used to analyze the problems in
Section 8 will no longer be viable. More effective algorithms akin to
that presented in [2] will be needed. That topic is, however, outside
the scope of this introductory paper.
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Buckling of Polar Orthotropic Annular Plates
Under Uniform Inplane Compressive

Forces

G. K. Ramaiah'

The problem of buckling of polar orthotropic annular plates under
various types of inplane compressive forces along the radial edges
has been analyzed in detail by the Rayleigh-Ritz method for eight
different combinations of clamped, simply supported, and free
boundary conditions. Accurate estimates of critical buckling loads
have been obtained for various values of hole ratios and for various
values of rigidity ratios. The numerical results are presented in the
form of data sheets for direct use by the design engineers.

Nomenclature

@, b = radii of inner and outer edges, respec-
tively

C, S, F = clamped, simply supported, and
free edge conditions, respectively

D = ERh%/12(1 — v2)

D, = E.h3/12(1 — v,vg)

Do = Egh3/12(1 - Vrl/g)

Drg = Gh3/ 12

D1 = l'gD,- = VrD() .

E,, Ey = Young’s moduli in radial and tan-
gential directions, respectively

G = shear modulus

h = thickness of plate

k = (Ey/E;)/? = (Dy/D,)1/?

n = number of nodal diameters

Di, Po = uniform inplane radial forces along
the inner and outer edges, respectively

r, 8 = polar coordinates of a point in midplane
of the plate

T = potential energy due to inplane forces
during bending

It

u;, v; = admissible functions
V = strain energy due to bending
W(r, ) = lateral displacement

vy, vy = Poisson’s ratio in radial and tangen-
tial directions, respectively

Ory, 09, Org =
stresses

prebuckling membrane

Introduction
In reference [1], Mansfield considered the buckling of an isotropic
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Darmstadt, West Germany. .
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po pi P|:q::: Po

Fig. 1 Annular plate under uniform compressive forces

infinite plate supported along two concentric circles and subjected
to an uniform radial compression or radial tension along the inner
circle. He ingeneously interpreted these solutions for a finite isotropic
annular plate—in which radial and hoop stresses vary inversely as the
square of the distance from the center—with a member of requisite
tensile stiffness supporting the outer circle. The class of problems
considered by Mansfield [1] is unusual in the sense that exact solutions
are available in terms of elementary functions despite the fact that
the stresses are varying throughout the plate. It is difficult to obtain
such exact solutions in a general case of loading conditions along the
radial edges and the problem becomes even more complicated if the
analysis is to be carried out for polar orthotropic annular plates. Such
an analysis is of much practical utility and it assumes added signifi-
cance due to recent developments in composites [2].

In the present paper, the problem of buckling of polar orthotropic
annular plates under various types of inplane compressive forces along
the inner and/or outer edges has been analyzed in detail by the Ray-
leigh-Ritz method with simple polynomials as admissible functions.
Accurate estimates of critical buckling loads have been obtained for
various values of hole ratios, for various values of rigidity ratios and
for different combinations of clamped, simply supported and free
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boundary conditions. Some numerical investigations have also been
carried out to study the influence of Poisson’s ratio (=vs) on the
critical buckling loads of the plate under internal compression. The
entire numerical results are presented neatly in the form of data sheets
for direct use by the design engineers.

Mathematical Analysis

A thin annular plate of uniform thickness h subjected to uniform
inplane compressive forces p; and po along the inner and outer edges
of radii @ and b, respectively, is considered (see Fig. 1). The material
of the plate is assumed to be homogeneous and polar orthotropic. The
prebuckling membrane stresses in such a plate are given by [3]

o, = Ark—1 4 Br—%-1

oy = k(Ark—1 — Br=*-1)

1)

and
Org = 0

in which & = (Dy/D,)/2 and A and B are constants to be determined
from the stress conditions along the inner and outer edges. These
constants are
pobk*l — piak+l
b2k — g2k
_ {poa*~! — p;bk~1) (ab)k+t
b2k — g 2k

A=
2)
B

It is assumed that the plate buckles in n circumferential waves and
the lateral deflection W(r, 8) is expressed as

W(r, 6) = W,(r) cos (nf +¢) (3)

Within the limitations of small deflection thin plate theory, the ex-
pressions for the strain energy V of bending and the potential T’ due
to midplane forces during bending are given by

- bl (d2W,\2 | Did?W, [dW, n?
V=400 D,( - (————W,,
2 ( o) a dr? } r o dr? \ dr r
dW, n?_ \2 YdW, W\
4 Do (— - W,,) +4D,, 2—( - —) ]r dr )
r2\ dr r r2\ dr r
b dW,\2 2
T=f(1+50,,)h[f la( W) +ag(2W,,) ]rdr} ®)
2 a dr r

in which 6go = 1 and 8¢, = 0 for n 0 and other symbols are as defined
earlier in the list of symbols.

In order to apply the Rayleigh-Ritz method, the mode shape W, (r)
in radial direction is expressed as

Wa(r) = 3 Awilr) ®)

in which v;(r) are chosen admissible functions satisfying the relevant
geometric boundary conditions such that they are linearly indepen-
dent and form a complete set. 4;( = 1,2, 3,...) are linear parameters
to be determined from the stationary condition 6(V + T') = 0 for ar-
bitrary variations of these parameters. This process leads to a set of
homogeneous, linear, algebraic equations in the A;’s. For nontrivial
solutions of this set of equations, one derives the necessary charac-
teristic equations for the determination of eigenloads.

For large values of a/b and in particular when both the edges are
clamped, the direct application of the Rayleigh-Ritz method with
large number of simple polynomials as admissible functions has been
found [4, 5] to lead to an ill-conditioned set of equations and round-off
errors predominate in the numerical work. To overcome this difficulty
in the computational work, the energy integrals V and T have been
expressed in more convenient forms by using in succession the
transformations proposed and effectively utilized earlier in references

{4, 5]. Upon obtaining the modified expressions for V and T', the mode .
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Table 1 Admissible functions, W, (r) = vo(r) (A4 + Aar + Azr2 +...); w(y)
= ug(y)(By + Boy + Bay® +...)

Boundary condition Designation vo {x) ug (y?}

Quter Inner

Free Simply supported FS {r-a) y
Simply supported Free SF. {b-r}) {1-y}
Free Clamped FC (r-a)? y?
Clamped Free cF (b-r)? (i-y)?
Simply supported Simply supported sS {b-r) (x-a) y(i-y)
simply supported  Clamped sc (b-r) (r-a)®  y* (1-y)
Clamped simply supported cs (or)?(r-a)  y{1-y)?
Clamped Clamped cc (b-r)? (r-a)®  y* (1-y)?

Note: w is related to the mode Wn through the transformations given earlier.

shape w(y) is assumed as w(y) = 2%, B;u;(y) in which u;(y) are
chosen admissible functions. The Rayleigh-Ritz method as described
earlier is applied to obtain the characteristic equations for the accurate
determination of eigenloads. It may be mentioned here that the
analysis modified by using the transformation n = 2 also yields ac-
curate estimates for n = 0 and n = 1 for large values of hole ratios.

n First transformation Second transformation
0 W(r) = w(r) y=(r2—a?)/(b2~a?)
1 Wir)=rw(r) y=(r—a)/b—a)

>2 W, (r) = r2w(r) y=(—a)b-a)

Numerical Results and Conclusions

Admissible functions v; () in the direct analysis and w;(y) in the
modified analysis were chosen to be simple least-order polynomials
in r and y, respectively (see Table 1). Direct analysis was used for a/b
< 0.5 and modified analysis for a/b > 0.5 by taking five terms in the
Rayleigh-Ritz method. The Poisson’s ratio vs and the parameter
D,y/D, were fixed at 0.3 and 0.35, respectively. The parameter a/b was
varied from 0.1 to 0.9 in steps of 0.1 for values of Dy/D, equal to 0.5,
0.8, 1.0, 1.25, 2.0, and 5.0. All computations were carried out with
double precision arithmetic (about 16 significant digits) on an IBM
370/168 digital computer available at THD.

It is to be noted that T' is a function of two parameters po and p;.
By assuming a particular value for pg or p; or po/p:, T becomes a
function of a single parameter. In the present investigations, the fol-
lowing cases of loading have been considered:

(@) pi=0.

(&) po=pi=p.
(Lll) p0b2 = piaz.
(iv) po=0.

The estimates of critical buckling load parameter (defined appro-
priately in the table heading) together with the corresponding number
of circumferential waves (= n) in the critical buckling mode are pre-
sented in Tables 2-5. The numerical results are presented in such a
way that they are complete and are self-explanatory.

In view of the earlier experience [4, 5] with regard to convergence
and accuracy of solutions by the present method of analysis, the nu-
merical results reported here are believed to be quite accurate. The
accuracy of critical buckling loads [4, 5] in the isotropic case has re-
cently been established by several investigators [6-9] using different
techniques. The present estimates of critical buckling loads for iso-
tropic plates are found to agree very well with the corresponding exact
values reported by Yamaki [10] in the py = p; = p case and by
Mansfield [1] in the pob? = p;a2 case. To further assess the accuracy

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i [
] [s1) 1 2 )
<3 s < =] < < < <2 < < < < < <2 < <2 < <> | ~ 1 8 o
. . - . w b . « . . " . - . . . - P 1 1
~ [=H] 3 o [ - [ 8] - ~ =} ~4 o (% EN 7] L8] — I o : o :
1 [
1 " =
P 1 i Sm
— (R [ 3] r [ —- — @ @ =] <> < — — — — - [N [
.G e Be s Q@ e Q3 e Y e LY e b e w e @ R e T T L e T e T S N Qs t __(ﬂ
PO LA Gl S s Sy oa G x A R €A D D D D) ) ok DT Qe OO e | :;-§'
b 8 ms GZD et CIR s Ead mr BX) ver Fu) vav 23 v ) es 1 —v ] e D e D ser Gad e [ s B ter b wer O var O 1L <| o
et ol ~i ph o - a - 0 ~3 2] — - — "3 ) ay N : o : ° o
i I i £8
- a- & (2] T . —_ - el . - r) r ) (2% £ ! B
L Il B e L B LN TP Y o] o T T B I I L [0} [ (DI = X
ot 2 2L T S IR 7% R - SR =c B = ] mc:.a.r.aulc:o-c:*d<:>~1:o—n<:z.:.<:mc=r\ [ [ Y
O3 % s ) e G e Q1 N2 G e Pa) e 0 B3 e O v B e M) ms e e €A e Bad e —b s O W n, a8l
-~ W ro o o -8 ro © ~1 Q- < ~J e el —* ~ W 1 a =
1] o 1 o' ®F
. . ] th 1 e~
- -1 g (1) -3 - -t ot -t Eld 3 N ™) ) r3 O i [2Y} ] [ ~ Wiand
BT 8 B 3 B R L T < T 7T IR 79 1 B T T T T T e I S [ s S o
=t NI N e e R) e C2a s D Sy O e <y ) QY @) Dy = D a3 1 D N D -t Oy LY D [ o e
Nd e s il e O owar ) e M] omae €] e 3 ver Che e o8} e Y war meb e 3] e L) s KD e O v €23 s Ll s O oo @ i )
~ < ~ — . (X} a- = ] =N =] m -l <> [ i1 (2] G ! \ : e X
I gt o3
e Q- =+ [ ) [X] - -t - e o K2 R 1 G tad = -~ 1 K !
. Kad e O mn D e G e f e €23 s O o £ s O B T T S [ 1 s
AN e I B3 s e x> Do @ ke DX LY NG D D D - D LY G B ) [ [ (1
[ R B T 7T I B O - SR s Y] R 2 B - T S e e Bl 2 B Y B [ I o0
= - o ~J ] [} o -3 m < S =1 £ ol N o (2] (8} : [ i D
'
« B
] 1 =
— =) ot EX Lok 2] Y 3] 3 EY + Y Y wi (5] a. - ~j t I Qo
B ) B T S T L L U 7, T 73 R Y R 1 . W e B m e 8 eew m e m e K e ® e o b (B a
By - N 5 It R R T - BN - BRI @ ) D LT DS R N Gl S )& [ 1 N8
Ee m s By s M s KI5 et Vo] mae (U] ner mb e @3 e (3) P R 8 I O i RN R U M N 1 < i <B4
R ] <2 £ ol ~J < 3] o- - ol a3 ~J - o1 4] %% (2] o : : ~ e
' o=
3 - ~3 a- 17 2 & " a - — — — - — - - — } ol
B T B i - - Il et Il Dl I L S Y N & L I T e [
- N R U O R R~ I - I - B -~ 2 D v o e Crw D Oy r Qr e D oe [ i WS
a3 mar G see ) v Gl e €3 e G e €D e R B B T LS L - TV, T O R UL T 1 1 G
~ o 2. Y - 0 w -3 -t ¢} (XY ~3 ~3 - r3 i 1o : } »
; 1 E
i
) i "u
1 1 el
— i I =}
~ Zv ry - ) as - [7%) [N < <y <> = - e - - - = 1
v Be mn s ety [pf emm Zy o m e m e B mn m e ow Ak ema B v e e B e 8 B e w em o e N [ Y 1 o
P e w3 e EAa Gix B D N Gd 1 e =t =t et DO @ ) D 0 K ) O S S b ) Fad € o —b Pu) b D e | e i =3
B e T Y Y B = T ] B B s R B O R e i B T | 1L i [
~— L ~i ~3 i ~0 23} —t o (%1 - — -t ~ (283 ~ (3] 5] ! : ;
Q w <t =
- - 3 - -0 o N G ry - — — - — ~ —_ - o I o i -4
B T s T N Q " st s cim eia e e s ew a 1 < i -]
- B s LT e GEor R G RY G Y e DY Ul - e o Lt R =L = B« N Y B e R B L vt B B T i [ =y =3
Q3 % mr i s NI s ) e A et e we o we S5 e e R R - S - R S T RSO < s N | I "1 [~ 2| o
~ o1 ~) ~d < ~8 ~0 o 23 o 0 ~3 = Q- < ~a O P = Bon i o B,
o L 70 0
- & (&) - 1) - 8} [§] ry %3 ) - - — e 1 i o
P e LT 2L B N T N —~ B N L T R N S BT 1 - Ot 2
[T TR TR T 7% L o5 B X 3 ) (5] Lot B I A EE R B B R B T e T s IEL I « T o8 | io= Fh | g
Wi W e [ er = mes Y s E) e j - — €D s b ovoe pf e ) e D) s M) Gee 3 e 2 e M) ) 1 -8
e P2 1 < ay (-3 a- < @ i < a. N Y} (7] ; o : 1]
| @ ! T
- = r - -y o EN €2 sy 3 3 "~ (8} ) 1 ~ ! ®
R 2 I e T N ) A i - 1 -
I R R R A N SR I IR S R ISty ¥ L R R R R Y [ty [ [w ] ]
v ® e @ e Fad ver €33 s @) e By wer 0] ter W) oer O v (pd er On sme P e D wee o) e v IR i
s ) (5] (] ~ i ~2) < < Q- < e [=}] - ~3 (B i g
1 )
| | 2
=t (8] 3 - ~ o - L r3 kY - £ g el (7Y} 3 (B b 1 i 5
v 2 e ©) e B v LY e ma m san 8 e w e P T T N e A O e ory ' e
— Ay Oe n e s Qi s B R 0 G R D T e e LR RIS B &, B Bl s LI LR LB TN BN 3% B LY | to. t 5
Er w mar B e b aee Bad et vR) =d WA P X33 as b wee §5) Bt I S e ot =t B T % Tt TR ST ) [ <Y 1 £
~e 0 - <» Gi o i Gi ~ ra (] ay ~i ) 28] 8] (23] 2 i : : o
2
i i 3
— 1 ra - 3 F En - — 3 o i ' ]
e DY e B e Dn e D e e e e e b e n e PN SN o I e 1 8
I N I T A S T 20 s T 8 (SRR IR SR R @ e T3 o e O i) - P |
TR e ) ter N oses aabcee B oSer D T L I ] T I T I B R ) [ ] 3
- - ) £ - ) < i o o @ i i -]
i .
[
i i 3
: g
1
i § ®

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 645

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T S R S R - T L I T R A o

N L T L A N L T T T L L BT BTN L N s R T 3 5
[ I T T I i T B e T - R &Y w1 ra e I L0 [ (O T e am O hes =
Paw Ser SO v wm ves (S et B e [ ves 1R ter (30 bee SQ see PO nee T e PYY mer B3 v R e ae e =R =
fe w 42 - P e ™~ < @ - v~ o m £ g w0 o~
]
g ° 4
w0 9 8 &
3 BRI TP E R, [EPT I N P & D
» o= w (% e v o IN? [ S s -
Y v Qe F e 4D e i ° ast
o va ~a [€a) I 3 ?
£ & 2
[ e oo e o RIS 4 — P [T | PN DU @ E [
e DN = o~ - D D N T P N & BN ¢ SE R ¥ ,_g =] @
R R 2V . ¢y tna LI B A S O A7) & =l é@
(e v D e ©2 [ S B fo e (D [ E =] ©
re “r o~ = k4 e fe ~ wm
o S ©n

=

[ ] Py
o B3 %) 3] w s L e o e e~ - - [¢<] ] L L B e 4
P N £ TS AP S R I S TN SR Y O e P L T A T T B S S Nt +
D T R 4 B L S I C B o T e i { I 17 [ ST N 35 [L-SENCIRE S SR« I n B ¢ n AR G S ¢ N . @R E
[ TN T JETRE Ty [RUSARYS WS SR £ IR T IROEEY « JICTlE P RS P R T B et fhe s v s LT ne €30 e ] v a@ v _8 % oy
a; re IS e o ‘o P - 12 ] i n — 2 i ] 3 2F 8 3
0 Y 8
@ ~a f~ a 3 ™ - w2 o
L e BT £ W tom LED ema fay em g8 B =
6] T e T I OT R 2] [+ I 0 j"“ ° =)
o, e B e PO e el e RO < 2 f 1S
v ™ . [t 3 w - - ¢ - bt i 2d &

2% 8§
0 8 g
o m re o+ o4 o [P N o o w tr- 2 e B e m o g 5 49 8
L -] e IO OO e P ome Q) eme O em e s (W XD s eF N e R L Gl 5 ~
Q e N & IR A T B3 1 « B DN SRR I 1 e o [ T - Ha o &
= N L R e O e am e [ v 4D i 1A e a— e B e D L T I 58 & ~
S ~ mn (5] or - ™ - e [¢7] o in] ] & ¥ o~

=

= |5 &8
g g % 3
8 2 <
Q . 2 =3
[ Py [CN (&) e [ [ [ " o < ax] [ e =]
B P P ] [ RN O e (] e m e e e a -
N I R TR . .- e I L IR N ] @
) O v AT v 4 v (O v ra [ Z— T R R S R e Q Q
= [ e Y [T o v -0 o - PR 5 §
® g o
E i L= (&) (] A (] 3 LE R R o [} - - [ Pru ome LT3 o 4 7]
G s S e EFY e (D e 4D e~ ®oem ok ame & 11 ® G [ N L N N L~ B R ®
L R T A R R R NS R e e 0 2] o a— e a— D N S L e R~ R e e Qo =
W vl T e R e (G e v ves vm e P e (B e v e €3 o 1T R R S R g =
«d e .o [t (3] - - (3] -0 £ 4 2p] [£s) R o At 2 8
-
e 7 @ . 8 <
a RN sy 3 & I

g (] LR [~ t a8,

- . e e MR . 2

- . =

2

o

-

—

N

=

ar or o 3] 1.
- - . QY e el
v . o - m D

- W e (D e ¥ . N aem e e e
b <y ETd (] T - - .. T 4 (35

(38} 0

kumar and Joga Rao [11] have reported data for orthotrop:

1 Valuein ( ) denotes the number of circumferential waves (=n) in

4 When Dy/D, = 1.0, the value for a/b
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Table4 Continued

(5) SC case:

Got 3.89%  4.603 D.1ED J.884 B.iFt 20.1F%
0.2 5.4%6 F.307 %.837 10.50 1Z.70 22,70
0.3 i0.43 16.27 16.8F i17.3% i%.66 Z2§.870
G.d 26.085 Z7.446 28.00 ZB8.6F 30¢.77 3%.43
G0 44,07 44.87 47.42 48.0% 20.12 08.3%
U.b 3.08 B4.36 B4.85 83,34 BF.51  §5.47
n = iim s sim om 1im 2 4mm o7 dma o amn o8
Vas (K2R ] 107 <& 1G7./ /i3 [ s 1777
U.8 §22.0 420,83 4%3.3 473.% 4253.8 433.3
.o P ine PR . inen PR

0.7 1834 (N 1837 1838 1839 1867

(7) 8S case:

n W a4 mma o omma e omma a spz o oo

Gai i.320 1.731 2.001 2,353 3.4F4 B.BAN
s n 4 mi: m oami o omea s aan w oAma n an
0.2 3.066 3,474 3.797 4.118 3.234 10.40
A - mare . v oA s g - aa no oaan P
G.3 J.710  6.343 6,637 7.00e o.Vd43 13.93
n . in o mi a4 me a4 ms a4 omn a7 oms 4 ;s
be iG.7% 11.21 11.01 11,88 13.04 17,71
0.5 17,48 17.74  20.24 20,483 Z1.7F 24.40
P i mn me s xa ks 7% omn A0 AR a7 an
[ 3é.72 37.18 37.00 37.88 3F.00  43.87
0.7 TAJ4T 76.92 FF.23 77.42 7B.80 B3.O4
G.8 197,71 197.0 197.8 1%6.2 1%F.4 204,
0.7 887.9 B8BB.4 B888.7 4887.1 8§90.3 893.0
Notes:

1 Valuein (

sponds to critical buckling mode.
* n =1 corresponds to the critical buckling mode.

(6) CS case:

i

s pmn o omea m sas 2 nam
L7380 Lwdds PR At S IR B

$.842  3.313 0.43% 6.038
o mnm e ax an mi aa ma an

F.6870  10.4% id.7e 11.20 1Z.53

i;y mem ap o ma xm ma mA s A an

i23.77 19,33 i7.71 Z0.98  Zi.40
330180 35077 34047 38447 38,07
68.32  68.75 4%9.37 AP.8F  Fi.47

Ci 4 ima @ asmom 4am om swe s

[ 2~} T4 3 [ Y 147 .0 [ 4

acrz A amam mees n e m wag 4
3340 38s.7 C3BF.I 0 3E7.F 36%.4

—n P cmnn ‘a mma

177 1786 1780 i 1783
(8) CC case:

da 4. 30 7001 10,01 23.81%

. AR v an e aee
; 13,81 14,37 18,47 31,23

s ne i i oas an o e e
24,44 23,4 26.43 36,02 43,39
L4 oA ar o L a e ome i ia
4,04 A43.2% 44,13 3G.38 43,60
B pem ia o g
FFO0F BG.3F 81,23 83.80 YE.%4
vem e ae s sen T . wea o san
48,1 14,4 130.3 4 134.0
30701 308.4 0 309.3 30 313,68

7RT.A PRI FRiLT L0 FRA L4
3333 334 3n0n ; 3340

)} denotes the number of circumferential waves (= n) in the critical buckling mode; when no value is given, n = 0 corre-

3 The corresponding data in the isotropic case have been reported by Mansfield [1] in all cases except in the two cases of SC and
S.

4  Axisymmetric (n = 0) eigenloads in SF and F'S cases are identical and in the isotropic case (p;a®h/D) = (1 — v2) for all hole sizes
[1]. For a/b — 1, the axxsymmetnc buckling load for the orthotropic plates in these two cases can be approximately calculated from

(pia®h/D,) = (Dy/D,) — vgl.

for orthotropic plates, the present estimates of critical buckling loads
are compared with the corresponding estimates reported by Elishakoff
and Charmats [6] and are found to agree very well.

It can be seen from the data in Tables 2-5 that for all values of
compressive force po/pi, hole ratios a/b and rigidity ratios Dy/D, the
axisymmetric mode always corresponds to the critical buckling mode
in the SF case. This behavior is also exhibited by the data in the CF
case for a/b less than about 0.5. In the remaining cases, the plate
buckles first either axisymmetrically or asymmetrically depending
upon the value of po/p;, a/b, Dy/D, and the boundary conditions. The
number of circumferential waves (=n) in the critical buckling mode
increases with increasing values of po/p;, a/b as well as increasing
order of geometric constraints at the edges. With regard to the in-
fluence of Dy/D,, it is to be noted first that there is a limitation on the
variation of Dy/D,. For structural materials satisfying volume crite-
rion, analysis for s > Dg/D, has no physical validity or physical sig-
nificance [4, 11]. In the physical valid range of Dg/D, it is found that
an increase in the value of Dy/D, generally leads to a decrease in the
number of circumferential waves (=n) in the critical buckling mode
in all cases except in the two cases of FS and FC (and that too up to
certain values of a/b).

In Table 8, some additional data on tensile critical buckling load
in the pob? = p;a? (radial tension) case of loading are presented in the
four cases of SC, C8, S8, and CC. The corresponding estimates for
isotropic plates were earlier obtained by Mansfield [1] in the two cases
of SS and CC. It is found from these data and the data in the other
four cases (not reported here) that the axisymmetric mode never
corresponds to the critical buckling mode for plates under radial
tension. On the other hand, the axisymmetric mode always corre-
sponds to the critical buckling mode for plates under internal com-
pression (pp = 0) because the hoop stress is tensile all along the radial
line. In a general case of compressive loading condition, it can be
shown that the hoop stress '

650 / VOL. 48, SEPTEMBER 1981

p()bk+1 — piak+1 el poak—l - pibk—l

og=k|— (ab)k+1p—k-1

b2k — g2k bo%k — g2
is tensile everywhere if
k+1 b2k
Po/pi * Z(b) (bzk n azk)'

Hence, for load ratios satisfying this condition one would expect the
plate to buckle first axisymmetrically for all boundary conditions. The
present extensive numerical investigations confirm, in general, the
validity of the foregoing restriction for all boundary conditions except
in the two cases of FS and FC. In these two cases for pob? = p;a?
loading, the mode with one nodal diameter corresponds to the critical
buckling mode for small hole sizes even in the isotropic case (k = 1,
see Table 4). This behavior is not exhibited in the results reported by
Mansfield [1]. It may, however, be mentioned here that there exists
a corresponding behavior in the free flexural vibrations problem
(unloaded plate) in the sense that the mode with one nodal diameter
corresponds to the fundamental mode of vibration for hole ratlos less
than about 0.3 in these two cases of FS and FC.

In order to understand the plate behavior properly, it is useful to
have the information on the influence of vy on the critical buckling
load. For this purpose, estimates of p;a2h/D, for plates under internal
compression have been obtained for v5 = 0.2, 0.3, and 0.4 and Dy/D;
= 0.5, 1.0, and 2.0 (see T'able 7). It is interesting to observe from this
data that a decrease in vy increases the value of the critical buckling
load for isotropic as well as orthotropic plates in all cases except in
the two cases of inner edge clamped and the outer edge either simply
supported or free. In the CC case, vy has no influence on the value of
Dpia2h/D, but as D, contains vy, the buckling load depends on »,.

In the context of the present work, it is pertinent to mention the
recent handbook of structural stability [13] brought out by the Col-
umn Research Committee of Japan. This work contains an excellent
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Table 5 Estimates of critical buckling load parameter (= p,a2h/D,) of polar orthotropic annular plates under uniform Inplane com-
pressive forces along the Inner edge (po = 0), ¥ = 0.3, D,9/D, = 0.35

a/b
0.3 .8 1.0 1.29 2.0 3.0
(1) SF case:
0.1 0.397 0.758 1.02B 1.393 2,622 B.347
0.2 6.463 0,847 1.124 1,486 2.678 B8.307
0.3 0.522 0.932 1.218 1,587 2.771 8.270
0.4 0.374 1.011 1.309 1,691 2.868B - B.27%
0.3 0.621 1,085 1.399 1.797 3.024 8.342
0.4 0.663 1,137 1.488 1.704 3.172 B.496
0.7 0.7086 1,226 1.374 Z.010 3.32B B.730
0.8 0.746 1,293 1.458 Z.113 3.4%0 ¢7.044
0.7 0.784 1.357 1.740 2.218 3.034 9F.41H
(3) CF case:
G.i G.608 0.961 1.219 1.3560 2,732 8.33%
0.2 1.009  1.423 1,683 Z.022 3.127  B.440
6.3 i.812 2.196 2.4671 2.80i 3.882 B.B%8
0.4 3.137 3.537 3.829 4.17% 5.251 10.035
0.3 9.6%4 46.110 6.3%0 6.744 7.82% 12.49%
0.6 i0.94 11.37 11.é6 12.02 13.13 i7.72
G.7 23.99 23.99 24.29 Z24.66 25.76 30.38
0.8 63.23 63.69 63.99 64.37 45.33 70.17
0.9 298.1 298.4 298.% 299.3 300.3 309.2
(5) SC case:
0.1 4,348 5.449 4.080 6.922 9.4B4 24,09
0.2 11.26 12,31 13.04 14.03 17.06 30.73
0.3 22,74 24,04 24,90 25.9% 29.34 43.89
G.4 43.3%9 44.82 40.77 44.97 D0.63 45.56
9.3 B2.31 83.8¢ B84.90 B4.20 F0.14 106.3
.8 162.6 144.3 180.4 106.8 iFI.0 1BBLG
0.7 354.9 354.6 337.8 3059.3 363.7 361.8
6.8 958.4 960.3 961.é4. F63.1 F47.8 784.8
0.9 4318 4392 4022 45323 4528 4948
(7) SS case:
Ul et 10832 S.13F 0 ELODB 3,708 F.iEn
0.2 3.522 3.5B4 4.301 4.70G6 5.571 11.38
0.3 7.277 7.7 B.140 B.38B0 9.932 i5.72
[ 14,16 14,73 15.10 15.98 17.03  23.07
040 27.37 27.98 2B.39 28.90 30.46 36.81
0.8 54.93 35.41 56.07 D4.00 38.75 A4.96
0.7 129.6 122.3 122.8 123.3 125.1 13%.2
0.8 332.3 333.0 333.3 334.1 3346.0 343.4
G.7 1383 1084 1383 1985 1387 1993
Notes:

1 n = 0always corresponds to the critical buckling mode.

(2) FS case:

Axisymmetric eigenloads are

identical in SF and FS cases.

(4) FC case:

1.5301 1.%i0 2.385 3.007 35.5048 21.i8
2.948  3.233 3,732 4.403 5.7%4  19.84
4,027 5.282 5.8i3 4.308 6.7%3 20.43
7.894 B.717 9.282 10.061 12.32 123.43
14,06 14.93 19.95 14.31 18.4F 2%.39
26,53 27.48 28.12 2B.92 31.3% §1.95
33.76 56.97 57.66 G8.30 6i1.07 Fi.7E
147.4  148.5 14%.2 150.1 iD%.8  1e3d.7
662.9 AB4.0 684,68 &BI.7 4B8.7 4%3.F
(6) CS case:

2,024 2.449 2,743 3.129 4,333 9.799
F.281 3.776 4.1t 8.334 TF.B4Z i3.a
11.26 11.82 12,19 12.466 14.08 19.97
22,29 22.%90 23.31 23.83 25.37 3i1.40
43.32 A4.18 44.63 495.18 44.837 03.70%
87.93 BbB.44 §9.12 B8%.71 §i1.30 98.60
199.4 1961 194.6 1F7.I 19F.1 F04.7
335.4 534, 336.7 937.4 337.4 3470
2336 2957 2957 2058 2360 2068

(8) CC case:

3.950 0.8 F.4B0  8.578 4

195.19 14.43 17.31 18.40 73

31,25 32,77 33.78 30.G0 7

0.2 H1.90 &3.0% 64.38 33

119.1 114.§ ti8.1 1i7.9 i

228.68 230.7 z31.7 233.¢ o

900.9 203,97 904.3 G860 .2

1357 1339 1357 1302 ;

6413 5413 6414 6418

2 Strzelezyk and Wojciech [7] have also reported quite extensive data.

compilation of pertinent literature together with numerical results
for various types of isotropic and orthotropic plates.
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Table 7 Influence of vy on the critical buckling load parameter (= ma2h/ D, ) of polar orthotropic annular plates under uniform inplane
compressive forces along the inner edge {po = 0); D,3/D, = 0.35

D,/D_ = 0.5 = 1.
g/ Dy Dg/D_ = 1.0 Dg/D, = 2.0
Case a/b
vg> 0.2 0.3 0.4 0.2 - 0.3 0.4 0.2 0.3 0.4
SF O 9.450 1.3%7 ¥.328 1,107 1,028 §.934 2.780 2.622 2.463
FS 0.3 $.5%8 $.522 0.425 1,312 1,218 1,102 2,508 2.77% 2.473
0.3 G.708 9.821 0.367 1,500 1,375 1,272 3.134 3.024 2.567
CF Gt 6.707 0,408 $.345% 1.338 P.21% 1,090 2.577 2,732 2.335
%.3 2.921 1,812 1.393 2.683 2,468 2.22% 4.136 3.5882 3,424
0.3 4.082 3.6%4 5.298 6.786 6.359 5.564 8.34% 7.829 7,498
FC 0.1 1,243 " i.36d i.332 .324 2.385 2.43% 5.3i6  3.548 3.615
0.3 4.332 4,327 i.708 5.613 3.813 5.557 5.3%7 8,793 8.798
0.5 i3.60 14,06 14,30 15,67 15.5% 15.57 18.23 18.47 i9.13
sc 0.1 4,311 4.548 1,584 6,044 4.088 5.126 7.637 7,884 §.72%
0.3 22,64 22.7% 22.%i 24.74 24.70 35,06 257,47 29,34 25.351
0.3 81.97 82.31 §2.79 84.43 84,99 83.2% 57.73 $5.14 §0.54
cs O.i 2,193 2,024 1,644 2.%38 2.542 4,577 4,333 $.086
0.3 it i1.26 i0.86 12.36 i11.80 i4.0¢ 14.08 i3.00
0.5 i4,21 $3,52 2.82 45.33 $3.48 $7.57 44.83 44,12
S8 0.1 1,386 1,449 t.302 2.293 2.137 1.970 3.708 3.764 3.492
0.3 7.5i% 7.277 7.02¢ 8.397 5,149 7.56§ i0.22 §.932 $.431
6.5 27.78 27.37 26.%4 25.7% 15.3% 757 30.88 30,494 30.02
Notes: A Lo
1 n = 0; axisymmetric eigenloads are identical in SF and FS cases.
9 g has no effect on the value of (p;a2h/D,) in the CC case.
10 Yamaki, N., “Buckling of a Thin Annular Plate Under Uniform Com- 12 Uthgenannt, E. B., and Brand, R. S., “Buckling of Polar Orthotropic
ion,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 25, 1958, pp. : :
g(ts;s_sz)gg, ° pp Annular Plates,” AIAA Journal, Vol. 8, No. 11, 1970, pp. 2102-2104.

11 Vijayakumar, K., and Joga Rao, C. V., “Buckling of Polar Orthotropic 13 Japan, G. R. C., Handbook of Structural Stability, Column Research

Annular Plates,” Journal of the Engineering Mechanics Division, Proceedings
of the ASCE, Vol. 97, No. EM3, 1971, pp. 701-710. Committee of Japan, 1971, Corona Publishing Company, Limited, Tokyo.
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On the Error That Can Be
Induced by an Ergodicity
Assumption

A. J. Scheurkogel,! |. Elishakoff,2 and
J. J. Kalker®

Introduction

Buckling of stochastically imperfect structures is governed by
random nonlinear differential equations. The exact solution of these
equations does not appear to be feasible and approximate methods
are resorted to. In a number of papers, the assumption of ergodicity
was used to obtain probabilistic characteristics of the solution. For
the ergodic theorem one may consult, e.g., Lin [1] or Billingsley [2];
Amazigo [3] reviewed inter alia the probabilistic buckling problems,
the solution of which is based on the ergodicity assumption. The
question arises whether this assumption is correct.

To our knowledge the only work which considers the validity of the
ergodicity assumption in a context of structural mechanics is that of
Bolotin [4, pp. 101-105]. He gave an example where the first three
terms of the perturbation solution agreed with the solution resulting
from the ergodicity assumption.

Here we present an example akin to Bolotin’s in which the exact
solution is given and compared with results obtained by the ergodic
approximation. It is found that

1 The ergodicity assumption is correct at only one value of the
governing parameter.

2 The ergodicity assumption leads to a good approximation in a
large part of the domain of definition of the governing parameter.

3 In the remaining part the error may be very large.

A structural mechanics example is now underway and will be pub-
lished elsewhere.
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Formulation
Consider the random differential equation:
d% x
Pt A — — /2.
dt2+£2 4~ paZ2—-pb2)l/2; t>0,0<p=<4 1)
with initial conditions
x(0) = fa + £%(4 — pa? — pb2)1/2 (2)
x’(0) = b (3)
where
1 T
£2= lim = f x2(8)dt, £>0 4)
T T Jo

and p is a governing parameter.

The random variables a and b are jointly uniformly distributed on
the unit circle a2 + b2 < 1.

We are interested in E[x(¢)] and E[x2(¢)] where E|. ..] denotes
mathematical expectation.

Approximate Solution Based on the Ergodicity
Assumption

If the solution x(¢) is assumed to be mean-square ergodic, the
mean-square value follows directly from (2) and (4):

£2 = E[x2(t)] = E{x%(0)] = E[£a + £2(4 — pa? — pb2)1/2]2

=18+ U-sp)t* (5)

hence
_3
2(8 — p)

Taking the expectation of equations (1)—(3) with this value of £, we
find after solving for E[x(¢)]:

£2=Elx%t)] = (6)

3
Elx(t)] = ——— E[4 — pa? — pb?]}/2 (N
2(8 — p)
Introducing the random variable
=a?+ b2, (8)
uniformly distributed on the interval (0,1), we finally obtain
3
Elx(0)] = ——— E[4 - pz]'”2
2(8 - p) !
3 1 — (4 — p)ar
=-—-~—f (4 — pz)V2dz _8-d-p” (9)
28 — p) Jo p(8—p)
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‘Exact Solution
For each realization of the solution x(t), £ is independent of t.
Consequently, the solution of equations (1)—(3) is

x(t) = af cosé + b sin §+ £2(4 ~ pa? — pb2)1/2, (10)

where the value of £ is obtained from sﬁbstitution of (10) into (4)
g2 = 1—(a2+52)/2

4 — p(a®+b2) 1D

We immediately observe from equation (11) that £ depends in general
on the particular realization of the random variables ¢ and b, which

" implies that x(t) is not mean-square ergodic for arbitrary p. However,
x(t) is wide-sense stationary (i.e., E[x(t)] is constant and the auto-
correlation function E[x(£)x (¢t + 7)] depends on the time lag 7 only
but not on ¢ itself [1]). To show this, we first note that a and b are
interchangeable in the expression (11) for £ and, moreover, that £ is
an even function of both a¢ and b. Next, we substitute equation (11)
into equation (10) and take the expectation. The first and second
terms do not contribute as they are odd functions of a and b, respec-
tively. The mathematical expectation is, therefore,

—(a?2+b2)/2 1 —z/2
e pa? - pb2>1/2] J. G
1
3p?
independent of ¢, which establishes the first property of wide-sense

stationarity. In order to establish the second property, we form the
product:

Elx ()] =

=—1[12p — 16 ~ (5p — 8)(4 - p)*/2], (12)

2(®)x(t + 7) =L (@2 + b2 cos ~2~+ 1 (a — b2 cos

t
+ abf? sin st + af3(4 — pa? — pb2)1/2 (cos E + cos

t;T)
3

+ £4(4 — pa? — pb?) (13)

with £ as per equation (11). Taking the expectation, we find by
employing symmetry arguments that only the first and last terms
contribute to the autocorrelation function. Taking into account
equation (8), we are left with

Elx(®)x( + 1)}

2t + 71
) t t+
+ b£3(4 — pa? — pb?)12 (sing + sin T)

=E cos T+ , (14)

4—pz 2 -
1 ——
which is a function of 7 only.
The second moment of x (t) is calculated from (14) as
2 11—
E[x2(t)] = — 2/ ] f 1-2/2 dz
l4 pz 0 4-—pz
2(p —2
L Heo2, (1—’3)] (15)
2p p 4

In accordance with equation (11), the necessary condition for mean-
square ergodicity is that p = 2, since otherwise £ would depend on the
particular realization of a and b. From equation (15) we have for p
=2, that E[x2(¢)] = 1. On the other hand, from equations (4) and (11)
we have

1
£ = lim — x2(t)dt =% (16)
T—w
8o that £2 = E[x2(¢)]. All this implies the mean-square ergodicity of
x(t)iffp = 2.

Interestingly for p = 0 the solution based on the ergodicity as-
sumption also coincides with the exact solution, although for this
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Fig. 1 Mathematical expectation as a function of p
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Fig. 2 Mean-square value as a function of p; at p = 0 and p = 2, the exacl
and approximate solutions coincide

particular value of p the process is not ergodic in the mean-square
sense. In this case the wrong assumption leads to the correct result.

The mathematical expectation E[x(¢)] and the mean-square value
E[x2(t)] are shown in Figs. 1 and 2, respectively. It is remarkable that
both the exact and approximate solutions are very close in the range
0 < p < 2, coinciding at the ends of this interval. The percentage error
relative to the exact value induced by the ergodicity assumption, is
of the order of —0.5 percent in this range.

The foregoing error increases rapidly with p and reaches its maxi-
mum value at p = 4, For the mathematical expectation, this error is
25 percent, whereas for the mean-square value the error approaches
100 percent: the exact mean-square value E[x2(t)] tends to infinity,
while the approximate one remains finite.
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Note on a Paper by Liu on the
Scattering of Water Waves by a
Pair of Semi-Infinite Barriers

A. D. Rawlins

Recently, a problem, whose solution was well known in exact form,
has been analyzed by Liu (Scattering of Water Waves by a Pair of

- Semi-Infinite Barriers, ASME JOURNAL OF APPLIED MECHANICS,
Vol. 42, 1975, p. 777), by the method of matched asymptotic ex-
pansions. From the known exact solution a simple expression is
obtained for the transmission coefficient. The exact expression for
the transmission coefficient when expanded for low frequency in-
cident waves differs from Liu’s result, and therefore casts doubt on
Liu’s analysis and physical conclusions.

A problem, whose solution was well known in exact form, has re-
cently been tackled by the method of matched asymptotic expansions.
The work, to which we are referring, is by Liu [1]. The problem is that
of diffraction of a plane water wave by a pair of rigid semi-infinite
barriers. This problem has been solved exactly for all values of inci-
dent wave frequencies by a number of authors, in particular its solu-
tion was available in Noble’s book on the Wiener-Hopf technique [2,
Section 3.2, Page 100].

Mathematically, the problem that is required to be solved is to
determine Y(x, v, t) = ¢(x, y)e~i¥t guch that

0% 0%

—+—+ k% =0,

dx%  ox? ¢
> .
% =0, y = *a, x <0.
oy

Also grad ¢ should have no more than an integrable singularity near
the two sharp edges (0, +a); and the radiation condition is imposed
which requires that the only energy which is “incoming” at infinity
is that of the incident wave. Referring to Fig. 1, a given wave ¢;(x, y)
= g—ik(x cos aty sin a) jg incident on the barriers. Consequently dif-
fraction takes place at the edges and a wave Te ~#¥* is transmitted into
the region between the barriers. The object of Liu’s work was to cal-
~ culate the transmission coefficient 7" for the low frequency situation
ka « 1. He derived the result to O[(ka)?] and concluded from his
expression that the transmission coefficient at low frequency was
independent of the angle of incident . It is easy to show that this is
only true for the terms of order less that O[(ka)], and more specifically
Liw’s result for 7" is incorrect.
From Noble [2, p. 105}, the exact expression for the transmission
coefficient for all incident wave frequencies is given by
1 |sin (ke sin o]

|T| = -
[Lak cos L_(k)|| kasina |
According to Noble {2, p. 127, ex 8.3], if 0 < ka < T,
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Eik(xcosa-o-ysina)

To—ikx

Fig. 1 Coordinate system and breakwater conflguration

. . 12

|L+(k cosa)| = w / g~ (kal2) cos a

ka sin o

|L__(k)| = gha/2,

Hence
i i 1/2 .
|T| = #—s";(k“.s‘“ A —rarrimeos i 0 <ha <x (1)
a sin o

This latter expression is valid (and simple enough to calculate) for

-all0 < ka < 7. In order to compare our result with that of Liu we ex-

pand the right-hand side of (1) for small ka giving
|T| = [1 — ka sin? (g) + O[(ka)z]] @)

A result quite different to Liu’s. It will also be seen from (2) that the
transmission coefficient does depend on « for terms of order (ka) and
greater.
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Magnetohydrodynamic
Boundary Layer on a Wedge

B. Nageswara Rao? and M. L. Mittal'

With increasing prospects for using magnetohydrodynamic (MHD)
principle in electric power generation, there is a renewed interest in
the study of MHD boundary-layer phenomena. In these devices, a
partially ionized gas is used as the working medium, which is made
to flow in a diverging channel. Thus the study of the phenomena of
boundary layers on a wedge-type wall plays an important role in the
design and analysis of a MHD power generator. Wilcox [1] has studied
the MHD boundary-layer phenomena on a wedge using similarity
principle. To localize the electromagnetic effects within the limits of
the boundary layer, the variation of conductivity with velocity dis-
tribution is considered in his analysis. Since the Hall and the ionslip
currents are important, while using the partially ionized gas as the
working medium, this analysis is not directly applicable in the study
of boundary-layer phenomena in MHD power generator.

In the present analysis, the effects of the Hall and the ionslip cur-
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pansions. From the known exact solution a simple expression is
obtained for the transmission coefficient. The exact expression for
the transmission coefficient when expanded for low frequency in-
cident waves differs from Liu’s result, and therefore casts doubt on
Liu’s analysis and physical conclusions.

A problem, whose solution was well known in exact form, has re-
cently been tackled by the method of matched asymptotic expansions.
The work, to which we are referring, is by Liu [1]. The problem is that
of diffraction of a plane water wave by a pair of rigid semi-infinite
barriers. This problem has been solved exactly for all values of inci-
dent wave frequencies by a number of authors, in particular its solu-
tion was available in Noble’s book on the Wiener-Hopf technique [2,
Section 3.2, Page 100].

Mathematically, the problem that is required to be solved is to
determine Y(x, v, t) = ¢(x, y)e~i¥t guch that
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Also grad ¢ should have no more than an integrable singularity near
the two sharp edges (0, +a); and the radiation condition is imposed
which requires that the only energy which is “incoming” at infinity
is that of the incident wave. Referring to Fig. 1, a given wave ¢;(x, y)
= g—ik(x cos aty sin a) jg incident on the barriers. Consequently dif-
fraction takes place at the edges and a wave Te ~#¥* is transmitted into
the region between the barriers. The object of Liu’s work was to cal-
~ culate the transmission coefficient 7" for the low frequency situation
ka « 1. He derived the result to O[(ka)?] and concluded from his
expression that the transmission coefficient at low frequency was
independent of the angle of incident . It is easy to show that this is
only true for the terms of order less that O[(ka)], and more specifically
Liw’s result for 7" is incorrect.
From Noble [2, p. 105}, the exact expression for the transmission
coefficient for all incident wave frequencies is given by
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This latter expression is valid (and simple enough to calculate) for

-all0 < ka < 7. In order to compare our result with that of Liu we ex-

pand the right-hand side of (1) for small ka giving
|T| = [1 — ka sin? (g) + O[(ka)z]] @)

A result quite different to Liu’s. It will also be seen from (2) that the
transmission coefficient does depend on « for terms of order (ka) and
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With increasing prospects for using magnetohydrodynamic (MHD)
principle in electric power generation, there is a renewed interest in
the study of MHD boundary-layer phenomena. In these devices, a
partially ionized gas is used as the working medium, which is made
to flow in a diverging channel. Thus the study of the phenomena of
boundary layers on a wedge-type wall plays an important role in the
design and analysis of a MHD power generator. Wilcox [1] has studied
the MHD boundary-layer phenomena on a wedge using similarity
principle. To localize the electromagnetic effects within the limits of
the boundary layer, the variation of conductivity with velocity dis-
tribution is considered in his analysis. Since the Hall and the ionslip
currents are important, while using the partially ionized gas as the
working medium, this analysis is not directly applicable in the study
of boundary-layer phenomena in MHD power generator.

In the present analysis, the effects of the Hall and the ionslip cur-
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Fig. 3 Separation profiles for different values of load parameter, K

results show that the skin-friction parameter f”/(0) increases, and the
displacement integral I; and the momentum integral /2 decrease with
the pressure gradient parameter 8. In the absence of K, the parameter
£7(0) decreases and the values of I; and I increase with the interaction
parameter I. But the values of f7(0), I1, and I increase with I in the
presence of K. For separation of flow, the magnitudes of the pressure
gradient parameter | 3| decreases and values of I; increase with I for
different values of K.

For the case K = 0 and 3, # 0, it is observed that the values of f/(0)
decrease and the values of I'1 and Is increase with I. With the inclusion
of ionslip currents, the values of f(0) further decrease while the values
of I and I, increase with I. For the separation of flow, | 3| decreases
with the Hall and the ionslip currents also.

For the case K = 0.5, it is found that the values of f/(0), I'1, and I
increase with I and further increase with the inclusion of ionslip
currents. For the separation of flow, the behavior of the parameter
|8} is similar as in the absence of K.

It is important to note from Table 3 about the negative values of
the momentum integral I for the separation of flow. It is observed
that the mometum transport is larger in the boundary layer than in
the equivalent inviscid flow. This is accounted for by the large ob-
served velocity overshoots in the boundary layer (see Fig. 3).
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Solution of Navier’s Equation in
Rotational Curvilinear
Coordinates

B. S. Berger' and D. M. Curtis?

Numerical study of the exterior problem for elastic bodies has re-
ceived considerable attention [1-5]. The satisfaction of boundary
conditions at infinity is an important problem for the static, transient,
and steady-state cases which has been approximately satisfied by a
variety of means. These include the introduction of a viscous
boundary [2], a semianalytic energy transmitting boundary [1, 3], and
a technique based on the properties of the transmission of D’Alembert
forces [4]. The boundary element technique has been shown to be
effective in the solution of exterior problems for the static and
steady-state cases.

However, as pointed out by Brebbia in [9], equations involving the
time variable are usually hyperbolic (or parabolic) in type and as such
are unsuitable for solution by the boundary element technique, the
Laplace or Fourier transformed equations, however, are in many cases
elliptic. The numerical inversion of the Fourier and Laplace trans-
forms involved in this approach, while possible, present serious
computational problems [10]. As has been previously shown for the
exterior problem for cylindrical bodies [6, 7], the following demon-
strates that methods of solution based on coordinate transformation
can readily satisfy boundary conditions at infinity for the steady-state,
static, and transient cases and accommodate differing surface
geometries for exterior bodies of revolution.

In the following, the Navier equations are expressed in orthogonal
rotational curvilinear coordinates. The angular variable, X, is sup-
pressed through a Fourier or finite-difference expansion. Finite-dif-
ference equations are derived for the case of symmetric loading and
solved numerically for static problems for which exact solutions may
be derived. Comparisons between exact and approximate solutions
show excellent agreement. While the formulation given here is suffi-
cient for the static and transient cases, satisfaction of the radiation
conditions, at infinity, associated with the steady-state case requires
the use of the Lamé potentials. This case is omitted here, but is given
for cylindrical geometry in [7].

The vector form of the equations of motion of a linearly elastic,
homogeneous, isotropic solid is given by

(N + 2u)Ve — pVx(Vx7) + pb = pit (1)

where A and u are the Lamé constants, & the displacement vector, p
the mass density, and b the body force vector [8]. Denote the coordi-
nates of a point in a circular cylindrical coordinate system by X;, i =
1, 3; Fig. 1. Define the rotational coordinate system x; by x1 = x1(Xy,
Xg), x2 = x3(Xy1, Xo), and x3 = X3 where x; and x9 are defined over a
rectangular domain a1 < x1 < g, 81 < x2 < B2. The components of
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Xy

Fig. 1

the metric tensor, g;;, associated with the x; coordinate system are
given by gij = XniXn,j, 811 = £11(%1, X2), §22 = Ho2(x1, X2), £az = X1?,
813 =831 =0, 823 = g32 = O where ( );=0( )/0x; and repeated indices
are summed. If the x; coordinate system is assumed to be orthogonal,
then in addition to the foregoing, g12 = go1 = 0 or generally g;; = 0,
# j. Expressing (1) in the x; coordinate system, assuming orthogo-
nality, gives

A+ 2u)A 1 — p(vg11/822833) (V' g33 D) 2

~v/g22C3) + pbi = pvgutd (2)
A+ 2p)Ap — n(Vga2/g833811) (Vg1 B
~(Vgss D)) + pbe = pv/gaa U (3)

M+ 204 5 — 1V gas/gnig22) (Vg2 C) 1

- (VEuB)2) + pbs=pVEnw (4)

where
A= (1N (Vegngaa ) + (VEngss vz + Vengsa wp),
B = (1Vg22850) (v g3 )2 — V22 0,),
C = (/Vemg1Wen us — (Vs w),),
D = (1/vVgnga((Vgan v)1 — (Ve v) ),

the physical components of displacements u), are denoted by
u =y, u@ =y and u® =w.

For the unsymmetric case the independent variable x3, in (2)—(4)
may be suppressed through a Fourier expansion of u, v, and w in x3.
Equations (2)-(4) then determine the coefficients in the expansion.
Equations (2)—(4) simplify for the symmetric case since u = u(x1, ¥2),
v = v(x1, x2), w = 0 and may be expressed in finite-difference form,
over the rectangular x1, x5 domain, by replacing spatial derivatives
with central differences and the temporal derivatives with backward
differences. The spatial difference form, assuming symmetrical dis-
placements, is then given by

AB)uir1j + A@u; + ADui—1,j + Ay i1 + ARy -1
+ A(14)vig1,; + A(13); 5 + A(Q)Pi,j+1 + AB)v;,j-1 + A(12)v;-1,f

+ A(ADvir1je1 + A0V 1,j—1 + A(6)V;—1,5-1 :
+ A(T)vi-1,j+1 + pb1 = pVg11 sy (B)
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B(14)uity,; + B(13)u;j + B(12)u;—1,; + B(6)uit1,j+1
+ B(5) ui+1,j-1 + B(L)ti—1,5-1 + B2)ui-1,j+1 + B(4)u; j+1
+ B@)uij—1 + B(10)0; 41+ BO)vi; + B j—1 + BILvis1
+ B(T)vi-1,j + pb2 = pV/g22 0ij  (6)

where the variable coefficients, A(I) and B(J), are functions of the
metric tensor, g;;, and material properties. Expressions for A(J) and
B(I) are given in [11].

Displacement and stress boundary conditions will be given over
disjoint sets of points on the surface of the body. Since the Navier
equations were solved in the x; coordinate system, it is necessary to
express the physical components of displacement, U, in the circular
cylindrical coordinate system, X;, in terms of base vectors associated
with the x; coordinate system. This may be accomplished through
tensor transformation rules [6, 11].

The efficient numerical construction of coordinate transformations
for a variety of shapes is of particular importance. A comprehensive
study is given in [11].

Numerical studies were carried out to check the performance of
these transformation methods for unbounded problems. The nu-
merical solutions are compared with exact solutions. The values of
material constants are as follows: » = 0.3, E = 2.07-1011, u
7.9615-1010, and A = 1.1942.10%! in mks units. A conformal transfor-
mation

N
X1= Y anx1?r=3 cos (3 — 2n)xs 7
n=1
N
Xo= Y @,%,@" ¥ gin (3 — 2n)xs 8)

n=1

was used in all computations [6, 7, 11]. In cylindrical coordinates a
solution to Navier’s equation is given by Uy = —((A + u)/u)J1(X1) exp
(—Xg) and Usg = ~((A + pn)/u) Jo(X1) exp (—Xz). Tensor transformation
laws imply that u® = ((2X1/2x1)-U; + (dX2/0x1)-Us)//g11 and 1@
= ((8X1/0x2)-Ur + (0X2/0x3)-Us)/\/g22. The displacements given
by u and u® were applied over the surface of a hemispherical cavity,
with x; = 1 utilizing the corresponding values of X; and Xy, and over
the surface of the surrounding plane, Xo = 0. For this geometry the
coefficients in transformations (7) and (8) are a; = 1 and a,, = 0 for
n > 1. Fig. 2 shows a plot of the exact solution for u and the difference
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between the calculated and exact values of u. It is seen that the region
of maximum error corresponds to small values of x; and therefore
large values of X;. As x; — 0, assuming a uniform step size in x1, the
corresponding step size in X; becomes infinite. Fig. 3 shows a plot of
the exact solution for u and the difference between the calculated and

BRIEF NOTES

exact values of u for the case of the unindented plane, X3 = 0,
subjected to displacements given by ufl and u(?. The mapping is
given by (7) and (8) witha; = 1/2, a3 =1/2,a, =0forn > 2. Twore-
gions of local maximum error exist, one corresponding to x; = 0 as
before and another near x; = 1, x3 = 7. Coordinate lines in the
physical plane are very closely spaced and convoluted in the neigh-
borhood of x; = 1, x5 = 7 resulting in a loss of accuracy.
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The Influence of Random
Longitudinal Vibration on
Channel and Pipe Flows of a
Slightly Non-Newtonian Liquid

N. Phan-Thien?

1 Introduction

It has been observed by Mena, et al. [1], that when a non-Newtonian
liquid flows through a circular pipe under a constant pressure gradi-
ent, the volumetric output is increased with respect to its Newtonian
value if the pipe is subjected to a longitudinal sinusoidal vibration.
Their experimental investigation pointed to the following conclu-
sions:

1 The fluid has to be shear-thinning in order to exhibit a positive
flow-rate enhancement.

2 This is an inertia phenomenon, i.e., as the vibrational Reynolds
number tends to zero, the flow enhancement also tends to zero, the
fluid elasticity plays only secondary role here.

3 The flow enhancement increases with increasing frequency of
fluctuations. At low frequency w, this dependence is quadratic in
w.

All of the abovementioned features were predicted by Kazakia and
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Rivlin [2] who assumed a slightly non-Newtonian fluid which obeys
the following constitutive law:

TE=2D+er, e«1, (1)

where 29D and er are the fluid Newtonian and non-Newtonian extra
stress tensors, respectively.

It is apparent from (1), that, in a flow field where the velocity is a
perturbation about the Newtonian velocity, a knowledge of the
Newtonian solution suffices to determine the non-Newtonian effects
up to terms of order O(¢). Proceeding in this vein, Kazakia and Rivlin
[2] were able to show that the mean flow rate in a channel of width 2h
is given by

2Ph8  p3h5y (2 nV\2
@ == o)
A= (2h2u? + 1) sinh (2hy) — (2h2u2 ~ 1) sin (2hp) _q
2hu[cosh(Zhu) + cos(2hu)}
u? = pw/2n (2)

whereas in the case of pipe flow (a is the pipe radius) we have
4 3067 2
(@ =Pe_ 1l "(1+36(ﬂ) A),
8n 48n* Pa?
aplber? (ap) + bei? (au)] (A + 1) = a?u2[ber (ap) ber’ (ap)
+ bei (au) bei’ (au)] + 2[ber (ap) bei’ (ap) — bei (ap) ber’ (ap)],

u = pw/y (3)

In both cases p is the density of the liquid, P, the constant pressure
drop, ber (x) and bei (x) are the Kelvin functions of zeroth order and
the fluid velocity at the boundaries (y = 2h or r = a) is given by V sin
wt,
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Rivlin [2] who assumed a slightly non-Newtonian fluid which obeys
the following constitutive law:

TE=2D+er, e«1, (1)

where 29D and er are the fluid Newtonian and non-Newtonian extra
stress tensors, respectively.

It is apparent from (1), that, in a flow field where the velocity is a
perturbation about the Newtonian velocity, a knowledge of the
Newtonian solution suffices to determine the non-Newtonian effects
up to terms of order O(¢). Proceeding in this vein, Kazakia and Rivlin
[2] were able to show that the mean flow rate in a channel of width 2h
is given by
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A= (2h2u? + 1) sinh (2hy) — (2h2u2 ~ 1) sin (2hp) _q
2hu[cosh(Zhu) + cos(2hu)}
u? = pw/2n (2)

whereas in the case of pipe flow (a is the pipe radius) we have
4 3067 2
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8n 48n* Pa?
aplber? (ap) + bei? (au)] (A + 1) = a?u2[ber (ap) ber’ (ap)
+ bei (au) bei’ (au)] + 2[ber (ap) bei’ (ap) — bei (ap) ber’ (ap)],

u = pw/y (3)

In both cases p is the density of the liquid, P, the constant pressure
drop, ber (x) and bei (x) are the Kelvin functions of zeroth order and
the fluid velocity at the boundaries (y = 2h or r = a) is given by V sin
wt,
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In deriving (2) and (3) the non-Newtonian shear stress is assumed
to be

S = Rk + 9k + k3 (4)

where 7, 9, 7 are constants and k is the shear rate.
In view of the potential applications of this phenomenon and that
deterministic vibrations seldom occur in practice, it is attempted here

to generalize Kazakia and Rivlin’s [2] results to cover the random
vibration case.

2 Two-Dimensional Flow

We consider here the channel flow of an incompressible, slightly
non-Newtonian fluid which obeys (1) under the action of & constant
pressure drop P. The channel walls are located at y = +£h and are
subjected to random vibration. With the no-slip boundary condition,
we have

u=Vn(t) on y=zth, (5)

where u is the x-component velocity, V is a reference velocity, and
n(t) is a random function of time which has zero ' mean, The governing

equation for u is

2 2% oS
YeP+p 2 (6)
y

where S = 715 is the non-Newtonian shear stress.
We seek a perturbation solution of the form
u=uo+eu+... W)

After solving (5)—(7) for u, the mean volumetric throughput is given
by

(@) =Qo+ &1
h h
=- j:hy (ko)dy ~ € f_hym)dy, (8)

where «; = du;/dy are the shear rates and we have used the fact that
(n(t)) = 0. Here and elsewhere in the paper (-) denotes an ensemble

average.
The zeroth-order solution is the Newtonian one which obeys
auo %
Pt T T My
uo (A, t) = Vn(t) 9

By taking the Laplace transform of (9) and noting that [3]

- (cosh (yﬁ)) __lao 0, ( y Lvrt)
cosh (hv/P) hoy \2h|h?
i —1)n+1 (2 + 1)e—@n+1)2n2/4h2

(2n+1 )
X cos 2 7y,

where L~ [F(p)] is the inverse Laplace transform of F(p) and 6, (+|-)
is the theta function, we have

]
b‘lﬁ

ug = ;;77 (h2—y2) + -V—ZTVnéo {(=1)7(2Zn + 1) cos (2n;— 1 Ly %)
x f | emen=On(e)d, (10)
Ko=— 1—-} - V;r;:ng (~1)"(2n + 1)2sin (Zn 1 w%)
X _i e—ant-tIn(¢)dt, (11)
where v = 7/p is the kinematic visédsity and »
on = (2n + 1)2 72 p/4h2 (12)
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Note that the lower limit of the integrals appearing in (10)—(11) has
been replaced by — since we are interested in the long time behavior
of the solution here.

The first-order solution is governed by

uy_ o 2%
P ot K dy2  dy
ui(xh) =0, (13)
where
So = S(K()).

If one only looks for long-time behavior of the solution then (13)
can be averaged to yield

(k1) = —(So)/q

from which the mean increase in the volumetric output is given by
{So)
Qi=¢ f =2y dy
b

which is identical to the expression given by Kazakia and Rivlin
(2].

Following Kazakia and Rivlin [2], we adopt the constitutive law (4)
which gives

(14)

P3p4

(2 nV)Z e )
=—— -+ 3= — mni 15
Q1= —¢ " (5 (Ph2 v m§=0¢ (15)
where
=(2n+ 1)2(2m + 1)2
1 2 2
X[=é nt — (1 - 6mn + -
(3 ™ r2m —~ n)2 ( ) 2m+n+ 1)2)

% ft ft e~enlt=t)—am(t=t") (n(t’) n(t”)) dt’ dt”  (16)

Note that, since 7 < 0 and ¢, > 0, (15) shows that there should be
an increase in the flow rate.

Also, as Kazakia and Rivlin [2] have pointed out, there are two
contributions to the flow enhancement. The first is due to the shear
thinning and the second is due to inertia; see (15).

A simplification of (15) and (16) is possible if we assume that n(t)
is a stationary random function of time. In this case n(t) can be rep-
resented by the following Fourier-Stieltjes mtegral (spectral repre-
sentation of n(t) [4])

n(t) = f‘” eiMdZ(N), i2=—1 an

where dZ()) is a random function of A which satisfies
(dZV) =0 (18)
(AZONAZ ()Y = 85, Q) dNy,  (no sum) (19)

where the overbar denotes a complex conjugate and Q(M) is the

- spectral power of n(t), viz

1 i .
= — —iAs
QN 2 j‘_m e (n(t +s) n(t-)) ds

1 e :
=2—7;f_m e R(s) ds (20)

A direct substitution of (17) into (10) yields, after some manipu-

lations,

eMdZ(N)  (21)

Proceeding as before, we obtain the mean increase in the flow rate
as
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o+ \/%é (h2 * A) sinh (\/2—”}’1) - (h2 - %) din ( % h)

7 | 2P3hK5 P “’
Q1= _e?] e + 6; V2 j; = - e da| (22
2
: cosh (\/Zh) + cos ( —h)
v v
Denoting
= Mo, 23) p2Uo_p N2 o
and ot ror or
. uola,t) = Vn(t) (32)
_ {2u%h2 + 1) sinh (2ph) — (2h2u2 — 1) sin (2ph)
= 2uh [cosh(2uh) + cos(2uh)] =1, (24) By taking the finite Handel transform of order zero [5]
we have H )] = fﬂ rdo (pir) f(r) dr,
_ P32 0
Q1= —¢ ” g th f AN Q(A) dA). (25)  where p;a is a root of the zeroth-order Bessel function Jo(x), we ob-

For sinusoidal vibration where n(t) = cos wt {or sin wt), the spectral
power is

Q) =3[0\ + w) + (A — w)]

and Kazakia and Rivlin’s results, equation (2), are recovered.
For low-frequency vibrations, () is mainly concentrated at A ~
0 from which we can approximate the integral in (25) by

® he pw h
M e = ie) +E (2
ST am ey v~ (Ta0) ah =S 2y + B (26)

dn/dt and E is an error term of order

“ o(f_m A Q()\)d)\).

In this case, the mean increase in the flow rate is directly proportional
to the mean square of the pipe acceleration:

2P (1+3( V) <n2>).
P

Another simplification to (25) is possible if Q(}) is mainly con-
tributed by a spike at A = w [the “natural” frequency of n(¢t)]. In this
case

s e
Q== o

where n(t) =

G~ —¢ 27)

w? 1 . '
a2 arf o0 Lot o8]

here we have used the shorthand notation
d2A(N)

All=
o T aae

AO = A(CO),

A=w

and E is an error term of order O (fm (A — w)4 QN d)\).

3  Pipe Flow
Next, we consider the pipe flow problem where the governing
equations for the axial velocity v are
ou o au
_12,u, 120,
ot r br or ror
ula,t) = Vn(t).
Again, S = 7, is the non-Newtonian shear stress and we seek for a
perturbation solution of the form (7). Knowing the axial velocity, the
mean volumetric flow rate is given by

(@) =60+ Q

= —7 farz (ko) dr — e farz(/(l) dr,
0 - 0

where k; = Ou;/0r are the shear rates.
The zeroth-order solution is governed by

(29)

(30)

(81)
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tain
VuP; JO(P r)

u0=—(a2——r2)+22

e=vPAE=t) n(t') dt,
Y a4 Ji(Pa) n(t)

(33)

where J1(x) = —dJ’y(x) is the first-order Bessel function. Again the
lower limit of the integral appearing in (33) has been replaced by —
since we are interested in the long-time behavior here.

Thus the Newtonian shear rate is given by

.2 .
B oy NP by neyar (34)

Ko =— —
2n i a Ji(Pa)
Now the first-order solution is governed by
duiy O our 109
—==——r—+—-—(So).
r ot ror or rar( o
uifa,t) =0 (35)
where
So = S(ko).

Again, if long-time behavior of the solution is sought after then we can
average (35) which yields

(k1) = =(So}/n (36)
Thus the mean increase in the flow rate is given by
S
Q1=7rf”ﬂr2dr (37)
o 7

which is identical to Kazakia and Rivlin’s [2] result.

Adopting the constitutive low (4) and expressing J1(P;r) J1(Pjr)
as a convergent series in terms of the hypergeometric function F' («,
B; 7; 0), we finally obtain

wP3a%;

e alfrs). o

where
o = ,,zazpiapjs @ (_1)k
Y JiPia) J1(Pja) k=0 k!(k + 1) (k + 3)

.a\2k .2
X (P—‘“) F(—h, -k -1 5—)
2 p;2

13 t '
X fI 7 emPAtm Rt (n(er) n(e) b de” (39)

A simplification of these unwieldy expressions is possible if we assume
that n(t) is a stationary random function of time which obeys (17)-
(20). In this case a direct substitution of (17) into (33) yields

P
uw=—@*-r)+Vv
4n

= ber (ur) + i bei (ur)
~= ber (ua) + i bei (ua)

eiMdZ(N), i2=-1, (40)
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where ber {x), bei (x) are the Kelvin functions of zeroth order and
= \p (41)

Alternatively we can assume that n(t) is a stationary random
function from the outset and look for solution of the form

P w .
up = m (a2-r2) + j‘_m B(r,A) e dZ{N). (42)

A direct substitution of (42) into (32) will reveal that ¢(r,A\) takes the
form indicated in (40).
Proceeding as before, it is easy to show that the mean increase in
the flow rate is given by
Q= - (IE e
7 48yt g

xfadrj;wd)\

wP3q n(

ber2(ur) + bei'2(ur)
ber? (ua) + bei?(ua)

1+144( ) f A(x)mx)dx)

rd Q()\))

= —¢ (43)

where A()) is given by

apulber? (au) + bei2(ap)] (A + 1)
= a2u?[ber (au) ber’ (au) + bei (ay) bei’ (au)]

+ 2[ber (au) bei’ (ap) — bei (ap) ber’ (au)] (44)

If n(t) is sinusoidal with frequency w, then Kazakia and Rivlin’s
[2] results, equation (3), are recovered.

Again, the two approximations mentioned in Section 2 are recorded
here.

First, for low-frequency vibrations, ¢(\) is mainly concentrated
at A ~ 0 from which we have

Q1~—e"P“"(1+3( V) (<n2>+E))

where E is an error term of order O (f ° AN d)x).

(45)

Finally, if n(t) has a dominant “natural” frequency w in the sense
discussed in Section 2, then

P3g6 2
T a"(1+72("v) [(A0+‘1’~A”O)
487 Pa? 2

. Qi —c
X {n2) + %A"O (n?) + E]) (46)

where we have used the shorthand notation
d2AN)
dA\2

Ap = Alw), A%=

A=w

and E is an error term of order O(f B (A —w)* Q) d)\).

In summarizing, we have solved the Mena flow problem [1] for a
slightly non-Newtonian liquid where the longitudinal vibration is an
arbitrary random function of time. Any deterministic vibration which
satisfies Dirichlet’s conditions so that it can be represented by a
Fourier series is a special case of this. If the fluid is markedly non-
Newtonian, then an alternative approach to this problem is to consider
a perturbation about the “vibrational” Reynolds number, Ry = aV/v
~ 0. The data of Mena, et al. [1], seem to satisfy this requirement: R
~ 0.1 — 0.5. This was considered elsewhere [6].
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On the Space of Stress
Invariants

V. K. Stokes'

The representation of stress through its three invariants I, Is, and
I3 has been examined. It has been shown that all possible states of
stress are mapped into a connected region of the space of stress in-
variants that is bounded by two surfaces which meet in a cusp on a
curve which corresponds to states of isotropic stress. All other states
of stress for which two principal stresses are equal, lie on this surface.
The Iy axis corresponds to one-dimensional states of stress. Two-
dimensional stresses are represented by a connected region of the
I1-1I5 plane. The negative half of the 15 axis corresponds to pure
shear. The positive half of the Iy axis, and the I3 axis, do not corre-
spond to any states of stress. The representation of yield surfaces
in this space has also been considered.

Introduction

In one representation the state of symmetric stress at a pointina
continuum is indicated by a point in the space of principal stresses,
in which the three principal stresses oy, 02, and o3 are the rectangular
Cartesian coordinates of a point ¢ = (o1, &2, 03). There is a certain lack
of uniqueness in this representation. For, corresponding to a state of
stress in which the principal stresses are o1, 03, and a3, the associated
principal directions forming a right-handed system, there are, in
general, six distinct points in principal stress space, namely, o1 = (o1,
09, 03), 02 = (03, 03, 01), 63 = (03, 01, 02), 04 = (01, 03, 02), 65 = (03,
o9, 1) and ag = (03, 01, 03).

In some applications the ordering of the principal stresses is not
important and each principal stress has the same weightage for the
same magnitude. In such situations it is appropriate to use symmetric
functions of the principal stresses, whose values would be the same
for @1, 03, 03, 04, 65, and g¢. The simplest and most important sym-
metric functions are the principal invariants of the stress tensor.

Preliminary Definitions
For a given symmetric stress tensor T the principal stresses o are
the roots of the characteristic equation

—110'2+126*13=0, (1)

Where Iy, I, and I3, the three principal invariants of stress, are given
by

Li=trT=014+ 09+ 03
12=é(tr2T"tl‘T2)=(T10'2+0‘20’3+0'30”1 @
13 =detT= 010903

where g1, 09, and o3 are the three principal stresses. Furthermore, for
symmetric T, i
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function from the outset and look for solution of the form

P w .
up = m (a2-r2) + j‘_m B(r,A) e dZ{N). (42)

A direct substitution of (42) into (32) will reveal that ¢(r,A\) takes the
form indicated in (40).
Proceeding as before, it is easy to show that the mean increase in
the flow rate is given by
Q= - (IE e
7 48yt g

xfadrj;wd)\

wP3q n(

ber2(ur) + bei'2(ur)
ber? (ua) + bei?(ua)

1+144( ) f A(x)mx)dx)

rd Q()\))

= —¢ (43)

where A()) is given by

apulber? (au) + bei2(ap)] (A + 1)
= a2u?[ber (au) ber’ (au) + bei (ay) bei’ (au)]

+ 2[ber (au) bei’ (ap) — bei (ap) ber’ (au)] (44)

If n(t) is sinusoidal with frequency w, then Kazakia and Rivlin’s
[2] results, equation (3), are recovered.

Again, the two approximations mentioned in Section 2 are recorded
here.

First, for low-frequency vibrations, ¢(\) is mainly concentrated
at A ~ 0 from which we have

Q1~—e"P“"(1+3( V) (<n2>+E))

where E is an error term of order O (f ° AN d)x).

(45)

Finally, if n(t) has a dominant “natural” frequency w in the sense
discussed in Section 2, then

P3g6 2
T a"(1+72("v) [(A0+‘1’~A”O)
487 Pa? 2

. Qi —c
X {n2) + %A"O (n?) + E]) (46)

where we have used the shorthand notation
d2AN)
dA\2

Ap = Alw), A%=

A=w

and E is an error term of order O(f B (A —w)* Q) d)\).

In summarizing, we have solved the Mena flow problem [1] for a
slightly non-Newtonian liquid where the longitudinal vibration is an
arbitrary random function of time. Any deterministic vibration which
satisfies Dirichlet’s conditions so that it can be represented by a
Fourier series is a special case of this. If the fluid is markedly non-
Newtonian, then an alternative approach to this problem is to consider
a perturbation about the “vibrational” Reynolds number, Ry = aV/v
~ 0. The data of Mena, et al. [1], seem to satisfy this requirement: R
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Fig. 1 Perspective view of the region F > 0 for the range: | 11| <, 50, | 1]
<500, and | 13| < 1000

F(ly, 15, Is) = I2(142 — 4I5) — 27152 + 21115915 — 21,2 (3)

satisfies F(I1, I, I3) 2 0. When F = 0 either two or all three roots of
the characteristic equation are equal. The three real roots are distinct
when F > 0, and in this case there is only one set of mutually orthog-
onal principal directions.

A stress distribution is one, two, or three-dimensional if only one,
only two or all three of the principal stresses are, respectively, nonzero.
This gives rise to the following geometrical interpretation for the in-
variants of stress. A necessary and sufficient condition for a stress
distribution to be three-dimensional is that the third invariant of
stress be nonzero. A stress distribution is two-dimensional if and only
if the third invariant is zero and the second invariant is nonzero. A
stress distribution is one-dimensional if and only if the second and
third invariants are zero, and the first invariant is nonzero. Finally,
a stress distribution is identically zero if and only if all the three in-
variants are zero.

Space of Stress Invariants

The main purpose of this paper is to investigate the representation
of symmetric stress through its three invariants [, I, and I3. By
definition, the space of stress invariants is a rectangular Cartesian
space in which the coordinates of a point are the invariants Iy, I, and
I3; so that a typical point has the coordinates | = (I1, I, I3). Whereas
each state of stress, represented in principal stress space ¢ = (a1, 09,
a3), gives rise to a corresponding point 1 = (I4, I, I3) in the space of
stress invariants, the converse is not necessarily true. First of all, there
are points I = (I1, I, I's) to which do not correspond any points in stress
space. In fact the regions of I-space which correspond to points in
g-space are precisely those in which F(I, I, I'3) = 0. Second, it must
be remembered that the mapping ¢ — s not one-to-one. For exam-
ple, as mentioned earlier, the six points o1, o3, 63, 04, 05, and gg in
g-space correspond to one point in I-space.

First consider the coordinate axes I, I, and I3. It follows from the
characteristic equation, in equation (1), that (/) I =0, I3 = 0implies
o= (I,0,0); (i) I3=0,I,=0implies ¢ = ((—I9)1/2, (~13)'2, 0); and
(iii) Iy =0, Iy =0 implies o = (I3'/3, I3!/3 exp (27i/3), IsV/3 exp
(—2mi/3)). Thus the I, axis represents one-dimensional states of
stress, such that its positive and negative portions correspond, re-
spectively, to uniaxial tension and uniaxial compression. Since a point
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Fig. 2  Perspective view of the region F = 0 for the range: | 1,| < 50, ||
< 500, and |13} < 1000

on the I, axis corresponds to the principal stresses (o, ~o, 0) where
o = (—I3)/2, only the negative half of the I, axis corresponds to real
states of stress, and represents states of pure shear. Finally, it is evi-
dent that points on the I3 axis, except for I3 = O—which corresponds
to a zero state of stress, do not represent any real states of stress.

Next consider the coordinate planes. The region of the I1-I; plane
which corresponds to real stresses is determined, from equation (3),
by F(I1, Iy, 0) = Io%(I52 — 413) = 0. The boundaries of this region,
which must correspond to repeated:roots of the characteristic equa-
tion, are given: (i) by Iz = 0, 0—which is the I; axis, and (i) by the
parabola I;2 = 415, In fact the I; axis represents the one-dimensional
stress distribution ¢ = (I, 0, 0), the repeated roots being 0 and 0. With
I3 = 0 and I,2 = 415, the roots of the characteristic equation are (o,
7, 0) where ¢ = %(I3)¥2, Thus the right half of the parabola I12 = 41,
for which ¢ = 0, corresponds to states of two-dimensional isotropic
compression. Thus, except for the interior of the parabola I12 = 415,
the I;-I5 plane represents two-dimensional states of stress. The re-
gions of this plane which correspond to real stresses are then deter-
mined, from equation (3), by 4153 + 27132 < 0, the boundaries of which
are given by the curves 4133 + 27132 = (. Finally, the regions of the
I3-I, plane which correspond to real stresses, are determined by the
condition I3(27132 + 4I{3) < 0, and therefore lie between the curve
27132 + 4113 = 0 and the line Ig =0.

The region F' = 0 in -space determines points that correspond to
real states of stress. It follows from equation (3) that F(~I4, I, I3) =
F(I4, I, —Is). Because of this, the surface F' = 0 need only be deter-
mined in the region: [; 2 0, ~o < [y < @w and —» < J3 < o,

A feel for the surface F' = 0 and the region, F = 0, which corresponds
to real states of stress, can be had from perspective views shown in
Figs. 1 and 2 in which the values of | lie in the ranges: —50 < I'1 < 50,
=500 < I3 < 500 and —1000 < I3 < 1000. These perspective views are
made up of contours of I and Is. The surface F = 0 corresponds to
states of stress of the form ¢ = (g, ¢, p) in which at least two of the
principal stresses are equal. It consists of an upper and a lower sheet
that meet in a cusp along the curve COD, which represents the iso-
tropic state of stress ¢ = (7, o, ¢). For all points on this surface, other
than those on COD, ¢ ## p. Only the upper sheet of the surface F =
0 is visible in Fig. 1. Points on OF correspond to stresses of the form
(o, 0, —20) with ¢ <0. Points on the parabola OL correspond to ¢ =
(o, 0, 0) with ¢ < 0. Also, points on the I axis, OA, correspond to ¢
= (7, 0,0). A view of both sheets of F = 0 meeting in a cusp along COD
is shown in Fig. 2. In this view both branches KO and OL, of the pa-
rabola I12 = 415, which correspond to states of stress ¢ = (g, 7, 0) with
¢ > 0 and ¢ < 0, respectively, are visible. Also, both branches OE and
OF of the curve 4153 + 27132 = 0, which correspond to stresses of the
form ¢ = (o, ¢, —20) with ¢ <0 and ¢ > 0, respectively, can be seen
to meet in a cusp at 0.

Next consider the surface I3 = I115. It turns out that equation (1)
then has the roots ¢ = I, (=13)/2 and —(—15)¥2. Thus all points on
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_the surface I3 = I1[5, I < 0, correspond to the state of stress o = (o,
-0, p) where p = I and ¢ = (~I2)V/2, The negative half of the I; axis,
which must lie on this surface, corresponds to pure shear ¢ = (o,
-0, 0).

Yield Surfaces

Two important yield criteria are those due to von Mises and Tresca.
For von Mises’ yield criterion, the yield surface in o-space is defined
by (o1 — 062)2 + (2 ~ 03)% + (g3 — 01)% = 202 = 6k2 where oq is the
yield stress in tension and k that in pure shear. In terms of invariants,
this yield surface is fas (I3, I2, I3) = 0, where fas = 12 — 815 — o Yield
occeurs if fpr > 0.

In terms of principal stresses, the yield surface for Tresca’s criterion
is given by |01 — 03| = a0, |02 — a3| = 09, and | 63 — 01| = g¢, which,
upon using a representation given in reference [1], reduces to fr(Iy,
Iy, I3) = 0, where fr(J, Is, I3) = F(I1, I3, Is) — a¢®(I1%2 — 313 — a¢?)2.
Thus far and fr are related through

fr=F — oo’} )

In I-space, the yield surface for von Mises’ criterion is then the
parabolic right cylinder whose cross section in the I 1-I9 plane is the
parabola [12 = 315 + a¢® = 3(I; + £2), and whose generators are par-
allel to the I3 axis. Thus all those points in I-space, that correspond
to real stresses, which lie inside and on this parabolic cylinder, cor-
respond to unyielded states of stress.

The yield surface for Tresca’s criterion is not so simple. In order
to remove the dependence of the yield surface f(I1, I2, I3) = 0 on the
yield stress oy, introduce the nondimensional quantities &; = o;/0y,
i = 1,2,3. Also, let a bar over a function denote that it is the same
function of 7; that the unbarred function is of oy, i.e., I, (31, 59, 73) =
I,(El, 52, 53), etc. Then 7M = 712 - 372 —1and fT = F - )7%,[

von Mises’ yield surface is then the parabolic right cylinder fyr =
0 the vertex of whose base in the I;-T; plane is located at the point (0,
—1/3). Unyielded states of stress are represented by those points in
I-space which lie in the region determined by F = 0 and fs < 0. The
surface F = 0 is the same as ¥ = 0 but with a drastic change of
scale.

For two-dimensional stress distributions, for which I3 must equal
zero, von Mises’ criterion determines the yield locus in the I;-T; plane
as the parabola Iy2 = 375 + 1, which is marked BADEF in Fig. 3.

For the two-dimensional case, the yield locus in the I;-I5 plane for
Tresca’s criterion is given by f(I1, Iz, 0) = 0. Now

frd1,T5,0) = T2(T,2 — 4I5) — (12 - 31, — 1)2
= (712 - 472 - 1)(72 + 1+ Tl)(jz +1 —71).
Unyielded two-dimensional states of stress are then represented by
points in the ;-1 plane which are inside and on the region bounded
by the straight lines I + 1 + I, =0and Iy + 1 =T, = 0, and the pa-
rabola I'1% = 4] + 1. For purposes of comparison with the yield locus

for von Mises’ criterion, the boundary of this region has been shown
in Fig. 3 by the dotted curve BADEF.
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Concluding Remarks

In the space of stress invariants, one-dimensional states of stress
are represented by points on the I axis, and two-dimensional stress
distributions are represented by points in the I;-I» plane which lie
on and outside the parabola I,2 = 415, Thus, in the I-I; plane, the
value of I relative to 1 is a measure of the two-dimensionality of the
stress distribution; so that points that are further away from the I;
axis correspond to increasingly two-dimensional states of stress.
Similarly the value of I3 relative to I; is a measure of how three-
dimensional a particular stress distribution is.

Regions of I-space which correspond to real stresses in ¢-space are
determined by F(I4, I3, I's) = 0. The yield surfaces corresponding to
von Mises’ and Tresca’s yield criteria are given, respectively, by far (11,
Iy, I3) = 0 and far(I1, I2, I's) = 0. It is rather surprising that F, fas, and
fr are related, as indicated in equation (4).

Further details regarding the space of stress invariants, including
contours of the surface F = 0 and additional perspective views, are
given in reference [2].
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Finite Elastic-Plastic
Deformation of a Rotating
Hollow Cylinder

K. K. Lo! and R. Abeyaratne?

Introduction

In this Note we determine an exact solution for the finite elastic-
plastic field in a pressurized hollow cylinder rotating about its axis
at a constant angular speed. The material is assumed to be incom-
pressible and elastic-plastic. The plane-strain problem for a pres-
surized hollow cylinder has been studied by Durban [1], while that
for a rotating cylinder composed of a nonlinearly elastic material can
be found in Green and Zerna [2].

Formulation

Suppose that the region occupied by a body in its undeformed
configuration is a hollow right circular cylinder of internal and ex-
ternal radii o and b, respectively. The body is presumed to be com-
posed of an incompressible, isotropic material.

The cylinder is subjected to an internal pressure p while being
rotated about its axis with constant speed w relative to some (inertial)
frame of reference. Since we are considering the quasi-static change
of the applied pressure and the angular speed, we allow the pressure
p and the speed w to depend smoothly, and monotonically, on a pa-
rameter A(=0):
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yield stress in tension and k that in pure shear. In terms of invariants,
this yield surface is fas (I3, I2, I3) = 0, where fas = 12 — 815 — o Yield
occeurs if fpr > 0.

In terms of principal stresses, the yield surface for Tresca’s criterion
is given by |01 — 03| = a0, |02 — a3| = 09, and | 63 — 01| = g¢, which,
upon using a representation given in reference [1], reduces to fr(Iy,
Iy, I3) = 0, where fr(J, Is, I3) = F(I1, I3, Is) — a¢®(I1%2 — 313 — a¢?)2.
Thus far and fr are related through

fr=F — oo’} )

In I-space, the yield surface for von Mises’ criterion is then the
parabolic right cylinder whose cross section in the I 1-I9 plane is the
parabola [12 = 315 + a¢® = 3(I; + £2), and whose generators are par-
allel to the I3 axis. Thus all those points in I-space, that correspond
to real stresses, which lie inside and on this parabolic cylinder, cor-
respond to unyielded states of stress.

The yield surface for Tresca’s criterion is not so simple. In order
to remove the dependence of the yield surface f(I1, I2, I3) = 0 on the
yield stress oy, introduce the nondimensional quantities &; = o;/0y,
i = 1,2,3. Also, let a bar over a function denote that it is the same
function of 7; that the unbarred function is of oy, i.e., I, (31, 59, 73) =
I,(El, 52, 53), etc. Then 7M = 712 - 372 —1and fT = F - )7%,[

von Mises’ yield surface is then the parabolic right cylinder fyr =
0 the vertex of whose base in the I;-T; plane is located at the point (0,
—1/3). Unyielded states of stress are represented by those points in
I-space which lie in the region determined by F = 0 and fs < 0. The
surface F = 0 is the same as ¥ = 0 but with a drastic change of
scale.

For two-dimensional stress distributions, for which I3 must equal
zero, von Mises’ criterion determines the yield locus in the I;-T; plane
as the parabola Iy2 = 375 + 1, which is marked BADEF in Fig. 3.

For the two-dimensional case, the yield locus in the I;-I5 plane for
Tresca’s criterion is given by f(I1, Iz, 0) = 0. Now

frd1,T5,0) = T2(T,2 — 4I5) — (12 - 31, — 1)2
= (712 - 472 - 1)(72 + 1+ Tl)(jz +1 —71).
Unyielded two-dimensional states of stress are then represented by
points in the ;-1 plane which are inside and on the region bounded
by the straight lines I + 1 + I, =0and Iy + 1 =T, = 0, and the pa-
rabola I'1% = 4] + 1. For purposes of comparison with the yield locus

for von Mises’ criterion, the boundary of this region has been shown
in Fig. 3 by the dotted curve BADEF.
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Concluding Remarks

In the space of stress invariants, one-dimensional states of stress
are represented by points on the I axis, and two-dimensional stress
distributions are represented by points in the I;-I» plane which lie
on and outside the parabola I,2 = 415, Thus, in the I-I; plane, the
value of I relative to 1 is a measure of the two-dimensionality of the
stress distribution; so that points that are further away from the I;
axis correspond to increasingly two-dimensional states of stress.
Similarly the value of I3 relative to I; is a measure of how three-
dimensional a particular stress distribution is.

Regions of I-space which correspond to real stresses in ¢-space are
determined by F(I4, I3, I's) = 0. The yield surfaces corresponding to
von Mises’ and Tresca’s yield criteria are given, respectively, by far (11,
Iy, I3) = 0 and far(I1, I2, I's) = 0. It is rather surprising that F, fas, and
fr are related, as indicated in equation (4).

Further details regarding the space of stress invariants, including
contours of the surface F = 0 and additional perspective views, are
given in reference [2].
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Finite Elastic-Plastic
Deformation of a Rotating
Hollow Cylinder

K. K. Lo! and R. Abeyaratne?

Introduction

In this Note we determine an exact solution for the finite elastic-
plastic field in a pressurized hollow cylinder rotating about its axis
at a constant angular speed. The material is assumed to be incom-
pressible and elastic-plastic. The plane-strain problem for a pres-
surized hollow cylinder has been studied by Durban [1], while that
for a rotating cylinder composed of a nonlinearly elastic material can
be found in Green and Zerna [2].

Formulation

Suppose that the region occupied by a body in its undeformed
configuration is a hollow right circular cylinder of internal and ex-
ternal radii o and b, respectively. The body is presumed to be com-
posed of an incompressible, isotropic material.

The cylinder is subjected to an internal pressure p while being
rotated about its axis with constant speed w relative to some (inertial)
frame of reference. Since we are considering the quasi-static change
of the applied pressure and the angular speed, we allow the pressure
p and the speed w to depend smoothly, and monotonically, on a pa-
rameter A(=0):
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w = w(}), w(0) =0, (A} >0,
p =p{\),p(0) =0,p’(\) > 0. (1)

Throughout this paper we will use a frame of reference relative
to which the tube is stationary. We may, therefore, with no ambiguity,
use A as a “time” parameter.

In view of incompressibility, the plane, axially symmetric defor-
mation of the cylinder corresponding to varying A, (a quasi-static
motion), is described by

r=(R2+ A0, 0=Y,

Here (r, 8, 2) are the “current” cylindrical coordinates of the point
which in the undeformed configuration, (A = 0), was located at (R,
¥, £). The nature of the loading suggests that we assume A(\), which
is as yet undetermined, to be non-negative. We find from (2) that the
only nonvanishing components of the Eulerian strain rate D—the
symmetric part of the velocity gradient tensor—are

D,y = —A/2r%, Doy = A/2r2, (A =dAN/N) 3)

z=§ A(0)=0. ©

The spin-tensor @—the antisymmetric part of the velocity gradient
tensor—vanishes identically: ¢ = 0.

In view of the isotropy of the material considered and the purely
radial nature of the deformation, we may assume that the only non-
vanishing components of the Cauchy (true) stress o are o, 05, and o.
If we further suppose that the stress o is axially symmetric, ¢ = o(r,
A), the equations of equilibrium reduce to

da,/or + (0, — cg)/r + pw?r =0 (4)

The last term in (4) is the inertial force and p is the (constant) mass
density. We will assume that the undeformed configuration corre-
sponding to A = 0 ig free of stress.

Integrating (4) with respect to the deformed coordinates and using
incompressibility and the boundary conditions, we get

r(b)

p + p?(b? — a?)/2 = f (09 — ;) dr/r ®)

r(a)

where p is the pressure at the (undeformed) inner boundary a. Hence
the inertial effects involved in a steadily rotating cylinder are equiv-
alent to an “internal pressure” pw2(b2 — a2)/2 for any incompressible
material.

Solution

Turning to the constitutive relations of the material, we will suppose
that these are the classical elastic-plastic relations (in a form appro-
priate for finite deformations), viz.

D = 38/2E + [3A&,(0.)/20.]8. (6)

Here, $ = ¢ — 4 (tr o) 1 is the deviator of the Cauchy stress and o, is
the equivalent stress: o, = 3 (tr $2)1/2. The Jaumann (cor%tational)
rate of the Cauchy stress deviator is denoted by S, so that S'=8 —
-8 +5- Q. A is aloading coefficient with A = 1 during loading and A
= 0 during unloading. The Young’s modulus is E. A superposed dot
denotes differentiation with respect to A with the (undeformed) ref-
erence position held fixed. Finally, ¢, (o), the so-called equivalent

. plastic strain, is a given function of the equivalent stress g¢; ¢p =
€p(0e), €p(0) = 0, &y’ (a.) > 0for g, 2 0. In particular, according to the
Ramberg-Osgood description, ¢;(ge) = K(o./E)™ where K and n are
material properties (constants).

In Vthe present context, since the spin-tensor { vanishes, we have
that § = §. Expressing (6) in terms of its cylindrical components leads
to three nontrivial scalar equations. The third of these (the one as-
sociated with the z-direction), and the fact that the undeformed
configuration (A = 0) is stress-free (so that S (r, 0) = 0) suggests that
we take S,(r, \) = 0. This in turn implies that o, = (o, + 04)/2.
Therefore, we may write the equivalent stress o, as

Ge=m ?3~ (0s — o), m =sgn(agp— 0r). ‘ (7
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As X increases monotonically, the pressure p()\) and speed w()) also
increase continuously. This suggests that we tentatively assume,
subject to subsequent verification, that when X increases the tube is
being loaded at each point. Accordingly, we set A = 1 in (6) and in-
tegrate the only nonvanishing equation in (6) with respect to A.
Keeping in mind that A(\) = 0in the unstressed configuration (\ =
0), this leads to

0o/E + €5(0.) = m//3 In (R2+ A\))/R2). (8)

Since 0., €5, and A are non-negative, it follows that m = +1. This in
turn, because of (7), shows that g > ¢,. Observe from (8) and the
properties of €,(o.) noted previously that we may, with no loss of
generality, assume from hereon that o, > 0 at each point in the
tube.

It is convenient to define a function A (o) for g, = 0 by

h(ae) = exp (v/3 (0./E + ¢ (a.))). 9

We note that h(o.) > 1, h'(0.) > 0 for ¢, > 0 and that k(o) — = as
g, —> . Equations (8), (9), and (2) with m = +1 lead to

r?=Ah(o.)/[h(ge) = 1], R2?=A/[h(sc) — 1] (10)

when g, > 0. Let o, and a5 be the values of the equivalent stress at
the inner and outer boundary, respectively,

ge=0, at R=a,0.=0, at R=b; (r2=R2+A4). (11)
It then follows from the second of (10) that
a2 h -1
at_hlop) -1 (12)
b2 h(e,)—1

In view of (9), it is readily shown that the first of (10) can be
uniquely solved for ¢, = &.(r, A). This gives us the equivalent stress
g, once A has been determined.

It is convenient to change the independent variable to o, by writing
or = 0y(0,, A), where r2 = Ah(s.)/[h(0.) — 1]. Rewriting the equi-
librium equation (4) in terms of &, enables us to integrate it, which,
because of (10), (11) and the boundary condition on the inner surface
leads to

U (i _PO e o
o=-p- ” flnpn — £ (B2 = a2, (13)
Here we have set

floe) = och/ (0} /3B h(ae)h(oe) —1], oc>0. (14)

Therefore, once A is determined, o, = 5.(r, A) and equations (11) and
(13) give the stress g,. This in turn, because of (7), determines the
hoop stress gg. '

In order to determine A, we insure that o, as given by (13) conforms
to the stress-free condition on the outer boundary. This gives

2 g
P+ =ad= [ty (15)
2 ob

in view of (11). Given the pressure p and the speed w, (12) and (15)
constitute two equations for the two unknown quantities a,, op.
Presuming that o, and ¢}, can be determined from them, we can then
use (10) and (11) to find A (= a2[h(o,) ~ 1]). This completely deter-
mines the stresses and deformation.

What remains therefore is the solution of equations (12) and (15)
for o, and 0. If we confine our attention to the Ramberg-Osgood
description of an elastic-plastic material, it can be demonstrated that
(12) and (15) can be solved for o4, o5 provided the left-hand side of
(15), p + pw?2(b2 — a?)/2, does not exceed some critical value Ppax.
Equation (15) for the special case w = 0 is the result obtained by
Durban [1}. For any incompressible material, the left-hand side of (15)
always holds since only the incompressibility condition was used to
integrate (4) to give (15).

Results
The graph of the total effective pressure, p + pw?2(b2 — a?)/2, versus
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(x1072)

PRESSURE - p/E

o ! 2 3 4 5 6
ANGULAR SPEED - pw?a?/E

(x107%)

Fig. 2 Critical curves; maximum pressure versus critical speed

the displacement at the inner radius, u(a), is shown in Fig. 1 for dif-
ferent values of b/a. The numerical results were calculated for Alu-
minum 2014T6 based on the Ramberg-Osgood model. Consistent with
the observation made in the previous section, this figure shows that
the effective pressure cannot be increased beyond a certain value.
Note that when this value is approached the displacement increases
substantially with relatively little change in the effective pressure.

The critical curve is the straight line in the (w2, p)—plane which
bounds the admissible values of the pressure and the angular speed.
This line is shown in Fig. 2 for different values of the ratio b/a.

An explicit description of this “critical curve” can be obtained in
the special case of a thin-walled tube. If the thickness t = b —a is
small compared to a, we can expand ¢, 0, about their mean value
oo by assuming that o, — 0 « 0. The various equations may then
be appropriately approximated. For a thickness ratio of b/a = 1.2, the
thin-wall approximation gives for Pp,ay a value which agrees with the
numerical result based on the exact solution to within four significant
figures. Finally, it can be shown that the solution derived in this Note
corresponds to loading everywhere in the body (provided the total
effective pressure is less than Pp,,).
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Stability of a Heavy Column
With an End Load

C.-Y. Wang' and B. Drachman?

Introduction

The stability of a vertical column, one end embedded in a rigid
foundation, is very important in structural engineering. Euler [1] first
found the critical buckling end loads for a massless column. The heavy
column without an end load was investigated by Greenhill [2] who
succeeded in obtaining the critical density for the primary (least
stable) mode. The combined effect of column density and end load
was studied by Grishcoff [3], who obtained part of the stability
boundary for the primary mode. In this Note we shall also study the
stability due to the combined effect. We shall (a) complete the sta-
bility boundary for the primary mode by extending to the case when
the column is hanging from the foundation and (b) investigate the
higher modes of buckling.

Formulation

We assume the column is slender enough such that the local cur-
vature is proportional to the local moment. Fig. 1 shows the coordinate
system. A local moment balance gives

d20 .
=—~[F+ p(L —s')] sin 0 1
ds’2
where F is the downward end load, p is the density, L is the length,
and EI is the flexural rigidity of the column, s’ is the arc length, and
0 is the local angle of inclination. Let s denote s’ normalized by L.
Equation (1) can be expressed as
2

d—0= —[a+ B(1 — s)]sin 8 2)

ds?
where o = FL2/EI and f8 = pL3/EI are nondimensional parameters
representing the relative importance of end load and density to the
flexural rigidity respectively. & and § are both positive in Fig. 1(a).
Negative o means the direction of the force is away from the fixed end.
Negative § can be realized in the case of a hanging column (Fig. 1(b)),
or when the upright column is immersed in a higher-density me-
dium.

The boundary conditions are

El

6(0) = 0, a0 (1)=0 (3)
ds

Stability
Equation (2) can be linearized to give the stability equation
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the displacement at the inner radius, u(a), is shown in Fig. 1 for dif-
ferent values of b/a. The numerical results were calculated for Alu-
minum 2014T6 based on the Ramberg-Osgood model. Consistent with
the observation made in the previous section, this figure shows that
the effective pressure cannot be increased beyond a certain value.
Note that when this value is approached the displacement increases
substantially with relatively little change in the effective pressure.

The critical curve is the straight line in the (w2, p)—plane which
bounds the admissible values of the pressure and the angular speed.
This line is shown in Fig. 2 for different values of the ratio b/a.

An explicit description of this “critical curve” can be obtained in
the special case of a thin-walled tube. If the thickness t = b —a is
small compared to a, we can expand ¢, 0, about their mean value
oo by assuming that o, — 0 « 0. The various equations may then
be appropriately approximated. For a thickness ratio of b/a = 1.2, the
thin-wall approximation gives for Pp,ay a value which agrees with the
numerical result based on the exact solution to within four significant
figures. Finally, it can be shown that the solution derived in this Note
corresponds to loading everywhere in the body (provided the total
effective pressure is less than Pp,,).
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Introduction

The stability of a vertical column, one end embedded in a rigid
foundation, is very important in structural engineering. Euler [1] first
found the critical buckling end loads for a massless column. The heavy
column without an end load was investigated by Greenhill [2] who
succeeded in obtaining the critical density for the primary (least
stable) mode. The combined effect of column density and end load
was studied by Grishcoff [3], who obtained part of the stability
boundary for the primary mode. In this Note we shall also study the
stability due to the combined effect. We shall (a) complete the sta-
bility boundary for the primary mode by extending to the case when
the column is hanging from the foundation and (b) investigate the
higher modes of buckling.

Formulation

We assume the column is slender enough such that the local cur-
vature is proportional to the local moment. Fig. 1 shows the coordinate
system. A local moment balance gives

d20 .
=—~[F+ p(L —s')] sin 0 1
ds’2
where F is the downward end load, p is the density, L is the length,
and EI is the flexural rigidity of the column, s’ is the arc length, and
0 is the local angle of inclination. Let s denote s’ normalized by L.
Equation (1) can be expressed as
2

d—0= —[a+ B(1 — s)]sin 8 2)

ds?
where o = FL2/EI and f8 = pL3/EI are nondimensional parameters
representing the relative importance of end load and density to the
flexural rigidity respectively. & and § are both positive in Fig. 1(a).
Negative o means the direction of the force is away from the fixed end.
Negative § can be realized in the case of a hanging column (Fig. 1(b)),
or when the upright column is immersed in a higher-density me-
dium.

The boundary conditions are
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6(0) = 0, a0 (1)=0 (3)
ds

Stability
Equation (2) can be linearized to give the stability equation
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(a) (b)

Eig. 1 Buckling of a heavy column; (a) a > 0, ﬂ > 0and (b) @ > 0,
<0
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Fig. 2 The stability boundaries for the first three modes

d20
X —la+ 8(1 - 9)}6 4
We introduce a new variable
rs(1—5+9‘-) |8]/3 (5)
8
Equation (4) becomes
d20
9;5 = —(sign B)rd (6)
The boundary conditions are
Atr=(1+§)|ﬁ|1/35r1, 0=0 (1)
o dé
Atr==|B|B=r; —=0 8
r ; Iﬁl rg. ar )

The solution to equation (6) can be expressed in terms of Airy func-
tions

0 = c1A;(—(sign B)r) + coB;(—(sign S)r) (9)

The condition for nontrivial solutions may be obtained from equations

(7)-(9). By choosing the proper branches in the related Bessel func-

tions, we obtain the following cases:
Fora>-f>00ra>0,8>0,or—a>F>0,

J173($1) ~273($2) + J1/3({)e2/3(§2) = 0

where {3 = 4|r1|%/2, {3 =4 ra|32 For -8 > a >0,

(10)

Journal of Applied Mechanics

BRIEF NOTES

T1/3($0)J —2/3($2) — Lya($1)d 2/3($2) = O. (11)
Forf>—a>0,
Jo13(E) 1 as3($0) + J1/a(§) T —93($2) = 0 (12)

For given «a, equations (10)—(12) are solved numerically for 3. Fig. 2
shows the complete stability boundaries. Qur results agree well with
Grishcoff in the range he investigated: 25 > 3 = 0, -7 < a £ 7w2/4.

Discussion

As far as we know negative 8 has never been studied before. Our
analysis show that the stability for & > 0, 8 < 0 is not a mere reflection
of o <0, 8> 0. This is also illustrated in Fig. 2. In general, the stability
curves are so nonlinear that any global straight-line approximation
is meaningless. Below each curve, the column is stable with respect
to the particular mode. The column is absolutely stable under the
primary stability curve.

The « intercepts of the curves in Fig. 3 agree with the normalized
Euler buckling loads 7?%/4, 972%/4, 2572/4. The B intercepts are at
7.8373b, 55.9872, 148.512. Our values are more accurate than those
of Greenhill and Grishcoff who use infinite series to obtain the values
of 7.95 and 7.85, respectively, for the primary mode.
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The Vibrating Beam With
Nonhomogeneous Boundary
Conditions

C. R. Edstrom'

In Mindlin and Goodman [1] a procedure is described for extending
the method of separation of variables to obtain solutions of linear
partial differential equations with nonhomogeneous boundary con-
ditions. This procedure utilizes a change of dependent variable to
produce homogeneous boundary conditions. Moreover, if the partial
differential equation is originally homogeneous, the equation in the
new dependent variable becomes nonhomogeneous and the existence
of a set of orthogonal functions must be assumed. However, if a
property chosen change of dependent variable is made, a homoge-
neous linear partial differential equation will remain homogeneous
as well as have homogeneous boundary conditions, but the initial
conditions will be nonhomogeneous. Thus the assumption of the ex-
istence of a set of orthogonal functions is not necessary [2]. Also, if a
linear partial differential equation is nonhomogeneous, a properly
chosen change of dependent variable will reduce the equation to a
homogeneous equation as well as produce homogeneous boundary
conditions and nonhomogeneous initial conditions. In order to find
a proper change of dependent variable, a system of ordinary differ-
ential equations with two point boundary conditions must have a
solution. However, when the change of dependent variable can be
established, the resulting problem can be easily solved.

! Associate Professor, Department of Mathematics, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio 45433.

Manuscript received by ASME Applied Mechanics Division, April, 1980; final
revision, March, 1981.

SEPTEMBER 1981, VOL. 48 / 669

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(a) (b)

Eig. 1 Buckling of a heavy column; (a) a > 0, ﬂ > 0and (b) @ > 0,
<0
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Fig. 2 The stability boundaries for the first three modes

d20
X —la+ 8(1 - 9)}6 4
We introduce a new variable
rs(1—5+9‘-) |8]/3 (5)
8
Equation (4) becomes
d20
9;5 = —(sign B)rd (6)
The boundary conditions are
Atr=(1+§)|ﬁ|1/35r1, 0=0 (1)
o dé
Atr==|B|B=r; —=0 8
r ; Iﬁl rg. ar )

The solution to equation (6) can be expressed in terms of Airy func-
tions

0 = c1A;(—(sign B)r) + coB;(—(sign S)r) (9)

The condition for nontrivial solutions may be obtained from equations

(7)-(9). By choosing the proper branches in the related Bessel func-

tions, we obtain the following cases:
Fora>-f>00ra>0,8>0,or—a>F>0,

J173($1) ~273($2) + J1/3({)e2/3(§2) = 0

where {3 = 4|r1|%/2, {3 =4 ra|32 For -8 > a >0,

(10)
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T1/3($0)J —2/3($2) — Lya($1)d 2/3($2) = O. (11)
Forf>—a>0,
Jo13(E) 1 as3($0) + J1/a(§) T —93($2) = 0 (12)

For given «a, equations (10)—(12) are solved numerically for 3. Fig. 2
shows the complete stability boundaries. Qur results agree well with
Grishcoff in the range he investigated: 25 > 3 = 0, -7 < a £ 7w2/4.

Discussion

As far as we know negative 8 has never been studied before. Our
analysis show that the stability for & > 0, 8 < 0 is not a mere reflection
of o <0, 8> 0. This is also illustrated in Fig. 2. In general, the stability
curves are so nonlinear that any global straight-line approximation
is meaningless. Below each curve, the column is stable with respect
to the particular mode. The column is absolutely stable under the
primary stability curve.

The « intercepts of the curves in Fig. 3 agree with the normalized
Euler buckling loads 7?%/4, 972%/4, 2572/4. The B intercepts are at
7.8373b, 55.9872, 148.512. Our values are more accurate than those
of Greenhill and Grishcoff who use infinite series to obtain the values
of 7.95 and 7.85, respectively, for the primary mode.
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The Vibrating Beam With
Nonhomogeneous Boundary
Conditions

C. R. Edstrom'

In Mindlin and Goodman [1] a procedure is described for extending
the method of separation of variables to obtain solutions of linear
partial differential equations with nonhomogeneous boundary con-
ditions. This procedure utilizes a change of dependent variable to
produce homogeneous boundary conditions. Moreover, if the partial
differential equation is originally homogeneous, the equation in the
new dependent variable becomes nonhomogeneous and the existence
of a set of orthogonal functions must be assumed. However, if a
property chosen change of dependent variable is made, a homoge-
neous linear partial differential equation will remain homogeneous
as well as have homogeneous boundary conditions, but the initial
conditions will be nonhomogeneous. Thus the assumption of the ex-
istence of a set of orthogonal functions is not necessary [2]. Also, if a
linear partial differential equation is nonhomogeneous, a properly
chosen change of dependent variable will reduce the equation to a
homogeneous equation as well as produce homogeneous boundary
conditions and nonhomogeneous initial conditions. In order to find
a proper change of dependent variable, a system of ordinary differ-
ential equations with two point boundary conditions must have a
solution. However, when the change of dependent variable can be
established, the resulting problem can be easily solved.
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As an illustration of this method, consider the following example.
The boundary-value problem

02y, + ¥y =0, «is a constant, )

with y(0,t) = y(m,t) = ¥:: (0,t) = y{(x,0) = y:(x,0) = O and yx,(mw,t) =
4A7 sin at, A is a constant, would describe a beam of length i, ini-
tially at rest with no initial velocity, with one simply supported end
and with a time-dependent bending moment at the other end. Make
the change of dependent variable

y(x,t) = Y(x,t) + F(x) sin at + aG(x)t cos at. (2)

This form for the change of dependent variable was selected because
of the form of the nonhomogeneous boundary condition associated
with equation (1). Substituting y(x,t) from equation (2) into equation
(1), we have

o?Yypes + Yu =0 3
with ‘
Y(0,t) = Y(m,t) = Yiu (0,t) = Yiu(mit) =0 4
if F(x) and G(x) satisfy the system
Py = Fx) = 2G(x)
G (x)—-Gx)=0
subject to the two-point boundary conditions

F(0) = F(r) = F7(0) = G(0) = G(r) = G"(0) = G"(m) =0
and F”(w) = 4Aw.

A solution of this system of ordinary differential equations is

2A7 sinh x
sinh 7
G(x)=4Asinx (8)

F(x) = 2Ax cosx — bA sinx +

Thus substituting F(x) and G(x) from equation (5) into equation (2),
we have

y(x,t) = Y(x,t) + 2Ax cos x sin ot + A(4dext cos ot

. i 2A7 sinh x sin at
—b5sinat)siny + ——————  (6)
sinh 7

The initial conditions for the function Y(x,t) become

27 sinh x
Y(x,0) = 0and Y:(x,0) = @A [sinx — 2x cos x — l— )
sinh 7

Applying the method of separation of variables to equation (3) with
homogeneous boundary conditions (4) and nonhomogeneous initial
conditions (7), the solution of this new problem is
@ —1)n+l
Y(x,t) =84 ¥ _(__).._

nio D) sin an?t sin nx. (8)
n=2 -

Substituting Y(x,t) from equation (8) into equation (6), we have the
solution of the original problem. Also from equation (6) we observe
that y(x,t) is unbounded as ¢ — «. Thus the time-dependent bending
moment produces resonance. Actually, there are infinitely many
time-dependent bending moments which will produce resonance.
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Similarity Solutions to the Non-
isothermal, Two-Dimensional
Squeezing Flow of a Viscous
Fluid

N. Phan-Thien?

1 Introduction

Recently, Cantwell [1] has shown that the two-dimensional un-
steady flow of a viscous fluid admits the following 10-parameter Lie
group of transformations, written in an infinitesimal manner [2],

E=x+eklx,y, t,9)+ 0 (9,
J=y+eplx,y, t, )+ 0 (I,
E=t+eflx,y,t,¥) +0 (), ey
¥=y+eanx,yt,¢)+0 (),

where x, y, ¢ are space-time coordinates, ¥ is the stream function and
£, p, §, n are given by [1]

E=ax+ by +cty+ fit) + d,

= —bx + ay — ctx + fa(t) + e, (2)
¢ = 2at + h,
n=3c(x? +y?) — fot)x + f1(8) y +5(0) + p,
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where the dot denotes a time derivative. This group has seven explicit
parameters, a, b, ¢, d, ¢, h, and p and three implicit parameters con-
tained in f1(2), f2(t), and s(¢). ‘

In this Note, we extend (1) to cover the nonisothermal case and il-
lustrate the technique with the squeezing flow problem where either
the temperature or the heat flux boundary condition is specified on
the plate.

2 Invariant Group
The nonisothermal flow of an incompressible Newtonian fluid can
be adequately described by

VA + Uy VA — Y V2, = 0V ®
T, + Yy Ty = YTy = DV2T, (4)

where ¥ is the stream function, T' the absolute temperature, and D
is the thermal diffusivity of the liquid, with a kinematic viscosity v.
Throughout the Note, the subscript denotes a partial derivative with
respect to the subscript.

Consider a one-parameter (¢) Lie group of space-time transfor-
mations [2], written in an infinitesimal manner,

F=x+ek(x,y,t) + O(e?),

=y +eplx,y,t)+0(e),

=14 ez, y,t) + O, (5)
Y=y +eax,yt, ¥ T)+ 0,
T=T+en(x,y,t, ¥ T) + 0(),

where %, 9, £, 17/, T are the new variables.
Equations (3)-(4) are said to be invariant~under (6) if they remain
. unchanged in the new coordinates (%, #, £, ¥, T), viz.,

T2 + Py e — YV Ry = vy, (6)
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As an illustration of this method, consider the following example.
The boundary-value problem

02y, + ¥y =0, «is a constant, )

with y(0,t) = y(m,t) = ¥:: (0,t) = y{(x,0) = y:(x,0) = O and yx,(mw,t) =
4A7 sin at, A is a constant, would describe a beam of length i, ini-
tially at rest with no initial velocity, with one simply supported end
and with a time-dependent bending moment at the other end. Make
the change of dependent variable

y(x,t) = Y(x,t) + F(x) sin at + aG(x)t cos at. (2)

This form for the change of dependent variable was selected because
of the form of the nonhomogeneous boundary condition associated
with equation (1). Substituting y(x,t) from equation (2) into equation
(1), we have

o?Yypes + Yu =0 3
with
Y0,) = Y(rt) = Yus(0) = Yar(m) = 0 @
if F(x) and G(x) satisfy the system
Py = Fx) = 2G(x)
G (x)—-Gx)=0
subject to the two-point boundary conditions

F(0) = F(r) = F7(0) = G(0) = G(r) = G"(0) = G"(m) =0
and F”(w) = 4Aw.

A solution of this system of ordinary differential equations is

2A7 sinh x
sinh 7
G(x)=4Asinx (8)

F(x) = 2Ax cosx — bA sinx +

Thus substituting F(x) and G(x) from equation (5) into equation (2),
we have

y(x,t) = Y(x,t) + 2Ax cos x sin ot + A(4dext cos ot

. i 2A7 sinh x sin at
—b5sinat)siny + ——————  (6)
sinh 7

The initial conditions for the function Y(x,t) become

27 sinh x
Y(x,0) = 0and Y:(x,0) = @A [sinx — 2x cos x — l— )
sinh 7

Applying the method of separation of variables to equation (3) with
homogeneous boundary conditions (4) and nonhomogeneous initial
conditions (7), the solution of this new problem is
@ —1)n+l
Y(x,t) =84 ¥ _(__).._

nio D) sin an?t sin nx. (8)
n=2 -

Substituting Y(x,t) from equation (8) into equation (6), we have the
solution of the original problem. Also from equation (6) we observe
that y(x,t) is unbounded as ¢ — «. Thus the time-dependent bending
moment produces resonance. Actually, there are infinitely many
time-dependent bending moments which will produce resonance.
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Similarity Solutions to the Non-
isothermal, Two-Dimensional
Squeezing Flow of a Viscous
Fluid

N. Phan-Thien?

1 Introduction

Recently, Cantwell [1] has shown that the two-dimensional un-
steady flow of a viscous fluid admits the following 10-parameter Lie
group of transformations, written in an infinitesimal manner [2],

E=x+eklx,y, t,9)+ 0 (9,
J=y+eplx,y, t, )+ 0 (I,
E=t+eflx,y,t,¥) +0 (), ey
¥=y+eanx,yt,¢)+0 (),

where x, y, ¢ are space-time coordinates, ¥ is the stream function and
£, p, §, n are given by [1]

E=ax+ by +cty+ fit) + d,

= —bx + ay — ctx + fa(t) + e, (2)
¢ = 2at + h,
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where the dot denotes a time derivative. This group has seven explicit
parameters, a, b, ¢, d, ¢, h, and p and three implicit parameters con-
tained in f1(2), f2(t), and s(¢). ‘

In this Note, we extend (1) to cover the nonisothermal case and il-
lustrate the technique with the squeezing flow problem where either
the temperature or the heat flux boundary condition is specified on
the plate.

2 Invariant Group
The nonisothermal flow of an incompressible Newtonian fluid can
be adequately described by

v, + \[/yvz‘//x - 1//xv2‘|by =pviy 3)

Ty + Yy Tx = Y Ty = DV T, 4)

where ¥ is the stream function, T' the absolute temperature, and D

is the thermal diffusivity of the liquid, with a kinematic viscosity v.

Throughout the Note, the subscript denotes a partial derivative with
respect to the subscript.

Consider a one-parameter (¢) Lie group of space-time transfor-
mations [2], written in an infinitesimal manner,

F=x+ek(x,y,t) + O(e?),

=y +eplx,y,t)+0(e),

=14 ez, y,t) + O, (5)
Y=y +eax,yt, ¥ T)+ 0,
T=T+en(x,y,t, ¥ T) + 0(),

where %, 9, £, 17/, T are the new variables.
Equations (3)-(4) are said to be invariant~under (6) if they remain
. unchanged in the new coordinates (%, #, £, ¥, T), viz.,

T2 + Py e — YV Ry = vy, (6)
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T+ §5Te — UeTy = DY2T, v =02%/2%2+ 2%/05% ()

The mathematics of invariance are well presented in the monograph
of Bluman and Cole [2], and it can be shown that up to an error terms
of 0(e2), (6) and (7) lead to (the so-called invariant surface conditions

(2)).
E=ax+by+ecty+fit) +d

p=bx+ay—ctx+ft)+e

{=2at+h (8)
n=%clx2+y2) ~ folt)x + f1ltly +s@) +p
w=2aT+gq

This represents an 11-parameters group of transformations; eight are
explicit (a, b, ¢, d, e, h, p, q) and three implicitly contained in f1(t),
fa(t), and s(¢).

For any function F that remains invariant under (8), it must satisfy
the invariant surface condition [2]

EF. + pFy+ {Fi+ nFy+ wFr =0
which can be solved by the characteristics method

de_dy_di_dy_dT_dr o
E p § m w™ O
Similarity variables can be generated by (9). To illustrate its appli-
cation, we take up the squeezing flow next.

3 Squeezing Flow

The problem of squeezing a viscous fluid between two parallel
plates occurs in the unsteady loading of bearings; however, its solution
using the full Navier-Stokes equations is still unknown and existing
analyses invariably assume the quasi-static and lubrication approx-
imation. Thus similarity solutions to this problem are welcome from
a humerical analysis point of view. To this end Wang [3] noted that
if the approach velocity of the plates is proportional to (1 — at)~2,
where «a is a constant, then a similarity solution is possible. This was
confirmed in Phan-Thien [4] using Cantwell’s [1] similarity group.
We consider here the nonisothermal squeezing flow where the
boundary conditions are

On the upper plate where y = H(t), the velocities must satisfy

u(y =H(®) =0; vly =H®)=H({) (10)

For the temperature field, we may choose either to prescribe the
temperature (Case a),

T(y = H(t)) = T1(t) (11)
or to prescribe the heat flux (Case b),
Ty(y = H(t)) = —Q(t), (12)
where T1(t), Q(t) are some known functions of time.
Only symmetrical flow fields are considered; thus
viy=0)=0=Ty(y =0) (13)

Now we select a subgroup of (8) that also preserves the boundary
conditions (10)—(13).
Invariance of the boundary curve y = H(t) requires that ¥ = H(Z)
which implies
p=H®¢E at y=H@),
that is,
—bx + aH(t) — ctx + fo(t) + e = (2at + h) H(t)
This is satisfied identically if b = ¢ = 0 and
folt).=H(t) 2at + k) —aH{t) — ¢ (14)

Next, the invariance of (10) implies

Journal of Applied Mechanics
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dly =H(@) =0, 5y =H())=H(E) (15)
which leads to /1 = 0 or that f1(t) = constant. Similarly, the invariance
of y = 0 requires that f3 = e. Thus, from (14),

(2at + h) H(t) — aH{t) = 0

or that

H(t) = r(2at + )12, H(t) = s(2at + h)~V2. (16)

where r, s are some constants.
Next, the invariance of T, (y = 0) = 0 is satisifed automatically. For
Case (a), the invariance of (11) requires

T(y = H®)) = T1(D)

which leads to
2aT1(t) + g = T1(t) (2at + h)
or
Ti(ty=m2at +h) +n, (17)
where m, n are some constants.
Finally, for Case (b) we require that (12) in invariant, viz.,

Ty(y =H(®) = -Q()
which implies

(2at +R) Q +aQ =0,
or

Q(t) = k(2at + h)'2, (18)

where k is a constant.

Therefore if the approach velocity is given by (16) and the pre-
scribed temperature (or temperature gradient) is given by (17) (or
(18)) then the plane nonisothermal squeezing flow admits similarity
solutions described by the following characteristics (cf. (9)):

dx dy  dt dy dT

bk A = = (19)
ax ay 2at+h sit)+p 2aT+g

The first two equalities yield the similarity variable
E1=2(2at + h)7V2, &= y(2at + k)12 (20)

from which the stream function and the temperature is given by

_ s +p
= S+ et b, (21)
T = (2at +h) 0 (&, &), (22)

where ¢ and 0 can be found by substituting (21)-(22) back in (3)-
(4).

4 A Similarity Solution at Small “Reynolds” and
“Peclet” Number
To construct a similarity solution, we assume the gap thickness to

be
2H(t) = 2a(1 — at)/2 (23)

Note that (23) is equivalent to (16) and 2a is the initial gap thickness,
We only discuss Case (a) where

Ti(t) = To(l — at) (24)
which is equivalent to (17); T is the initial plate temperature.
Similarity variables are (cf. (20))
f=2(-at) 2, fy= (- a) V2 (25)
a a

A similarity solution can be constructed when s(¢) + p = 0 and

B, £2) = = a%bif(£2), B8y, E2) = 0(E2) (26)
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which yields for the velocity field

ax "
= _:a_t)f (£2),

2(1 @

f(&2). (28)

T 2(1 - ap)M?
This is the similarity solution presented by Wang [3].

The structure of this solution is obvious: it does not permit material
planes to experience any “buckling” during subsequent deforma-
tions.

Assuming (27)-(28), the temperature field is given by

T = To(l — at)f(&2), (29)
where f(£2) and 8(&,) are given through (cf. (3)-(4)).
ng/ll + 3]('// + flf// —_— ffl// = %f/l//’ (30)
 — ff — - ._1_ 1
£ —fo — 20 P 6 (31)

In (30)-(31) R and P are the Reynolds and Peclet numbers defined
by

2 2
R = ﬂ pP= f'_, (32)
w’ 2D
and the boundary conditions on f and 6 are
f(0) = f7(0) = 0 = f/(1) = £'(0)
f=01)=1 (33)
When R ~ P « 1 the solutions take the form
f = fo+ Rf1 + Rz + O(R3), (34)
0 = 8y + P8 + P20, + O(P3, R3, R2P, RP?) (35)
where
3
fo= —]2‘523"'—52, 0p=1, (36)
= — (£ — 28£:5 + 53E,® — 26£2),
f1 550 (Ez o £y &2)
f1=1- &2, (37)
and
193
S b IR B | + 22
fa= 380 (330 & Ez 52 Ez
18()175 4'74895 )
1386 9240 7
02 = 816 (— 2526 + 15524 - 60522 + 47). (38)

The zeroth-order solution is the Stokes flow in which the temper-
ature is uniform throughout. Up to terms of O(P), the temperature
is not influenced by the velocity field and is quadratic in £2. The in-
fluence of the velocity field on the temperature can be felt at the O (P?)
level via the term fofy’. At moderate Reynolds and Peclet numbers
(R, P ~ O(1)), there will be boundary layers near the plates and a
matching method must be used to find a solution to (30)-(31).

References

1 Cantwell, B. J., “Similarity Transformations for the Two-Dimensional
Unsteady Stream Function Equation,” Journal of Fluid Mechanics, Vol. 85,
1978, pp. 257-271.

2 Bluman, G. W., and Cole, J. D., Similarity Methods for Differential
Equations, Springer-Verlag, 1974.

3 Wang, C.-Y., “The Squeezing of a Fluid Between Two Plates,” ASME
JOURNAL OF APPLIED MECHANICS, Vol. 43, 1976, pp. 579-587.

4  Phan-Thien, N., “On the Invariance Group of the Plane Squeezing Flow

of a Viscous Fluid,” ASME JOURNAL OF APPLIED MECHICS, Vol. 47, 1980, pp. -

213-214.

672 / VOL. 48, SEPTEMBER 1981

Application of the Reissner
Method to a Timoshenko Beam

J. S. Rao,! S. V. Kulkarni,? and K. B.
Subrahmanyam?

The Reissner and the patential energy methods have been applied
to a Timoshenko beam vibrating in flexure. Frequency equations are
developed using shape functions for bending moment, shearing force,
deflection, and slope in series form through the Ritz process. Natural
frequencies and mode shapes are obtained and comparison is made
between the results of the two approaches from which it is observed
that the Reissner method indicates a quicker convergence and gives
better mode shapes.

Nomenclature

A = area of cross section of beam at any section

E, G = Young’s modulus, modulus of rigidity

I = second moment of area about principal axis

L = length of beam

M, V = bending moment, shearing force

p = circular frequency

t = time

xx,yy = coordinate axes through the centroid

y,¢ = dynamic deflection and slope of the beam in yz-plane
z = coordinate distance measured from the fixed end
Z =z/L

p = mass density of the material of the beam

’ = dash represents differentiation with respect to z

Introduction

The objectives of the present Note are to apply the Reissner prin-
ciple [1-38] to the simplest idealization of a turbomachine blade—a
Timoshenko beam vibrating in flexure and to compare the results with
those obtained from the classical potential energy method.

To this end, the shape functions for bending moment, shearing
force, deflection, and slope are developed in the series form. Making
use of these in the Reissner and the potential energy functionals, the
respective frequency equations are obtained through the Ritz process
and the convergence rates of the two approaches are studied for a
Timoshenko beam of given parameters.

Analysis

The Reissner and the total potential energy functionals for a uni-
form symmetric Timoshenko beam, without body forces and surface
tractions, are, respectively [1]:

In=- f oEIL,

=1} j; [EL (602 + KGA(y' — $)?ldz @

——— + M¢I
ZKGA

V' —¢)dz (1)
The kinetic energy of the beam vibrating in the yz-plane is
L .
T=4 [ [phad® + pAy?dz 3)

The dynamic Reissner functional Lg and the Lagrangian L can be
formulated in the usual way by letting
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which yields for the velocity field

ax "
= _:a_t)f (£2),

2(1 @

f(&2). (28)

T 2(1 - ap)M?
This is the similarity solution presented by Wang [3].

The structure of this solution is obvious: it does not permit material
planes to experience any “buckling” during subsequent deforma-
tions.

Assuming (27)-(28), the temperature field is given by

T = To(l — at)f(&2), (29)
where f(£2) and 8(&,) are given through (cf. (3)-(4)).
ng/ll + 3]('// + flf// —_— ffl// = %f/l//’ (30)
 — ff — - ._1_ 1
£ —fo — 20 P 6 (31)

In (30)-(31) R and P are the Reynolds and Peclet numbers defined
by

2 2
R = ﬂ pP= f'_, (32)
w’ 2D
and the boundary conditions on f and 6 are
f(0) = f7(0) = 0 = f/(1) = £'(0)
f=01)=1 (33)
When R ~ P « 1 the solutions take the form
f = fo+ Rf1 + Rz + O(R3), (34)
0 = 8y + P8 + P20, + O(P3, R3, R2P, RP?) (35)
where
3
fo= —]2‘523"'—52, 0p=1, (36)
= — (£ — 28£:5 + 53E,® — 26£2),
f1 550 (Ez o £y &2)
f1=1- &2, (37)
and
193
S b IR B | + 22
fa= 380 (330 & Ez 52 Ez
18()175 4'74895 )
1386 9240 7
02 = 816 (— 2526 + 15524 - 60522 + 47). (38)

The zeroth-order solution is the Stokes flow in which the temper-
ature is uniform throughout. Up to terms of O(P), the temperature
is not influenced by the velocity field and is quadratic in £2. The in-
fluence of the velocity field on the temperature can be felt at the O (P?)
level via the term fofy’. At moderate Reynolds and Peclet numbers
(R, P ~ O(1)), there will be boundary layers near the plates and a
matching method must be used to find a solution to (30)-(31).
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Application of the Reissner
Method to a Timoshenko Beam

J. S. Rao,! S. V. Kulkarni,? and K. B.
Subrahmanyam?

The Reissner and the patential energy methods have been applied
to a Timoshenko beam vibrating in flexure. Frequency equations are
developed using shape functions for bending moment, shearing force,
deflection, and slope in series form through the Ritz process. Natural
frequencies and mode shapes are obtained and comparison is made
between the results of the two approaches from which it is observed
that the Reissner method indicates a quicker convergence and gives
better mode shapes.

Nomenclature

A = area of cross section of beam at any section

E, G = Young’s modulus, modulus of rigidity

I = second moment of area about principal axis

L = length of beam

M, V = bending moment, shearing force

p = circular frequency

t = time

xx,yy = coordinate axes through the centroid

y,¢ = dynamic deflection and slope of the beam in yz-plane
z = coordinate distance measured from the fixed end
Z =z/L

p = mass density of the material of the beam

’ = dash represents differentiation with respect to z

Introduction

The objectives of the present Note are to apply the Reissner prin-
ciple [1-38] to the simplest idealization of a turbomachine blade—a
Timoshenko beam vibrating in flexure and to compare the results with
those obtained from the classical potential energy method.

To this end, the shape functions for bending moment, shearing
force, deflection, and slope are developed in the series form. Making
use of these in the Reissner and the potential energy functionals, the
respective frequency equations are obtained through the Ritz process
and the convergence rates of the two approaches are studied for a
Timoshenko beam of given parameters.

Analysis

The Reissner and the total potential energy functionals for a uni-
form symmetric Timoshenko beam, without body forces and surface
tractions, are, respectively [1]:

In=- f oEIL,

=1} j; [EL (602 + KGA(y' — $)?ldz @

——— + M¢I
ZKGA

V' —¢)dz (1)
The kinetic energy of the beam vibrating in the yz-plane is
L .
T=4 [ [phad® + pAy?dz 3)

The dynamic Reissner functional Lg and the Lagrangian L can be
formulated in the usual way by letting
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 Lp=T~1Ig 4
Ly=T-11 b)
It can be seen that Ly is a functional of the form

LR = f(M,VYy’yl’y’¢’¢’,¢’z,t) (6)

where z and ¢ are independent variables. Application to equation (6)
of the standard procedure of calculus or variations [4] leads to the
stress-strain relations, equations of motion and boundary conditions
which agree with those derived by Carnegie. [5].

The time averaged Reissner and potential energy functionals for
flexural vibration of a Timoshenko beam are given by

L ZI 2A M2 VZ
Ln=f [pp?Lex 5\ 2P yot +
o | 2 2 2El. 2KGA

+ M¢'-V{y — d)idz (7)

L
tn=3% j; [0poxd? + pp2Ay? — El. ()2 = KGA(y — ¢)%]dz

(8)
The shape functions are assumed in series form as
y= Z {Aizi + A,:+1Zi+1} (9)
i
¢ = L {BiZ} + By Z7HY (10)
12
M=% (Ci(1 = Z) + Cis(1 — Z)+1) (11
t
V=3 {Di(1 = Z)! + Dis1(1 — Z)*Y (12)
1]
which satisfy the boundary conditions
y=¢=0 at Z=0 (13)

M=V=0 at Z=1

The arbitrary constants A;41 and B;41 are eliminated from the con-
ditions

Y -—¢)=¢'=0 at Z=1 (14)
and C;+1 and D;4 from the conditions v
M =V; V=0 forallvaluesofZ. (15)

Substituting the resulting shape functions in equations (7) and (8),
performing the necessary calculus and applying the Ritz process for
minimization of Lg and L, with respect to A;, . . . D;, we get the familiar
eigenvalue problems of the form

A+p% =0
where A and B are symmetric square matrices

(16)

The eigenvalues and mode shapes of the two problems as defined
by equation (10) are obtained from a computer program developed
in Fortran language and run on a TDC-316 computer for a beam with
the following data:

L = 3.62 in. (9.1948 cm) A = 0.128 sq. in. (0.8258 cm?)
E =30 X 108 1b/in.2 (206.85) GPa) G = 12 X 108 Ib/in.? (82.74G Pa)
I, = 0.001388 in.t (0.05777 cm*), p = 0.283 1b/in.3 (0.00783 kg/cm3)

K =10(1+ »)/(12 + 11»)

where v is Poisson’s ratio.

Results and Discussion

Table 1 gives a comparison of the results obtained here with those
of Sutherland and Goodman [6).

Journal of Applied Mechanics
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Tablel Frequency ratio
_ |frequency corrected for shear and rotary inertia]

classical uncorrected frequency ]
Number of
terms in Reissner method Potential energy method
solution I Mode II Mode III Mode I Mode II Mode ITI Mode
1 1.028 — — 2.261 — —
2 0.992 1.082 — 1.002 1.827 —_
3 0.992 0.951 1.126  0.992 0.967 1.557
4 0.992  0.951 0.902 0992 0995 0924
5 0.992 0.950 0.897 .0.992 0.951 0.909
6 — — — 0.992 0951 0.899
Frequency 0.99 0.95 0.89
ratio from

reference [6)

Table 2 Nodal locations: fraction of length from fixed
end

Nodal location

Mode Reissner Potential Exact
number method energy method gsolution [7]
I 0.783 0.783 0.783
I 0.500 0.493 0.504

0.868 0.875 0.868

It can be seen that the frequency ratio decreases as the number of
terms in the assumed solutions increase. The frequency ratios for the
first two modes obtained from the Reissner method with a three-term
solution show convergence to three significant figures while the po-
tential energy method indicates a five-term solution for a similar ac-
curacy. While it has been observed that the mode shapes obtained by
both of these methods are close to the exact ones, the nodal locations
given by the Reissner method, Table 2, are seen to be closer to the
exact ones [7].

From the results presented, the Reissner method appears to indi-
cate a quicker convergence and gives better mode shapes than the
classical potential energy method.
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Instability of a Damped Rotor
Partially Filled With an Inviscid
Liquid

S. L. Hendricks'

This Brief Note proves that a simple pin—pin rotor that is partially
filled with an inviscid liquid is inherently unstable when an external
damper is added to the rotor.

Background

During experiments performed on a rotor partially filled with liq-
uid, Kollman {1} discovered a wide range of rotor spin speeds for which
the system was unstable. Kuipers [2], Wolfe [3], and Hendricks and
Morton [4] have analyzed the Kollmann experiment. All three in-
vestigators were able to calculate stability limits for an undamped
rotor partially filled with an inviscid liquid.

Kuipers [2] and Hendricks [4] added an external damper to the
rotor and noted that the system became unstable for all spin
frequencies and all nonzero damping factors that were calculated.
Neither author offered a proof of this fact.

Theory
The stability characteristics of a damped rotor partially filled with
an inviscid fluid are controlled by the characteristic equation [4].

(v + wSot + 2(iCy + Aly — 1]8¢3
+ (A2[y — 5 — 4u] + 2iCA[y — 2] — ¥)So2 + 24(1 — 3iCA
—2[1 + pu]A2Se + A%2(1 — 2iCA — A2[1 + ) =0 (1)
where
v =11+ (b/e)2}/[1 = (b/a)%] = nondimensional fill param-
eter
o= 7[pa2L/m = nondimensional fluid density
C = C/2mwq = nondimensional damping factor
A = Q/wy = nondimensional spin frequency
So = eigenvalue which determines both frequency and sta-
bility
and
a = radius of the rotor
b = radius of the fluid free surface
p = fluid density
L = rotor height
C = damper coefficient
m = mass of the rotor
Q = rotor spin frequency
wo = dry rotor critical frequency

To investigate the stability of equation (1), the following con-
stants are formed:

Ap=0 By=vy+pu

A= —ZC’Y By = —ZA(‘Y - 1)

Ay =2AC (y—2) By=AXy—4pu—5)—v
Az =6A2C By = —2A(1 — 2A2[1 + u])
Ay = —24°%C By= A%(1— A%[1 4 u])

The necessary and sufficient conditions for stability are that the 4
determinants

Ao Ay Agr—y
By B By

Vgr = 0 A() Az,_g (I‘ = 1, 2, 3, 4)
0 By Bor—g
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(where Ay and By, are zero if & > 4 and Ay, is of the 2rth order) be
positive. (See Porter [5]). These conditions are known as the gener-
alized Hurwitz inequalities.

After much algebra,

Vo = 2Cy(y + 1)

Vs =4C%y + p) (v® + 3A%uy? + Apy — 4A%)

Ve = 8A*C3u(y — (v + Dy + w)(6y2 + [20 — A%u]y + A%u + 16)
Vg = —16AN0CH2(y + w)(y — Dy + 1)3

Since Vg < 0 for all damping factors (C), all spin speeds (4), all fill
parameters (7y), and all fluid densities (u), it follows that the original
system is completely unstable. When C = 0 all of the determinants
are identically zero, a condition that is characteristic of undamped
systems.

Conclusion

When an external damper is added to a rotor containing an inviscid
fluid, the resulting system has been shown to be unstable over all spin
speeds and all nonzero damping factors.

This result although true is unrealistic because rotors have been
shown to run stably while containing liquid [1, 3]. The discrepancy
lies not in the mathematics but in the physics. If the theory includes
dissipation due to an external damper, then it must also include dis-
sipation due to the viscosity of the entrapped fluid [4].
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Effects of a Circular Hole on
States of Uniform Twisting and
Shearing in Shallow Spherical
Shells

J. E. Reissner?

Introduction

It is the purpose of what follows to complement recent results by
E. Reissner on the subject of this Note [1, 2] in such a way as to have
values of stress-concentration factors in the entire range of parameter
values, in place of the results in [1, 2] which are valid for small and for
large values only.

Given the discussion of the physical aspects of the two problems
and of the relevant general analytical developments in [1, 2] we begin
by restating the results which are the starting point of the work of this
Note in the following manner.

Transverse Twisting [1]
The values of membrane and bending stress-concentration factors

1 Department of Physical Science, Pembroke State University, Pembroke,
N.C. 28372.
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Table 2 Stress-concentration factors for membrane shear

*b *m
v=0 v =1/3 v=1/2 v=0 v=1/3 v=1/2
u N A, N A N Al N N N A
o 4 [ a 4 4 4
0,1 0, 0396 0, 0385 0,0380 4,0158 4, 0157 4, 0156
0.3 0. 247 0, 254 0,261 4,140 4.137 4,136
0.5 0,558 0,598 0,631 4,376 4, 367 4,363
0.8 1.166 1,312 1,425 4,908 4,880 4,867
1.0 1,655 1,909 2.104 5,362 5,316 5,296
2,0 5,068 6,317 7.263 8,545 8.391 8,321
3,0 10,127 13,113 15,374 13, 500 12,964 12,690 12,562
4,0 16, 87 22, 32 26, 46 24,00 18. 47 18.08 17.89
5.0 25,33 33,97 40,52 37.50 25,02 24,50 24, 26
6.0 35,50 48. 05 44,09 57.58 54, 00 32,60 31.95 31,65
7.0 47. 40 64,57 60,01 77.63 73.50 41.18 40, 42 40. 05
8.0 61,03 55, 43 83,54 78.38 100,68 96,00 50,78 49.89 49, 47
9.0 76,38 70.15 104, 95 99. 20 126,72 121.50 61,38 60, 37 59,89
10,0 93, 46 86,61 128.81 122. 47 155,76 150, 00 72,98 71.86 71,31
15,0 204. 8 194, 9 284, 8 275,6 345, 9 337.5 146. 0 144.3 143, 5 112.5
20,0 359.5 346, 4 502.1 489.9 611.1 600.0 244.1 241.8 240,7 200,0
25,0 557.4 541, 3 780.5 765.5 951.3 937.5 367.2 364, 3 362, 9 312,85
50,0 2,197 2,165 3,091 3,062 3,777 3,750 1,358 1,352 1, 349 1, 250
100. 0 8,722 8,660 12,305 12, 247 15,054 15, 000 5,214 5,202 5,196 5,000
200, 0 34,764 34,641 49,106 48, 990 60,106 60,000 20, 426 20, 402 20, 391 20, 000
400, 0 {i138,810 138,564 196,191 195,959 240, 213 240, 000 80, 850 80,803 80,779 80, 000

check, as they must, the correctness of the limiting results for u = 0
and, as it was hoped that they would, the correctness of the asymptotic
results for sufficiently large values of u. As expected, the meaning
of “sufficiently large” is different for the problem of twisting where
two-term asymptotic formulas had been obtained, and for the problem
of membrane shear where one-term asymptotic formulas only had
been derived. Evidently, in the latter case the asymptotic results come
close to the results obtained by solving the 4 by 4 system numerically
only when 50 < p. In the former case the two-term asymptotic for-
mulas are quite close to the numerical results in the larger range 10
< p. In summary, it is possible to say that the present evaluation,
insofar as the problem of transverse twisting is concerned, adds little
to the information of technical interest which had previously been
obtained in [1]. On the other hand, insofar as the problem of mem-
brane shear is concerned the present calculations add considerably
to qualitative and quantitative insights of technical interest to the
preliminary quantitative results which were obtained in [2].

Description of Numerical Procedure

Tabulated values of zero-order Kelvin functions for u < 100 are
available in Nosova [3] and Abramowitz and Stegun {4], together with
recursion relations for the computation of the second-order functions
and their derivatives. Computer subroutines for the zero-order
functions are also available [5]. For larger values of y, a simple

closed-form asymptotic expression provides these functions accurate
to the fifth significant figure or better. At these values of the argu-
ments, the magnitude of the functions is of the order of exp (—u//2),
leading to values of the determinant of the 4 by 4 system which are
close enough to zero to cause underflow difficulties. In these cases,
the Kelvin functions and derivatives appearing in the system may be
rescaled by any common factor, leading to a determinant modified
by multiplication by the square of the scaling factor and to solutions
c¢3 and ¢4 modified by division by this factor. The use of these solu-
tions, together with the rescaled Kelvin functions, in equations (1)
and (3) then provides values for the stress-concentration factors that
are independent of the scale factor.
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Optimal Isolation of a Single-
Degree-of-Freedom System
With Quadratic-Velocity
Damping!

T. L. Alley?

The response of a mass isolated by a linear spring and a quadratic-
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velocity damper subjected to a step-and-decay velocity input at the
base is found in closed form. This solution leads immediately to the
optimal isolation system for this input. The parameters of the op-
timal isolation system are given by a simple formula.

Brief Note

Consider a single-degree-of-freedom oscillator initially at rest and
subjected to a specific input motion at the base. Define x as the inertial
motion of the mass, y as the intertial motion of the base, and z as the
relative displacement

(1)

A common optimization criterion for the design of the isolation system
is to require that the peak inertial acceleration of the mass be limited
and that the peak relative displacement between the mass and the
base be minimized.

Z2=x—y.
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Now consider a specific form of the input motion as

y=0; t<0 (2a)
yt)=V—at; t=0 (26)
y(t=0)=0 (2¢)

where V and a are positive and the time of interest is less than V/a.
If a is zero then this is the common velocity-step problem. For zero
initial conditions of the mass and a general isolation force h(z, Z) the
system to be solved is

mi=h(z,2)+ma=hz,2) (3a)
2(0) =0 (3b)
2(0)=-V (3¢)

Note that b’ differs from h by only a constant. The time of interest
will be further restricted to the interval [0, T| where T satisfies

2(T)=0 (4)
for the first time. Also consider the functional
J = 12(TH| (5)

which depends on h’ and is the extremal of z. If JJ is minimized subject
to the condition that

|h'(z,2)| < Hy (6)

where Hj is a constant then it has been shown by Troitskii [1], Kar-
nopp and Trikha [2] and elsewhere that this optimal isolation is given
by

h'(z,%) = —Ho sign (2(0)) (7)

over.the interval [0, T']. After T the relative displacement can be
brought to zero in any manner as long as 2(T') and Hy are not ex-
ceeded. Note that the optimal isolator generates a constant force such
that the mass acceleration equals the limiting acceleration up to the
time of peak relative displacement but that the form or mechanization
of this optimal isolator is unknown.

Let us now construct an isolation system composed of a linear
spring and a quadratic velocity damper. Hydraulic dampers exhibit
such behavior and are in widespread use. Equation (3a) now be-
comes

mé + cz|z| + kz = ma 8

where ¢ and % are positive constants. Because we are interested only
in the motion up to peak relative displacement there may be
written

2] = | —y] =2

because 2 is negative. The system to be considered is now

mz — 22+ kz = ma (9a)
2(0) =~V (9b)
z{0) =0. 9c)

The order of equation (9a) may be reduced from two to one, time
eliminated, and the equation made linear by the transformation

s(z) = (— iz—)z (10a)

dt
515:24_4_@1(@): : (10)

dz dt dzdt\dt
The system to be solved is now

lSd—s—£s+£z=a (11a)

2dz m m
s(0) = V2, (11b)
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The solution of system (11) is

k
S=(V2_m_k+zz£)ezcz/m+&z+1_mg (12)
2¢2 ¢ ¢ 22 ¢
But from equations (1), (10b), and (12) there may be written
1k
x=i(v2__m_k_+_@)82::z/m+___a (13)
m 22 ¢ 2¢

and the inertial acceleration is expressed as function of 2, rather than
t, for our problem.
Suppose now that we select k and ¢ such that

(14)

in equation (13). This would yield a case of constant acceleration
which characterizes the optimal isolation system. The optimal ac-
celeration will now be denoted as %¢ and is

1k
io=———a. (15)
2¢
From equations (1), (2b), and (15) there follows:
1k
i=g—y=—-=t—V. (16)
2¢

Note that at z = —R, or peak relative deflection, there must be
2 = 0 and from equation (16) this occurs at
c
T=2V- a7
k
Integrating equation (16) once more and evaluating the result at T'
yields

c
R=V2- (18)
k

For this solution to be valid requires

14
T<~—
a

1k
a<——
2¢
which implies that %o is positive from equation (15).
Equation (19) may be recast in the form

(19)

a<=-— (20)

2 R
using equation (18). This is more convenient for optimization.
Because the optimal isolation system for the general problem de-
scribed by equations (3)-(6) resulted in a constant mass acceleration
equal to the limit over [0, T it is asserted that this optimal result may
be achieved by the isolation system selected in equation (8). That is,
for the optimization conditions of
min J = min |z(T)|
subject to |h'(z,2)| < Hp

no better minimum can be achieved than that resulting from the linear
spring and quadratic velocity damper system.

After first verifying that condition (20) holds, the optimal accel-
eration and isolation parameters may be found by performing the
following calculations derived from those just given.

(21)
%o (22)

and
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R
co= ko I (23)

where the subscripts denote optimal values.
In comparison with equation (21), for the special case of a con-
stant-velocity input, a linear undamped system yields

i (undamped) = V2/R
and a linear, viscously damped system yields

%o(viscous) = 0.6204(V2/R)

678 / VOL. 48, SEPTEMBER 1981

Thus the performance of the quadratic-velocity isolation system is
much better than an undamped system and slightly better than the
viscous system.
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Torsion of Pretwisted Beams
Due to Axial Loading!

Aviv Rosen.? The coupling between extension and torsion of
pretwisted beams was examined in a supplement to a report [1]
published several years ago entitled “Re-Examination of the Com-
monly Used Equations of Motion of Pretwisted Rotor Blades.” This
coupling appears in the commonly used equations of motion of pre-
twisted rotor blades which were derived in the classical work of
Houbolt and Brooks [2]. The following two results were pointed out
in this supplement:

1 Ifitis assumed that the previous derivation is correct, then this
phenomenon is negligible within the accuracy of the theory.

2 It was shown by a rigorous derivation that the terms associated
with the tension-torsion coupling effect due to pretwist are not only
negligible but are, in fact, incorrect. The reason for the appearance
of these incorrect terms was the fact that, while the derivation leading
to their appearance is done by using a nonorthogonal system of
coordinates, the appropriate theory for such a system was not ap-
plied. :

These results raised strong objections from those who used this
theory [2] in the past, including Dr. Hodges. I was, therefore, pleased
‘to see in the subject paper that he now agrees with the aforementioned
results. He also claims that nowadays some rotor blades are built out
of composite materials so that equivalent G/E-values may be much
less than unity. Therefore, in these cases, the untwisting of the blade,
due to tension, may be more significant than for regular blades. As
a result the author presents a derivation similar to the one which was
presented in reference [1], including warping. He concludes that there
is an untwisting of the beam due to axial loading which is caused by
the influence of pretwist on the warping contributions.

In the derivation of the supplement [1] warping was not included.
As pointed out, this was done because the basic derivation of Houbolt
and Brooks did not include warping and the intention was to do the
derivation {1] along the same lines. Even so, the mutual relation be-
tween warping and pretwist was pointed out, but as indicated [1] in
the case of usual rotor blades, the neglect of that influence of warping
and pretwist was fully justified. Furthermore, it was clearly indicated
that the inclusion of warping and determination of its influence on
the derivation can be observed following a similar procedure. In fact,
the subject paper is a result of following the path which was marked
in reference [1]. This path was also followed by the author of [1]
showing the influence of warping and pretwist on the torsional rigidity
of beams [3]. The foregoing description is given here to provide a
background on {1] and the subject paper. In concluding this part of
my discussion, I would like to state that I believe that the subject
paper has an important contribution in establishing the under-

1By D. H. Hodges, and published in the June, 1980, issue of the ASME
JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 393-397. .

2 Senior Lecturer, Department of Aeronautical Engineering, Technion—
Israel Institute of Technology, Haifa, Israel.
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standing of the behavior of pretwisted beams for which the author
should be given credit.

Up to this point the discussion was general, but the following three
specific points associated with the subject paper, will be pointed
out:

1 As stated by the author, his derivation becomes important in
the case of blades which are built out of composite materials. The cases
of interest are those where, because of the presence of longitudinal
fibers, the longitudinal stiffness of the blade is much higher than its
torsional rigidity. This causes a classical example of an anisotropic
beam, where strong fibers are immersed in a weak matrix. These fibers
are twisted with respect to the beam axis and therefore one is faced
with a complicated problem of anisotropic nonorthogonal system.
Equation (20), of the supplement [1] is appropriate for these cases.
Instead the author restricts his derivation to pure isotropic cases
(equations (15) and (16)), and in order to take into account the nature
of the composite blades he introduces the concept of equivalent G/E.
An indication that this concept may not be correct at all is given by
the following example: Consider a circular beam which is composed
of an extremely weak matrix together with strong fibers which are
uniformly twisted inside the matrix. Since the “equivalent isotropic
beam” is circular there is no warping. Therefore, according to the
subject paper’s results there will not be any untwisting due to axial
forces, no matter what the ratio G/E is. On the other hand, from
simple physical reasoning, it is clear that this beam will exhibit un-
twisting due to axial tension. In this special case one also expects an
addition to the torsional rigidity due to the fibers. This contribution,
which may be significant above certain values of pretwist, is not
predicted by the equivalent G/E theory. Therefore, unless the author
will present concrete proof, the usefulness of the concept of equivalent
G/E to déscribe the behavior of rotor blades made of composit ma-
terials, may be very limited. :

2 The author neglected the influence that pretwist may have on
the torsional rigidity of beams. He states that this contribution is
negligible for slender beams. Unfortunately, this statement is inac-
curate. A careful examination of the results of previous research [3,4],
which also confirms physical reasoning, reveals that this contribution
depends on the initial twist and the geometry of the cross section only,
and is not influenced by the slenderness of the beam. An indication
that there is a mistake in the author’s derivation is obtained from the
fact that the numerator of the left side of equation (33) has the di-
mension of (1/length?) while all the other terms in the equation are
dimensionless.

In a recent paper [5] a theory describing the nonlinear torsion and
extension of initially twisted beams under the action of axial load and
twisting moment, was derived. Comparison [5] of theoretical and
experimental results showed very good agreement. It is beyond the
scope of this discussion to be descriptive of that work and so only its
results (équation (12) and reference [5]) when applied to the same
example which appears in the subject paper, are presented in Fig.
1. .

The cross section of the beam is elliptical with principal axes 2a and
2b, while (T/EA) = 0.005 and G/E = 0.025. If the contributions of
pretwist, together with other nonlinear contributions to the torsional
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Fig. 1 Torsion per unit pretwist of a slender beam with elliptical cross sec-
tion .

rigidity of the beam are retained, it is found that in contrast to
equation (34) of the subject paper, ¢’/#’ is a function of (#'a). In Fig.
1 the value of ¢’/ for different values of pretwist (#’a) are presented.
The shadowed area indicates a region where the accuracy of the theory
is in doubt [5]. The curve for (#’a) = 0 is identical to the curve pre-
sented in Fig. 2 of the subject paper. Comparison between the two
figures indicates that the results of the subject paper are misleading.
The torsion per unit pretwist of a slender beam with elliptical cross
section is not a function of (b/a) only, as stated, but in addition de-
pends on the magnitude of the pretwist. Using equation (34) of the
subject paper may also cause large errors in many other cases.

3 It was shown in previous derivations [1] that using an orthogonal
system of coordinates instead of the nonorthogonal twisted system
of coordinates, yields the same results but reduces the work consid-
erably. These conclusions were also confirmed in later works [3,5]. Due
to the tedious derivation of the subject paper which uses the nonor-
thogonal system, it is worthwhile mentioning again the advantages
of using an orthogonal system of coordinates whenever possible.
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Author’s Closure

While 1 appreciate Dr. Rosen’s interest in the subject paper, I do

680 / VOL. 48, SEPTEMBER 1981

not agree with some of his statements. To begin, I would like to ad-
dress the two points from the supplement of [1] with which Dr. Rosen
says I now agree. Both points concern the terms that couple tension
and torsion in beam theory. These two terms account for the well-
known increase in torsion stiffness due to tension and a twisting
moment due to tension proportional to pretwist. His first point is that
the phenomenon is negligible within the accuracy of the theory of [2].
He argues this point in [1] on the basis of G/E values for a beam made
of a single, homogeneous, isotropic material. Actually, I do not agree
with this point now nor have I ever. A careful reading of the Intro-
duction to the subject paper will substantiate this for the reader’s
benefit. My “strong objections” in the beginning, mentioned by Dr.
Rosen, still stand and they focus on the simplistic nature of his
argument. Houbolt and Brooks [2] developed their theory using an
isotropic representation for Hooke’s law, but it is reasonable to assume
that their theory was intended to be applied to composite blades. After
all, how many rotor blades are built from a single homogeneous, iso-
tropic material? It is customarily assumed in such applications that
equivalent beam properties can be obtained for use in the theory by
evaluating certain integrals over the cross section, hence averaging
the effects of different materials present in the cross section. Aver-
aging leads to effective values of G/E which may differ from those
encountered in isotropic structures by one or more orders of magni-
tude. It is recognized that this process of averaging has its short-
comings, yet for some typical composite rotor blades it produces rather
accurate results and will likely continue to be used until more rigorous
theories are developed. It is not at all surprising, however, that it fails
in Dr. Rosen’s example of a circular cylindrical beam with pretwisted
fibers. A more general constitutive law is obviously needed in that
case. This example is not too important, however, since this example
beam is not typical of rotor blade structures. The point is that the
terms in question are not negligible for certain composite rotor blades;
especially the flexbeam portion of bearingless rotor blades {3].
Moreover, the notion of an effective G/E value is not introduced in
the subject paper as if it were a new and comprehensive concept. In-
stead, it is employed as an aid in gaining some physical insight from
a simplified theory. The only conclusion that is drawn from it in the
subject paper is simply that the terms in question may be more im-
portant than indicated in [1] in modeling certain composite blades:
Thus it should be clear that I do not agree with the first result that
Dr. Rosen cites from the supplement of [1].

The second result from the supplement of [1] with which Dr. Rosen
says I now agree is that the tension-torsion coupling term due to
pretwist derived in [2] is incorrect. Here, however, Dr. Rosen’s dis-
cussion is inconsistent with the conclusions of [1]. It is not alleged in
[1] that the coupling term in [2] is simply incorrect but, instead, it is
clearly stated that the term proportional to pretwist that couples
tension and torsion is nonexistent (Conclusion A, p. 39 [1]). I rejected
that conclusion when [1} was published; I still reject it. The subject
paper clearly establishes that the tension-torsion coupling due to
pretwist does exist and that the term from [2], while not strictly cor-
rect, nevertheless produces results that are reasonably accurate;
certainly more accurate than those of [1]. It is difficult for me to see
how Dr. Rosen can say I now agree with the two results that he cites
from [1].

Next, Dr. Rosen proceeds to extol the virtues of the analysis in [1].
There are other problems with {1}, as discussed in [4], but I will confine
my remarks here to the issue of tension-torsion coupling. A point
stressed in [1] was that the authors had finally achieved their objec-
tive: derivation of a “consistent” set of equations without qualifica-
tion. No indication was given that further work was needed to clarify
the terms in question. In the subject paper, I endeavored to clarify
the issue of the tension-torsion terms because of what I perceived as
afundamental error in [1]. It is true as Rosen states that a “path” can
be found in [1]} if it is desired to incorporate the effects of warp:
However, other paths can be found in the older references cited in the
subject paper. Why should I acknowledge following a path that I did
not follow—a path clearly inferior to those in the older references that
1did follow? The idea of including warp in a pretwisted beam analysis
did not originate with Dr. Rosen. Rosen, in fact, belabors the point
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in [1] that neglecting warp is “completely justified” in rotor blades.
Is this really the case? It is true, as shown in the subject paper, that
the torsion moment term proportional to pretwist and tension van-
ishes for warp-free beams. The notion that rotor blades are warp-free
is totally ill-conceived, however. Houbolt and Brooks 2] neglected
warping rigidity but they maintained what they considered to be an
appropriate slender-beam approximation of warp effects in that: (1)
they utilized the Saint Venant torsion rigidity, which depends on
warp; and (2) they invoked the Wagner hypothesis, where longitudinal
stress is assumed to act normal to a warped surface, in calculating the
twisting moments. What resulted was an approximation that is vir-
tually indistinguishable from the more accurate model developed in
the subject paper, which includes warp. The differences are only
significant for beams with warp-free or quasi warp-free cross sections.
The subject paper shows that warping influences terms other than
the torsion rigidity. In [1] the twisting moment was calculated by
blindly following the Euler-Bernoulli hypothesis, where longitudinal
stress is assumed to act normal to the plane of the cross section. The
torsion rigidity had to be artificially modified in the “consistent”
equations of {1} in order to match the known result of Saint Venant,
which includes warping. The authors of [1] did not mention that other
errors may have been created by their restrictive kinematics. As shown
in the subject paper, even in a slender-beam approximation, warp does
affect the tension-torsion coupling. The fundamental error in [1] was
the assumption that since rotor blades are closed cross sections and
thus have small warping rigidity, all warping could be removed from
the kinematics. That this is false is well established in the literature
and confirmed by the results of the subject paper. )

It should be noted that the subject paper is not really definitive nor
was it intended to be. In the subject paper, the undeformed beam cross
section is assumed to be plane. It seems more reasonable to assume
that the undeformed surface of the cross section of a pretwisted beam
should also be warped so that the surface is, at each point in the cross
section, normal to the helical “fiber” that goes through that point.
Then, stresses referred to this surface would be normal to the helix.
The geometry of this warped surface may or may not closely resemble
that described by the Saint Venant warp function. The question is
what should this surface look like? Is there an exact solution from
elasticity theory that is analogous to the Saint Venant result? Can a
tractable small-strain constitutive law be found for geometric non-
linear analysis of pretwisted laminated composite beams with possible
anisotropy? Is a laminated helicoidal shell theory that is somehow
simplified to one-dimensional form possibly the answer? These
questions and others form the basis for future research projects and
it is hoped that this discussion will stimulate further interest.

I now turn to the three specific items listed by Dr. Rosen in the
latter part of the discussion. I have already addressed the first item,
concerning equivalent G/E, and now I would like to address the sec-
ond and third of these items. Dr. Rosen claims in his second point that
a df/dx is a key parameter in this problem and that slenderness ratio
a/L has no effect at all. Unfortunately, I failed to specify in the subject
paper that from equation (33) on, all variables are dimensionless and
thus ( Y = d( )/dX where ¥ = x/L. Hence, a df/dx becomes a/L df/dx
just as in the subject paper. It should be noted that a/L and d6/dx are
independent quantities. That the magnitudes of both a/L and df/dx
are important is evident in equation (33) by virtue of which the va-
lidity of equation (34) is bounded. Equation (33) implies, for any fixed
value of df/dx, that the torsion per unit pretwist is independent of
a/L d#/dx if a/L is sufficiently small. For example, consider rotor
blades where, normally, df/d% is no more than 0.8 rad even for highly
twisted blades. The maximum cross-section dimension 2a is normally
less than about 0.1L for a slender blade. Thus, for typical rotor blades,
a df/dx = a/L df/d% S 0.04 and the result is barely distinguishable
from the a df/dx = 0 curve in Fig. 1 of the discussior: equivalent to
Fig. 2 of the subject paper). Therefore, contrary to I . "lasen’s com-
ments, the slenderness ratio a/L is a key parameter and obviously
equation (34) in the subject paper is neither in error nor at all mis-
leading. ‘

Dr. Rosen’s third item is that the use of orthogonal coordinates is
preferable because there is considerably less work. Actually, this
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choice is largely a matter of personal preference and is highly
problem-dependent.

Finally, I would like to correct several typographical errors in the
subject paper. The first term in the middle row of equation (9) should
be 0y1/dy2. The third and fourth terms in the first row of equations
(13) are Aa’ + u'2/2 and the left-hand side of equation (34) should read
¢’ /.
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Transient Response of a
Finite Crack in a Strip With
Stress-Free Edges!

E.P.Chen.?2 Professor Itou solved the same problem which was
treated by the discusser. His justification for doing so was twofold:

1 He used an alternate method to formulate the problem in the
Laplace transform domain.

2 He used a more refined Laplace inversion scheme and claimed
a better numerical result than reported in [1].

The discusser would like to clarify these two points in this discus-
sion.

The formulation and solution method used in [1] has been well
established for solving mixed boundary-value problems e.g., {2, 3].
Alternative methods such as the singular integral equation method
[4] and the method used by Sneddon and Srivastav [5] exist. However,
the choice of these methods for a given problem mostly depends on
the author’s familiarity with them and there is no definite advantage
by using one method over the other. Thus point one hardly justifies
the republication of the same paper. As for the second point, Professor
Itou used the same numerical Laplace inversion scheme as the dis-
cusser. Using the notation in Itou’s paper, two parameters § and &
and the number of terms to retain in an infinite sum, N must be
chosen. As Professor Ttou stated in his paper “. . . However, there is
no best way of selecting these values . . .” The values 8 = 0.0, § = 0.2,
and N = 5 were arrived in [1] by comparing the solution for a finite
crack in an infinite medium and subjected to the action of impact
loads with the exact solution by Thau and Lu [6] at earlier times. Itou
used another scheme to determine these parameters which presum-
ably gave better results than those in [1]. However, the comparison
between these results showed less than 10 percent difference at the
worst. Owing to the approximate nature of the numerical scheme, the
discusser considers his results in [1] being satisfactory.

Another point involves the small disturbance at earlier times ob-
served in [1]. The discusser suggested that this may be caused by the
wave interaction between the free surface and the crack. The discusser
did not “insist” on this point as stated in Itou’s paper. Observing from
Itou’s Fig. 2, the slope of the curves at earlier times also exhibit some

1By S. Itou, and published in the December, 1980, issue of the ASME
JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 801-805.

2 Member of Technical Staff, In-Situ Technologies Division, Sandia National
Laboratories, Albuguerque, New Mex. 87185.
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in [1] that neglecting warp is “completely justified” in rotor blades.
Is this really the case? It is true, as shown in the subject paper, that
the torsion moment term proportional to pretwist and tension van-
ishes for warp-free beams. The notion that rotor blades are warp-free
is totally ill-conceived, however. Houbolt and Brooks 2] neglected
warping rigidity but they maintained what they considered to be an
appropriate slender-beam approximation of warp effects in that: (1)
they utilized the Saint Venant torsion rigidity, which depends on
warp; and (2) they invoked the Wagner hypothesis, where longitudinal
stress is assumed to act normal to a warped surface, in calculating the
twisting moments. What resulted was an approximation that is vir-
tually indistinguishable from the more accurate model developed in
the subject paper, which includes warp. The differences are only
significant for beams with warp-free or quasi warp-free cross sections.
The subject paper shows that warping influences terms other than
the torsion rigidity. In [1] the twisting moment was calculated by
blindly following the Euler-Bernoulli hypothesis, where longitudinal
stress is assumed to act normal to the plane of the cross section. The
torsion rigidity had to be artificially modified in the “consistent”
equations of {1} in order to match the known result of Saint Venant,
which includes warping. The authors of [1] did not mention that other
errors may have been created by their restrictive kinematics. As shown
in the subject paper, even in a slender-beam approximation, warp does
affect the tension-torsion coupling. The fundamental error in [1] was
the assumption that since rotor blades are closed cross sections and
thus have small warping rigidity, all warping could be removed from
the kinematics. That this is false is well established in the literature
and confirmed by the results of the subject paper. )

It should be noted that the subject paper is not really definitive nor
was it intended to be. In the subject paper, the undeformed beam cross
section is assumed to be plane. It seems more reasonable to assume
that the undeformed surface of the cross section of a pretwisted beam
should also be warped so that the surface is, at each point in the cross
section, normal to the helical “fiber” that goes through that point.
Then, stresses referred to this surface would be normal to the helix.
The geometry of this warped surface may or may not closely resemble
that described by the Saint Venant warp function. The question is
what should this surface look like? Is there an exact solution from
elasticity theory that is analogous to the Saint Venant result? Can a
tractable small-strain constitutive law be found for geometric non-
linear analysis of pretwisted laminated composite beams with possible
anisotropy? Is a laminated helicoidal shell theory that is somehow
simplified to one-dimensional form possibly the answer? These
questions and others form the basis for future research projects and
it is hoped that this discussion will stimulate further interest.

I now turn to the three specific items listed by Dr. Rosen in the
latter part of the discussion. I have already addressed the first item,
concerning equivalent G/E, and now I would like to address the sec-
ond and third of these items. Dr. Rosen claims in his second point that
a df/dx is a key parameter in this problem and that slenderness ratio
a/L has no effect at all. Unfortunately, I failed to specify in the subject
paper that from equation (33) on, all variables are dimensionless and
thus ( Y = d( )/dX where ¥ = x/L. Hence, a df/dx becomes a/L df/dx
just as in the subject paper. It should be noted that a/L and d6/dx are
independent quantities. That the magnitudes of both a/L and df/dx
are important is evident in equation (33) by virtue of which the va-
lidity of equation (34) is bounded. Equation (33) implies, for any fixed
value of df/dx, that the torsion per unit pretwist is independent of
a/L d#/dx if a/L is sufficiently small. For example, consider rotor
blades where, normally, df/d% is no more than 0.8 rad even for highly
twisted blades. The maximum cross-section dimension 2a is normally
less than about 0.1L for a slender blade. Thus, for typical rotor blades,
a df/dx = a/L df/d% S 0.04 and the result is barely distinguishable
from the a df/dx = 0 curve in Fig. 1 of the discussior: equivalent to
Fig. 2 of the subject paper). Therefore, contrary to I . "lasen’s com-
ments, the slenderness ratio a/L is a key parameter and obviously
equation (34) in the subject paper is neither in error nor at all mis-
leading. ‘

Dr. Rosen’s third item is that the use of orthogonal coordinates is
preferable because there is considerably less work. Actually, this
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choice is largely a matter of personal preference and is highly
problem-dependent.

Finally, I would like to correct several typographical errors in the
subject paper. The first term in the middle row of equation (9) should
be 0y1/dy2. The third and fourth terms in the first row of equations
(13) are Aa’ + u'2/2 and the left-hand side of equation (34) should read
¢’ /.
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Transient Response of a
Finite Crack in a Strip With
Stress-Free Edges!

E.P.Chen.?2 Professor Itou solved the same problem which was
treated by the discusser. His justification for doing so was twofold:

1 He used an alternate method to formulate the problem in the
Laplace transform domain.

2 He used a more refined Laplace inversion scheme and claimed
a better numerical result than reported in [1].

The discusser would like to clarify these two points in this discus-
sion.

The formulation and solution method used in [1] has been well
established for solving mixed boundary-value problems e.g., {2, 3].
Alternative methods such as the singular integral equation method
[4] and the method used by Sneddon and Srivastav [5] exist. However,
the choice of these methods for a given problem mostly depends on
the author’s familiarity with them and there is no definite advantage
by using one method over the other. Thus point one hardly justifies
the republication of the same paper. As for the second point, Professor
Itou used the same numerical Laplace inversion scheme as the dis-
cusser. Using the notation in Itou’s paper, two parameters § and &
and the number of terms to retain in an infinite sum, N must be
chosen. As Professor Ttou stated in his paper “. . . However, there is
no best way of selecting these values . . .” The values 8 = 0.0, § = 0.2,
and N = 5 were arrived in [1] by comparing the solution for a finite
crack in an infinite medium and subjected to the action of impact
loads with the exact solution by Thau and Lu [6] at earlier times. Itou
used another scheme to determine these parameters which presum-
ably gave better results than those in [1]. However, the comparison
between these results showed less than 10 percent difference at the
worst. Owing to the approximate nature of the numerical scheme, the
discusser considers his results in [1] being satisfactory.

Another point involves the small disturbance at earlier times ob-
served in [1]. The discusser suggested that this may be caused by the
wave interaction between the free surface and the crack. The discusser
did not “insist” on this point as stated in Itou’s paper. Observing from
Itou’s Fig. 2, the slope of the curves at earlier times also exhibit some

1By S. Itou, and published in the December, 1980, issue of the ASME
JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 801-805.

2 Member of Technical Staff, In-Situ Technologies Division, Sandia National
Laboratories, Albuguerque, New Mex. 87185.
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fast transition. Because of the numerical nature of the solutions, the
discusser does not think this point can be settled at this time.
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Author’s Closure

1 The author’s method for solving the dual integral equations is
a very simplified one. The crack surface displacement is directly ex-
panded in a series which is automatically zero outside the crack.
Therefore, the integral equations can be immediately solved by the
Schmidt method. The quality of the solution is equivalent to those
obtained in [1, 2, 4, 5]. This method is easily applicable for solving
more difficult problems which concern rectangular-shaped crack(s)
in an infinite elastic body or in a semispace [7-11]. It may be mean-
ingless to publish the paper if it is only to say that the same problem
has been reworked. However, it can be considered that the publication
of this paper is justified on the grounds that the application of such
a simple method is successful in solving such a dynamic crack
problem. .

2 The author agrees in principle with Dr. Chen’s second point.
The word “insist” which was used was improper and:the author is
sorry for this. The difference between the result in [6] and'that in [1]
for a/h = 0.0 is not of importance from an engineering viewpoint, and
at the same time, it is still desired to lessen such a difference, if it can
be done, in spite of the numerical approach to the problem.
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On the Nonbuckling of a
Circular Ring Under
“Wrapping” Loading!

A. Kornecki.? The interesting result that circular rings under
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JOURNAL OF APPLIED MECHANICS, Vol. 47, p. 973.

2 Visiting Professor, Department of Civil Engineering, University of Delaware,
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wrapping-type loads will not buckle was noted among others by
Feodosyev [1]. Independently, and exhaustive analysis of this problem
in the framework of the nonlinear theory of elastic stability was made
by Oery [2].
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A Nonlinear Theory of
Viscoelasticity for
Application to Elastomers!

K. N. Morman2 Dr. Christensen refers to his constitutive
equation, equation (22C)3 as ... the form sought as the simplest,
physically, meaningful generalization of the kinetic theory of rubber
elasticity to model viscoelastic effects.” The present author wishes
to take issue with this statement and present arguments that the
constitutive relation best suited to Dr. Christensen’s statement is

t
oij = —pdyj + 2 Kxx; 1, [go5KL + j; g1t — T)O0xmXrL XNk

OEMn (T)
—dT
- o7

where the relaxation modulus, Z;(t) is to be distinguished from g;(¢)
appearing in equation (22C). Equation (1) may be obtained from the
finite linear viscoelasticity theory* by neglecting all relaxation func-
tions except ¢1(t) which involves the integral expression

+ dLm XKk e XN k) (1)

S 166 = DIBaCs () + Ch(nByldr @

where Byj = x; xx; x and C}(7) = xg;(7)xp ;, and by setting ¢1(t) =
Bi{t).

Dr. Christensen’s requirement that “Under a sufficiently slow
process, the viscoelasticity theory must reduce to the kinetic theory
of rubber elasticity . . .” is easily satisfied by requiring

(=) =0. (3)

However, the present author does not believe that this requirement
is sufficiently strong to justify truncation of the Rivlin/Green ex-
pansion represented by equation (3C) to obtain equation (22C)
ie.,

OFxki(m , 1 (220
oT

t
6ij = —pdij + x;,k X;,L |80k + j; gilt —7)
A more rigorous requirement should have the viscoelasticity theory
reduce to the kinetic theory of rubber elasticity in both the extremes
of very rapid processes and sufficiently slow processes. That the latter
requirement is readily satisfied by equation (1) is seen by considering
the single-step stress relaxation process which yields:

For Multiaxial Configurations

0ij = —poi; + xlxxd Ok u(E) 4

1By R. M. Christensen, and published in the December, 1980, issue of the
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2 Supervisor, Ford Motor Co., Engineering Computer Center, 20000 Rotunda
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3 Equation or figure numbers followed by C refer to those in footnote one:

4 Coleman B. D., and Noll, W., Rev. Mod. Phys., Vol. 33, 1961, p. 239; erratum,
ibid, Vol. 36, 1964, p. 1103.
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B.M. Fraeijs de Veubeke Memorial Volume of Selected Papers.
Edited by M. Geradin. Published by Sijthoff & Noordhoff, The
Netherlands. 1980. Pages xvii-7562. Price $57.50.

REVIEWED BY R. D. COOK!

This volume of papers by Prof. Fraeijs de Veubeke was prepared
by several of his colleagues. Of his some 80 varied publications, the
following 17 are included: Influence of Internal Damping on Aircraft
Resonance, Upper and Lower Bounds in Matrix Structural Analysis,
Displacement and Equilibrium Models in the Finite Element
Method, Variational Principles in Fluid Mechanics, Strain-Energy
Bounds in Finite-Element Analysis by Slab Analogy, A Conforming
Finite Element for Plate Bending, An Equilibrium Model for Plate
Bending, The Theoretical Design Laws of Warping-Free Multicel-
lular Box Beams, The Dual Principles of Elastodynamics: Finite-
Element Applications, Nonlinear Shell Theory, Dual Analysis for
Heat Conduction Problems by Finite Elements, A New Variational
Principle for Finite-Elastic Displacements, Matrix Structural
Analysis, Diffusive Equilibrium Models, Variational Principles and
the Patch Test, Stress Function Approach, and The Dynamics of
Flexible Bodies. '

The collection centers around the development of variational
methods in continuum mechanics and their adaptation to finite-
element methods. The papers are all in English, They have been
retyped from journals in camera-ready format.

The appeal of the book is to those who study fundamentals and the
theory of computational methods. The papers are clearly written and
are original and significant contributions.

Geophysical Fluid Dynamics. By J. Pedlosky. Springer-Verlag, New
York, Heidelberg, Berlin. 1979. Pages x1i-624, Price $39.80.

REVIEWED BY S. LEIBOVICH?

Geophysical fluid mechanices, the study of fluid motions occurring
naturally in the earth’s interior, oceans, and atmosphere, emerged as
a distinct and vital subject in the 1960’s. The span of the scales of
interest to the field is vast, ranging from centimeters such as capillary
waves, to those on a planetary scale.

Professor Pedlosky’s book rose from a five quarter series of courses
at the University of Chicago, and covers the theory of those large-scale
phenomena of importance to the oceans and atmosphere. These are
motions characterized by, usually dominated by, the effects of coriolis
acceleration, and ultimately driven by buoyancy created by differ-
ential heating. The physics is complex, and the book builds the theory
by first describing the effects of rotation on a fluid of constant density.
This part of the theory, to which half the book is devoted, is itself rich

1 University of Wisconsin, Coliege of Engineering, Madison, Wisc. 53706.
2 Professor, Sibley School of Mech. & Aero. Engineering, Cornell University,
Ithaca, N. Y. 14853.
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in content; one encounters an impressive array of wave phenomena
(Poincare, Kelvin, and Rossby waves), nearly frictionless flows (in the
geostrophic approximation) controlled by boundary (Ekman) layers,
and a wide variety of boundary layer/shear layer effects (including
western intensification of currents such as the Gulf Stream). Baro-
clinic effects—those due to density variations—are added in the
second half of the book which includes a substantial chapter on sta-
bility. The author derives the governing equations, discusses the
relevant scaling assumptions, and educes models for each class of
effects with care and skill.

1 particularly like the author’s insistence on physical interpretations
and explanations of equations and their solutions, and useful insights
abound. Almost all of the theory is linear—although resonant wave
interaction is considered and there are occasional glimpses of other
nonlinear effects. Perhaps this is appropriate for a beginning series
of courses, but believe it is necessary to discuss the limitations of linear
theory more explicitly.

The book is apparently intended to serve as a textbook for a series
of graduate courses. It is unfortunate that the author elected not to
include exercises. This is a significant detriment to its use as a text-
book. Nevertheless, the book is the first available introduction to a
subject which, until now, has been scattered in the meteorological and
oceanographical literature. Its systematic exposition by Professor
Pedlosky, who has made important contributions to the development
of geophysical fluid dynamics, will make the subject much more ac-
cessible to those trained in mechanics, and is heartily welcomed.

Methoden der analytischen Stérungsrechnung und ihre An-
wendunge. By U. Kirchgraber and E. Stiefel. Vol. 44 of the series
Leitfiden der angewandten Mathematik und Mechanik. B. G.
Teubner. Stuttgart. 1978. pp. viii-294.

REVIEWED BY W. S. LOUD?

The method of averaging with systems of ordinary differential
equations has many areas of application in mechanics. Because of this,
the present book is a welcome addition to the literature on the subject.
The book is written as a “handbook” on the method of averaging, and
as such it succeeds very well. It is very definitely aimed at an appli-
cations-oriented audience, as is shown by two important features.
Numerous, often complicated, examples are discussed in considerable
detail. The necessary mathematical aspects are presented in a simple,
clear, and insightful manner. Unless the German language is an in-
surmountable obstacle, this book should prove to be a very useful
reference for perturbation techniques based on the method of aver-
aging. The reviewer is very pleased to have this book in his library.

The book consists of an introduction and four chapters. The in-’
troduction gives an overview of the contents along with several ex-
amples and a description of the method of averaging.

3 Professor, School of Mathematics, University of Minnesota, Minneapolis,
Minn. 55455.
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Chapter 1 is a necessary prerequisite to the rest of the book. It is a
development of the method of averaging based on Lie series, and in-
troduces concepts and notations used throughout the remaining
chapters. The presentation is extremely clear, and every step is il-
lustrated by examples.

Chapter II is a discussion of several important applications, in-
cluding problems of gyroscopes, satellites, and the bifurcation of
periodic solutions (Hopf bifurcation). The mechanical examples are
carried out in great detail with very helpful explanations. A two-cell
Turing model is studied to illustrate bifurcation.

Chapter III is a further development of the general formal aspects
of perturbation theory and the method of averaging.

Chapter IV gives the mathematical foundation of the method of
averaging. Error estimates are obtained for both a finite time interval

BOOK REVIEWS

and an infinite time interval. As applications domains of attraction
of stable solutions, bifurcations, and an error estimate with Lajapunov
functions are discussed. The concept of invariant manifolds is in-
troduced. The final section deals with invariant manifolds for Ham-
iltonian systems and the twist theorem. The authors have attempted
to present this theory in a simple manner to permit the reader to
perceive the ideas without unnecessary mathematical sophistica-
tion. '

At the end if each chapter there is a discussion with references to
relevant literature both for further mathematical developments and
for other applications. There is a bibliography of about 140 items.

In conclusion, this is a well-conceived, clearly written book with a
strong emphasis on applications. It should prove a useful addition to
the reference library of anyone working in theoretical mechanics.

Mechanical Properties at High Rates of Strain, 1979. Proceed-
ings of the Second Conference on the Mechanical Proper-
ties of Materials at High Rates of Strain. Held in Oxford,
March 28-30, 1979. Edited by J. Harding. Conference Series
Number 47, The Institute of Physics, Bristol and London. 1980.
Pages ix-409. Price $90.

REVIEWED BY L. E. MALVERN*

This volume contains the four invited and 33 contributed papers
presented at the conference. The book is divided into four chapters,
each introduced by an invited lecture which gives some idea of the
state of the art in the area without purporting to be a general survey.
The volume as a whole gives a good account of developments since
the first Oxford Conference in 1974. Space limitations preclude even
listing all the authors or titles. Selections which follow reflect the
reviewer’s interest.

Chapter 1 has two parts captioned “Testing techniques” and
“Material Behaviour.” The opening paper was to have been given by
Dr. J. D. Campbell, late Reader in Engineering Science at Oxford and
one of the principal organizers of the conferences, whose untimely
death in the autumn of 1978 came as a great shock to his many friends
and colleagues. J. Duffy gave the opening paper as the “J. D. Campbell
Memorial Lecture: Testing Techniques and Material Behavior at
High Rates of Strain.” A tribute to Campbell’s diverse contributions
was followed by an excellent discussion of recent developments in the
use of the Kolsky apparatus or split Hopkinson's bar, both in the
compressional form introduced by Kolsky in 1949 and in the torsional
bar form developed by Campbell and his associates. Special attention
was given to jump tests in which a sudden change in strain rate is in-
troduced with the aim of separating instantaneous rate effects from
rate-history effects.

D. A. Gorham described a miniaturized modified Hopkinson bar
capable of testing strong materials at rates up to 105 s~1, Other papers
discussed biaxial testing and superimposed hydrostatic pressure.
Material behavior papers included one on localization of plastic flow
in tubes under dynamic torsion and one on an ultrasonic method of
detecting dislocation behavior. Analytical and computational rep-
resentations were included in some papers, as well as experimental
characterization in others.

Chapter 2: “Wave Propagation Effects and Fracture” was intro-
duced by R. d. Clifton with a lucid account of disagreement between
theory and experiment in two types of plate impacts. Most of the
papers in this chapter were concerned with dynamic fracture, in-
cluding crack initiation, interference optical measurements of large
deformations at the tip of a running crack in a glassy thermoplastic,
and metallurgical aspects.

Chapter 3: “Applications” was introduced by W. Johnson, who gave
a dynamic survey of topics including demolition, machining, extru-

4 Professor of Engineering Sciences, University of Florida, Gainesville, Fla.
32611, also Associate Editor, ASME JOURNAL OF APPLIED MECHANICS, Mem.
ASME.
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sion, superplastic forming and metal powder compaction. Other ap-
plications papers discussed machining, extrusion, explosive forming,
and explosive welding.

The editor concluded that, since the previous conference, progress
has been made on several fronts, including measurement techniques
and experimental characterization of a wider class of materials, “while,
in studies of more fundamental aspects of material behavior, exper-
iments involving sudden changes in strain rate are being increasingly
used to develop constitutive equations involving internal state vari-
ables and to obtain a correlation between microscopic mechanisms
and the macroscopic response.”

This book will be a valuable reference for researchers on dynamic
mechanical properties.

Structural Control. By H. H. E. Leipholz (editor). North-Holland
SM Publications, Amsterdam and New York. 1980. Pages xv—-
810. Price $87.75.

REVIEWED BY T. T. SOONG?

Structural Control is a collection of papers presented at the In-
ternational IUTAM Symposium on Structural Control held at the
University of Waterloo in June, 1979. According to Leipholz, Chair-
man of the organization committee and Editor of this volume, the aim
of the Symposium was to provide an opportunity for exchange of
ideas, data, and information among workers in the following three
groups.

1 Researchers concerned with the fundamentals of control and
optimization theory.

2 Researchers and engineers involved in the application of control
and optimization theory to industrial processes and aerospace
structures.

3 Researchers and engineers interested and active in the appli-
cation of control theory to large civil engineering structures.

While the Symposium participants did represent a good mix of
these three groups, the dominant theme was clearly civil engineering
structural control. Indeed, out of 43 papers included in this book, the
authors had civil engineering structures in mind in over 30 of them.
And, in this respect, the organization committee and the editor are
to be congratulated on providing a comprehensive overview of civil
engineering structural control, an emerging and exciting area of re-
search, and an authoritative account of current work and, more im-
portant, current thinking on this research topic.

By and large, research activities in civil engineering structural
control are concerned with the possible use of control mechanisms
for the purpose of reducing vibration levels in tall buildings, bridges,

5 Professor of Civil Engineering, State University of New York at Buffalo,
Buffalo, N.Y. 14214.
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BOOK REVIEWS/ERRATA

ERRATA

Erratum on “Some Considerations on Thermal Shock Problem in
a Plate,” by Y. Takeuti and T. Furukawa, and published in the March,
1981, issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol.
48, pp. 113-118.

Table 1 should read 3.74 X 10716 under the column heading “Mild
steel,” 2.16 X 10714 under the column heading “Aluminum,” and 5.95
X 10~ under the last column heading “Copper.”
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