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A Numerical Study of 
Nonaxisymmetric Stokesian 
Flow in a Circular Tube 
& 

& A 
numerical study of the nonaxisymmetric Stokesian flow of a Newtonian fluid in a rigid 

circular tube of fixed radius has been performed. The analysis presented here is an inte­
gral part of the problem of modeling the flow of blood near the ostia of the intercostal arte­
ries of rabbits in order to study a possible factor in the initiation of atherosclerosis. The 
method of lines is used to reduce the mathematical problem to one of solving a system of 
first-order ordinary differential equations along lines parallel to the tube axis. Solutions 
are obtained analytically using matrix eigenvalue techniques for the first two Fourier 
components of the flow and the accuracy of the numerical method is verified by suitable 
comparison with the results of independent computations^ 

Introduction 
Prom a fluid-dynamic point of view, the blood vessels of the human 

circulatory system comprise a complex network of flexible round tubes 
through which there is a three-dimensional, pulsatile, and usually 
laminar flow of a non-Newtonian fluid (Mueller [1]). A basic problem 
in hemodynamics is therefore the study of laminar flows in round 
tubes. 

The present work is concerned with the analysis of a simple 
mathematical model of this problem; it examines the steady, zero-
Reynolds number and nonaxisymmetric flow of a Newtonian fluid 
inside a rigid circular tube of constant radius. The Newtonian fluid 
approximation for blood is considered reasonable in all but the 
smallest of blood vessels (Lighthill [2]). In these, the particulate nature 
of blood asserts itself, thereby complicating the rheology. Although 
the steady flow approximation ignores effects due uniquely to pul-
satility, such as wave patterns, temporal instabilities, and the dynamic 
effects of flexible walls, it does give a measure of the steady component 
of the real flow. The circular geometry model is simple yet more re­
alistic than the more common two-dimensional channel analogies. 
Although the Reynolds number of blood flow in humans can go as high 
as 10,000 in the aorta, the Stokesian flow approximation is a logical 
first one for the modeling of the "slower" flows in and near the smaller 

1 Current address: Department of Aeronautics and Astronautics, Stanford 
University, Stanford, Calif. 94305. 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Washington, D. C, November 15-20,1981, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, June, 
1980; final revision, February, 1981. Paper No. 81-WA/APM-16. 

blood vessels, especially since the low Reynolds number there may 
invalidate the use of boundary-layer methods. 

Two examples of specific applications of the foregoing problem are 
Lew and Fung's low-Reynolds number entry length problem [3] and 
Sobey's mathematical model of the flow near the ostia of the inter­
costal arteries of rabbits [4]. 

Lew and Fung analyzed axisymmetric flows in the entry regions 
of small blood vessels for Reynolds numbers too low for boundary-
layer analysis to be valid [3, 5]. They derived an analytical solution 
to the problem of finding the velocity distribution inside a circular 
cylinder of fixed radius due to an arbitrary axisymmetric velocity 
distribution at the entrance. The present work thus represents a 
generalization of Lew and Fung's zero-Reynolds number problem to 
nonaxisymmetric flows. 

Sobey was interested in examining the fluid-dynamic shear stresses 
near the ostia of the intercostal arteries of rabbits. The fluid-dynamic 
forces on arterial walls affect the structure and function of these 
surfaces and it has been assumed that they are a factor in the initiation 
of atherosclerosis, a disease characterized by the accumulation of 
plaques of fat on the arterial walls (Fry [6]). These plaques show a 
predilection for forming near geometric irregularities such as 
branches, where large shear gradients undoubtedly exist. In vivo 
measurements near vessel walls have poor resolution (Nerem, et al. 
[7]), thereby necessitating the use of physical and mathematical 
models. Since the intercostal arteries are much smaller and sustain 
a much lower flow rate than the aorta, from which they branch out, 
Sobey chose to model the situation as that of a steady laminar flat 
plate boundary-layer flow past the opening of a small tube at right 
angles to the plate sucking in a small portion of the outer flow. He 
further simplified the problem by invoking the Stokesian flow ap­
proximation inside the side tube and in the boundary-layer flow very 
near the mouth of the tube, thereby decoupling the problems of de­
termining the solutions near and far from the hole and also linearizing 
the former. He first solved the two-dimensional analogy by a combi-
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Fig. 1 Flow configuration and coordinate system 

nation of analytical and numerical methods, and, for the three-di­
mensional problem, he found one analytical solution valid far away 
from the hole and another one, requiring knowledge of the velocity 
distribution on the hole itself, valid in the vicinity of the hole. How­
ever, determining the velocities on the hole requires a solution for the 
flow inside the tube and a matching of the stresses on the hole. It is 
thereby seen how the nonaxisymmetric version of Lew and Fung's 
zero-Reynolds number pipe entry flow problem is a part of Sobey's 
intercostal mouth model. The analysis of Stokesian flow in a rigid 
circular tube of fixed radius, in this context, is the subject of what 
follows. 

T h e B o u n d a r y - V a l u e P r o b l e m 
The problem at hand is that of determining the velocity and pres­

sure distributions of the Stokesian flow in the region consisting of a 
circular tube of constant radius at right angles to a semi-infinite space 
with a uniform linear shear flow on the boundary of the latter far away 
from the mouth of the tube and a prescribed flow rate down the tube. 
This situation is depicted graphically in Fig. 1. 

The foregoing is a linear boundary-value problem governed by the 
equation of continuity, Stokes' equations of motion and the boundary 
conditions shown in Fig. 1; in cylindrical coordinates the nondimen-
sional equations are 

du u 1 du dw 
— + - + + — = 0 
dr r r dd dz 

d2u 1 du 1 d2u d2u 
- + + ——: + " dr2 

d2u 

dr2 

r dr r2 d82 dz2 

J2_du 

r2d8 

1 du 1 d2u d2r 2 du 
+ + - : — - + —r + —-r dr 

d2w 

>d82 
dz2 r 2 d 0 

u 

~72 

U 

F - 2 ~ 

_dp 

dr 

1 dp 

r d8 
= 0 

1 dw d2w 1 d2w 

dr2 r dr dz2 r dd2 

dp 
• — = 0 

dz 

(1) 

(2) 

(3) 

(4) 

u(l,8,z) = v(l,0,z) = w(l,8,z) = O 2 > 0 (5) 

u(r,8,z) = u(r,6,z)=0, z —• » (6) 

w(r,8,z) = Wm{l-r2), z ^ « (7) 

u(r,8,0) = U(r,6), v(r, 8, 0) = V(r, 8), w(r,6,0) = W(r,8) 

(8) 

where lengths have been scaled by R, the tube radius, velocities by 
a reference value Wr, and pressure by n Wr/R, where ju is the viscosity 
coefficient. 

To avoid the large computational "volumes" required for a fully 
discrete three-dimensional numerical solution, the ^-dependence is 
separated out of the problem by expressing the dependent variables 
as Fourier series in cos 8 or sin 8, as suggested by Pedley and Moore 
[8,9]; limiting ourselves to flow symmetric about the plane y = 0, as 
for Sobey's problem, V and p are written as 

uir,dtz) = E Uj(r,z) cos jd 

u{r,d,z)= E u,-(r,z) sin j0 

w(r,8,z) = E wj(r,z) cos j8 
y=o 

p(r,0,z) = E Pj(r,z) cos jd 
j '=o 

U(r,8)= E Uj(r) cos j8 
i=o 

V(r,8)= E Vj(r) sin j8 

(9a) 

W(r, 8) •- E Wj(r) cos j6 (9b) 

Substituting these expressions into equations (l)-(8) and collecting 
coefficients of cos jd and sin j8 yields 

dr r r dz 
0 

1 dUj j2Uj d2Uj Uj 2jvj dpj 

r dr dz2 dr 

b2Uj 

dr2 

d2Vj 1 dVj j2Vj d2Vj uj 2ju | jpj = 

dr2 r dr r2 dz2 

d2Wj 1 duij 

dr2 r dr 

r* 

j2wj d2wj 

-2 dz2 

dpj 
= 0 

r" oz" dz 

Uj{\, z) = vj(l, z) = wj(l, z) = 0 z > 0 

uj(r, z) = Uj(r, z) = 0 z -» °° 

for; = 0 , 1 , 2, . 

w0(r,z) = Wma-r2) z-

u>j(r,z) = 0 z - * ° ° ; ^ 0 

Uj(r, 0) = Ujir), Ujir, 0) = V,-(r), Wjir, 0) = Wjir) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(IV) 

Solutions will be considered for the cases; = 0 and ; = 1. These will 
henceforth be denoted as the ;0 and ;'l problems, respectively. It 
should be noted that the ;'0 component of the flow is its axisymmetric 
part and is entirely due to the nonzero volume-flux through the tube 
(found by integrating the axisymmetric velocity component w across 
the tube). On the other hand, the; ' l component is purely a result of 
the shear flow along the plate far from the hole. 

The aforementioned solution will be complete if the initial velocity 
profiles satisfy 

Ujir) = Vjir) = Wjir) =0 ; ' > 1 

If this is not the case, the solutions for ; > 1 can be calculated in a 
straightforward manner with the technique discussed below for the 
solution of t h e ; 1 problem. 

Consider the solution of the ;0 and ;'1 problems in the tube only, 
what Sobey has called the lower basement. The boundary condition 
at z = 0 (equation (8)) involves the specification of nearly arbitrary 
but "reasonable" velocity distributions there for r < 1. The ;0 and; ' l 
lower basement boundary-value problems are therefore given by 

duo "o dwg 

dr r dz 
0 

d2u0 1 du0 u0 d2u0 dp 0 _ 

dr2 r dr r2 dz2 dr 

d2Wn 1 dwn d2Wn dpn S + 2 + ^ _ _ ^ = 0 

dr2 r dr dz2 dz 

uoir, 0) = Uoir), w0ir, 0) = W0ir) 

(18) 

(19) 

(20) 

(21) 

460 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a n d 

u 0 ( l , z ) = w0(l,z) = 0 

uo(r,z) = 0, w0(r,z) = Wm(l - r2) z ->- °> 

du\ Ui + Vi du>i 
i + - i i + -

dr r dz 

dr2 

ii 1 dui 

r dr 

2 , , d2Mi dp! 
-7(« i + u i ) + r ~ — = 0 

d2U! i a » i 2 , 
- + i - - : (ui + u i ) + 

dz2 dr 

d 2m , Pi 

d r 2 r dr dz2 + —= 0 

d2wi 1 i>u>i u>i d2u>i dpi 

dr2 r dr r2 d22 dz 
0 

(22) 

(23) 

(24) 

(25) 

(26) 

(27). 

"i(r , 0) = [AM, U l(r, 0) = Vi(r), W l(r , 0) = Wi(r) (28) 

ui(l,z) = u1(l,z) = w1(l,z)=0 (29) 

Ui(r, z) = t)i(r, 2) = u)i(r, 2) = 0 z - * °> (30) 

with the direction of the 2-axis having been reversed for conve­
nience. 

It is noted that far downstream in the tube, for z -» =>, the foregoing 
equations yield the following conditions on the pressure: 

dpp 

dz 
-4Wm, p i = 0 (31) 

Some of the aforementioned differential equations take on special 
forms on the axis of the tube, i.e, at r = 0. One method of evaluating 
these equations on the axis is that of expanding them in Taylor series 
for small r and constant 2 and then collecting coefficients of like 
powers of r as suggested by Pedley [8]. The details of these expansions 
and the resulting equations for j = 0 and j = 1 may be found in 
Strigberger [10]. 

As mentioned in the Introduction, Lew and Fung solved the jO 
problem analytically. A specific aim of the present work is therefore 
the solution of the jl problem. 

T h e M e t h o d of L ines 
The method of lines consists of approximating a set of partial dif­

ferential equations by a system of ordinary differential equations. This 
is achieved by keeping one coordinate continuous and approximating 
the derivatives in all other directions by finite differences. The ap­
proximate solutions to the partial differential equations are thus 
obtained along lines parallel to the axis of the continuous coordi­
nate. 

For the partial differential equations of the lower basement prob­
lem, if the derivatives in the r-direction are replaced by finite dif­
ferences, there results a system of ordinary differential equations 
which are first order, linear, and homogeneous and have constant 
coefficients. The solution to such a system can be found analytically 
using matrix eigenvalue methods (Boyce and dePrima [11]). However, 
it may not be possible to exactly satisfy all of the velocity boundary 
conditions at z = 0 and z = •». Fortunately, the amount by which the 
calculated boundary conditions deviate from the exact ones is very 
small if the finite-difference representations themselves are reason­
ably accurate for the solution which the given boundary conditions 
imply. 

Before the method of lines was applied to thej'1 component of the 
lower basement, it was tested on a j0 problem for which an analytical 
solution was known, Lew and Fung's case. This is an exacting test due 
to the difficulty in modeling the 2 = 0 conditions, Uo = 0, WQ = 1, on 
a finite number of lines. The results obtained were reasonably accurate 
and since the jl solution will be compared to the results of a finite-
difference solution, we proceed directly to the jl case. 

The first step in applying the method is to divide the domain into 
M axial strips of width Ar, thereby producing M + 1 lines at r; = jAr, 
i = 0,1, 2 , . . . , M — 1, M. Next, all r-derivatives in equations (24)-(27) 
are replaced by finite differences of second-order accuracy with 

constant Ar. (Note that the subscript; = 1 is dropped from the de­
pendent variables.) The variables 

_ dui . _ dvi 

dz dz 
(32) 

are introduced. The following conditions at r = 0 are to be satis­
fied: 

0(0,2) = -u(0,z) 

w(0,z) = p ( 0 , z ) = 0 

d2u d2u d2v dp _ 

dr2 dz2 dr2 dr 
(33) 

The resulting ordinary differential equations are (i = 1, 2, . . . , 
M - l ) : 

r-Momentum: 

dut I 1 
1- Ui-i 

dz UAr)2 r,Ar, 

0.5 \ I 2 
+ Ui\- (Ar)2 (r;)' 

, 1 0.5 \ / 2 
+ "i+i T T T ; +"~;r +Vi\~~i 

(Ar)2 r,Ar/ \ n' 

du 

dz 

0 / 4 \ / 5 
~ + "0 n\ + "1 
: l(Ar)2) M (Ar 

/0.5\ / 0.5\ , , 

4 

+ "3 
(Ar) 

)2/ " 2 \ ( A r ) 2 

1 \ IB] I 4 \ / 1 

(Ar)2 (Ar): (Ar)2 

+ P I ' ~ A 7 + P 2 B r = 0 at r=0 (35) 

0-Momentum: 

dvi I 2\ / 1 0.5 ' 

(Ar)2 r;Ar/ 

2 2 ' 
+ Vi 

(Ar)2 n2) 

+ u i + i i^ + S) + p i E) = o (36) 

2-Momentum: 

dpi / -0 .5 \ / 1 \ /0.5\ [1 

/ 1 0.5 \ / 2 1', 
+ m-i \- -—77 + — H + ""•• \—~ + —I (Ar)2 r;Ar, 

+ wi+1\-

(Ar)2 n2l 
1 0 .5 ' 

(Ar)2 r;Ar/ 
•• 0 (37) 

Continuity: 

dwi 
—— + ui-
dz 

dui dvi 
— Ui = 0; 0i =0 
dz dz 

+ Vi l - j = 0 (38) 

(39) 

In addition, it is necessary to account for p ( l , z) = PM(Z). Any one 
of the momentum equations can be applied at r = 1 to this effect; using 
the r or 0-momentum equations puts PM (z) in terms of the other 
variables at r = 1, while employing the z-momentum equation yields 
an additional ordinary differential equation, 

dpM , / 1 \ , / 4 0.5' 

+ W M - I | T ^ T 7 + —I = 0 (40) 
UAr)2 Ar/ 

The previous system can be expressed in matrix form as 
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METHOD OF LINES 
° CHORIN'S METHOD 

- 1 . 0 - 0 . 8 

Fig. 2 Comparison between present method of lines results and those ob­
tained using Chorin's [13] method 

where 

az 

l < M z ) l = l «o . " l . " 2 , • • • , " A f - i ; " l i ^2 I ) M - I ; 

UO, " l i " 2 , • • • , " M - i ; 01 . "2 , . • . , " M - l i 

Wl, W2,..., WM-ii P i , P2» • • • i P M - 1 , PAfl , 

(41) 

(42) 

[A] is the system matrix; PM is excluded if the 2 -momentum equation 
is not employed at r = 1. The total number of ordinary differential 
equations in the system is thus N = 2 + 6(Af — 1) = 6M - 4 or N = 
2 + 6(M — 1) + 1 = 6M — 3, depending upon whether or not the 
2-momentum equation is applied at r = 1. 

When all the eigenvalues of [A] are distinct, the general solution 
of equation (41) is given by 

<fc(z) 
N 

; = i 
(43) 

where the Ay are the eigenvalues, the r;y are the components of the 
"modal" matrix [R], whose columns are the eigenvectors of [A], and 
the cy's are determined from the boundary conditions, cj is set equal 
to zero whenever the real part of Ay is zero or negative to insure that 
all of the variables will vanish asymptotically far downstream. 

Before considering the determination of the rest of the cy 's, it should 
be noted that an interesting feature of the method of lines is that the 
general solution of the differential equations is found independently 
of any consideration of the boundary conditions. This means that once 
the eigensolution of [A] is found, it can be used over and over again 
with any set of reasonable velocity boundary conditions. This prop­
erty, along with the fact that the size of [A] is roughly only the square 
root of that of the type of matrix dealt with in two-dimensional fi­
nite-difference schemes makes the method of lines very fast compu­
tationally. 

The nontrivial cy's are determined from the specification of u-o, «i, 
. . . , UM-I, VI, i)2, . . . , UM-1I wh u>2,. . . , WM-I or their derivatives at 
z = 0. There are therefore Ne = 1 + 3(M - 1) = 3M - 2 linear alge­
braic equations in the cy's. If the number of eigenvalues with positive 
real parts is less than Ne, it is possible to satisfy all of the velocity 
conditions at 2 = 0 only in a least squares or other approximate 
sense. 

0.2 :I.O -0.8 -0.6 -0.4 -0.2 0 
u 

Fig. 3 u velocity profiles for /1 problem versus distance z down the tube 

' ¥ 0 0.2 0 4 0.6 0.8 I.0 
v 

Fig. 4 v velocity profiles for /1 problem versus distance z down the tube 

Results 
The previous method for the j 1 problem was applied to an example 

with the following entrance plane velocity (equation (28)): 

l/i(r) = - 1 + 3r2 - 2r3 = - Vi(r) 

Wi(r) = 0 

This velocity is in the x-direction and satisfies the continuity equation 
at both r = 0 and r = 1. 

The computational processes were split into two parts. The first 
part consisted of generating the system matrix [A] and calculating 
its eigenvalues and eigenvectors. The latter was done by the Eispac 
subroutine package using its option for real general matrices [12]. This 
eigensolution was then used to calculate the nontrivial cy's of equation 
(41) and to evaluate the velocities on the "lines" at any desired value 
of 2. All computations were carried out on an IBM 370/158 com­
puter. 

M was set equal to 10(Ar = 0.1). All three of the boundary condi­
tions for p ( l , 2) discussed earlier were tried; the resulting velocities 
in all three cases differed by no more than 0.005, so only one of these 
results is presented here, that for the scheme using the 0-momentum 
equation at r = 1. The eigensolution yielded a number of eigenvalues 
with positive real parts one less than the number of boundary con­
ditions, so that it was necessary to resort to an approximate satis­
faction of the boundary conditions using least squares at z = 0. The 
maximum error which resulted at 2 = 0 was only 0.0013. 
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Fig. 5 w velocity profiles for /1 problem versus distance z down the tube 

I i ' 

t I I 

t t I 

Fig. 6 Velocity vectoi 

\ \ \ 1 

s In plane y = 0 foi 
to the right and downward, respectively 

/1 solution; x and z are positive 

As a test of the method of lines solution, the foregoing example was 
also solved using a finite-difference approach, Chorin's [13] time-
dependent method with artificial transient compressibility. Some 
results of both methods are presented in Fig. 2 and the agreement is 
seen to be excellent. The C.P.U. time required for the method of lines 
solution was approximately 37 sec for the eigensolution and 11 sec for 
the velocity calculation. 

Velocity profiles for the three components u, v, and w are shown 
in Figs. 3-5 as they develop with increasing distance z down the tube. 
It is noted that the perturbations caused by the flow at z - 0 die out 
in a distance of the order of the tube radius, as was the case for the y'O 
example of Lew and Fung. 

The solution for u and w is also used in Fig. 6 where the velocity 
vectors in the plane y = 0 are presented, thereby showing the vertical 
eddy structure of the flow. It should be noted that this picture is valid 
in any radial plane except 8 = 7r/2 and 8 = 3?r/2 since 

u(r, 6, z) = u\(r, z) cos 8 

w(r, 8, z) = w\(r, z) cos 8 

for; = 1. 

Conclusions 
The Stokesian approximation for the steady incompressible low-

Reynolds number flow of a Newtonian fluid in a rigid circular tube 
of fixed radius has greatly simplified the analysis of this problem. The 
deletion of the inertial terms and resultant linearization of the 
problem has led to the separation of the ^-dependence by Fourier 
analysis, thereby transforming the original three-dimensional problem 
into a set of independent two-dimensional ones. Given the rectangular 
domain of these problems, the absence of z -dependent coefficients 
of the unknowns and their derivatives in the governing differential 
equations and the homogeneity of the velocity boundary conditions 
at the wall, it has proven feasible to solve these problems in a semi-
discrete fashion by the method of lines. Each set of partial differential 
equations has been approximated by a system of linear first-order 
homogeneous ordinary differential equations with constant coeffi­
cients which could be solved by matrix eigenvalue methods. Although 
it has become apparent that it is not always possible to satisfy the 
boundary conditions at the top and bottom exactly, any such error 
was found to be small for reasonable cases. 

The method of lines was tested on Lew and Fung's problem of 
axisymmetric Stokesian flow in a semi-infinite tube. This was a dif­
ficult test because the nearly flat entry profile implied large curvatures 
and curvature gradients in the velocity distributions near the wall near 
the entrance. This would cause difficulties for any numerical method 

using low-order approximations and a small number of grid points, 
lines, finite elements, etc. 

Although the range of M used was limited, slight improvements 
resulted from small increases in M. Unfortunately, the real-general-
matrix option of the Eispac subroutine used to find the eigensolution 
broke down when trying the axisymmetric problem withM = 15. The 
matrix, [A], although quite sparse, has a slightly complicated band 
structure, so that what is really needed for its eigensolution when M 
is large is a fairly general sparse matrix eigensolver. 

A solution of an example of a nonaxisymmetric flow component by 
the method of lines was compared with the solution of the same 
problem by Chorin's time-dependent method of artificial compress­
ibility. The two solutions compared very well. 

For the present problem, the method of lines has three attractive 
features not found in iterative two-dimensional finite-difference 
methods. First, it does not require the decision of where to truncate 
the tube. Second, the eigensolution of the matrix [A] can be found 
more rapidly than the steady-state solution of the two-dimensional 
finite-difference equations, owing to the fact that the order of [A] is 
approximately only the square root of the size of the matrix repre­
senting the two-dimensional scheme. Third, for a fixed finite-differ­
ence scheme and number of lines but for any set of velocities at the 
ends, the eigensolution needs to be found but once; the velocities 
corresponding to any particular set of end conditions can be found 
from this eigensolution in about half a minute (on an IBM 370/158), 
typically, if the order of [A] is less than 60. 
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A Numerical Solution for Gas-
Particle Flows at High Reynolds 
Numbers 
Predicting the fluid mechanical characteristics of a gas-solid two-phase flow is critical 
for the successful design and operation of coal gasification systems, coal fired turbines, 
rocket nozzles, and other energy conversion systems. This work presents a general grid-
free numerical solution which extends a numerical solution of the Nauier-Stokes equa­
tions developed by Chorin to a solution suitable for unsteady or steady dilute gas-solid 
particle flows. The method is applicable to open or closed domains of arbitrary geometry. 
The capability of the method is illustrated by analyzing the flow of gas and particles 
about a cylinder. Good agreement is found between the numerical method and experi­
ment. 

1 I n t r o d u c t i o n 
Aircraft turbines, catalytic cracking units, pulverized coal energy 

conversion systems, geothermal and MHD power are all fluid me­
chanical systems that suffer solid particle erosion. The financial loss 
associated with this type of erosion has led to many investigations of 
particular detailed problems [1-4]. 

In most industrial two-phase systems where erosion occurs, the 
distribution of erosive wear around the surface of the body must be 
determined. This requires a solution giving the particle velocity and 
position history; with this information an erosion model may be ap­
plied to determine the erosion distribution about the body. Generally, 
the collective motion of the particles is a desired solution as well as 
the gas motion; thus the two-phases are treated as separate me­
chanically interacting mediums. 

The vast majority of problems involve two-dimensional subsonic 
flow. In this case the governing equations for the particle and gas 
phase are similar in appearance to the well-known Navier-Stokes 
equations of fluid mechanics. Although several calculational schemes 
have been developed for a general one-dimensional flow [5-7], much 
less research has been conducted for two-dimensional flow. The only 
general two-dimensional model is the "tank-and-tube" cellular ap­
proach developed by Crowe [8]. In this method the flow field is sub­
divided into a series of "tanks" connected to adjacent tanks by 
"tubes." Finite-difference equations are derived and solved with the 
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appropriate boundary conditions using Gauss-Seidel successive 
substitution. This technique has been successfully applied to iso­
thermal flow fields in cyclone separators [9] and electrostatic pre­
cipitators [10], 

However, because of the high Reynolds number found in most in­
dustrial flows, the influence of viscosity is confined to narrow regions 
close to the surface of bodies. These small regions, which are initially 
invisible to a finite difference grid, grow larger—particularly if under 
the influence of an adverse pressure gradient. Qualitatively, the effects 
of these small regions of boundary-layer backflow are quite pro­
nounced; the flow can become separated from the body by a region 
of reversed or recirculating flow. Finite-difference schemes produce 
unreliable results in this situation since the computer cannot store 
enough grid points falling within the boundary layer to predict 
boundary-layer growth and subsequent separation satisfactorily. 
Furthermore, it is often observed that in a boundary-layer large 
truncation errors lead to the formation of an artificial numerical 
viscosity [11]. 

A numerical scheme developed by Chorin [12] for gas flow only 
circumvents these difficulties. The scheme is grid free in that the 
vorticity within the fluid is partitioned into vortex "blobs" which are 
moved according to two components. One component is a random 
displacement of the vortex blob position; in this way the effect of 
viscous diffusion is modeled. The other component is a deterministic 
displacement found by moving the blobs according to their mutual 
interaction effects. This interaction is determined in a way similar 
to that in which the motion of point vortices interacting in an inviscid 
fluid is determined, according to the governing equations of classical 
hydrodynamics. 

In this work Chorin's vortex technique is extended to a two-phase 
mixture. Apart from the capacity of the vortex method to simulate 
the physics of viscous fluids and the process of vorticity injection, the 
scheme overcomes a major difficulty in modeling the particle phase 
boundary conditions. Particles striking a surface boundary can either 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 465 Copyright © 1981 by ASME
Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



adhere to the surface, leading to particle attrition, or form a bed that 
slides along the surface, or rebound from the wall. In the vortex 
method the particles are coagulated into packets which are then fol­
lowed throughout the flow field. This Lagrangian description of 
particle trajectories allows precise mathematical consistency with the 
appropriate physical boundary condition; in an Eulerian formulation 
the appropriate conditions at a physical boundary are extremely 
complicated. 

In this work the particles are assumed to adhere to the surface upon 
first impact. This is consistent with typical industrial processes where 
the particles act as an erosive material, cutting and embedding into 
the surface. It should be mentioned that this work can be easily ex­
tended to include rebound phenomena; it is only necessary to specify 
rebound angles and velocity coefficients of restitution for an averaged 
collection of particles. 

The unsteady equations of motion are solved outside the body with 
the "no-slip" boundary conditions for the gas and particle phase. 

For the gas and particles 

a is the particle volume fraction, and X and g are defined as fol­
lows: 

u (at the boundary) {velocity of the boundary, 

0 if boundary at rest. 
(1) 

In the final section of this work the scheme is applied to a two-phase 
flow around a cylinder. This problem has been investigated by Glauert 
[13], Tilly [14], and Pettit [15] under the simplifying assumption of 
inviscid gas flow. Since many investigations have used potential theory 
to determine the gas flow, this work will compare the inviscid ap­
proximation and the viscous solution given by the vortex method. We 
can then assess the magnitude of error introduced in the particle phase 
solution as a result of the inviscid approximation. 

It is hoped that this work will serve as another contribution to the 
study of two-phase, gas-solid flow about a cylinder, and more saliently, 
introduce a technique useful in solving two-phase flow problems. 

T h e T w o - P h a s e Mode l 
The constitutive equations are well known [16] for flows in which 

the fluid phase is an incompressible Newtonian fluid and the particle 
phase is a dilute suspension (i.e., the particle volume fraction is order 
10~3 or less) made up of uniform solid particles. 

The dimensionless equations of continuity and motion, written in 
terms of vorticity transport, are as follows: 

Gas Vorticity Transport 

V • u = 0, 

Dt Re 

Particle Equation of Motion 

da 
— + V(aup) = 0, 

Dup _ g(u - Up) 

Dt X 

(2) 

(3) 

(4) 

(5) 

' 9 P \L) I v }' 
£(Rep) 

|u - \ip\dCp 

v 24' 
(6)' 

By fitting experimental data [17] for the drag coefficients of spherical 
particles, the following formulas are obtained: 

CD = 24(1 + 0.15 Re°/87)/Rep 0 s Re p g 200, 

CD = 21.9416 Re; 0 7 1 8 + 0.324 200 < Rep £ 2500, 

CD = 0.4 Rep > 2500. 

These will be used in the following numerical solution. The drag 
coefficients of irregularly shaped particles may also be obtained by 
using the diameter, d, of an equivalent sphere as suggested by Bagnold 
[18], where d equals 75 percent of the mean sieve diameter. 

Physically, X (referred to as the momentum equilibration number) 
is the nondimensional distance required for a particle to reduce its 
initial slip velocity by e_ 1 . Equations (3) and (5) indicate for gas-solids 
experiments on different scales to be dynamically similar we require 
X to be constant and the Reynolds number to be constant between 
experiments. 

Other forces that act on the particles such as the lift force, Brownian 
motion force, pressure force, Magnus force, Basset force, and virtual 
mass effects may be neglected [19]. 

P r i n c i p a l M e t h o d of S o l u t i o n 
Equations (2)-(5) are solved by integrating forward in time. At the 

time step m we assume the vorticity is known for the gas flow field and 
the particle flow field. We want to determine the gas vorticity and 
particle distribution at the time step (m + 1). This is done as follows. 
First, consider a flow field without boundaries present; the vorticity 
is partitioned into a sum of blobs 

& e <?J (#2) , 

(7) 

(8) 

where £ is a scalar representing the fluid phase vorticity, £ = curl u; 

where the gas vortex blobs, £; each have small support, i.e., the 
function vanishes uniformly outside a small but finite region (or blob) 
around a point r;, in the two-dimensional domain R2. 

Now in the case of the fluid the vortex field is advanced using 
Chorin's [12] scheme, as described in the following section. 

In the case of the particles we must first discuss the characterization 
of the particle continuum as a set of discrete noninteracting packets 
and then describe the technique by which these packets are advanced 
to the m + 1 time step. 

Partitioning the particles into packets of small support is in physical 
agreement with the spatial averaging found in an Eulerian description. 
Also, we are only interested in mean values of the dependent variables, 
since these are the only ones sampled experimentally. Furthermore 
the gas-flow solution is statistical in nature, so we cannot know the 
exact path of any specific particle. We can only determine the mean 

- N o m e n c l a t u r e -

L = characteristic length of system 
R = cylinder radius 
d = particle diameter 
u = gas velocity, u = (u, u) 
Up = particle velocity, up = (up, vp) 
a(q) = single layer source potential func­

tion 
a = particle volume fraction, a = pplpP 

4> — potential function 
A = Laplacian operator, A = V2 

ju = gas viscosity 
v = gas kinematic viscosity 

£ = vorticity 
\ = vorticity strength 
p = gas density 
p p = particle material density 
pp = particle phase density (mass particles/ 

unit volume mixture) 
a = particle radius 

Parametric Groups 

Re = flow Raynolds number, UL/v or 
2UR/v 

Rep = particle Reynolds number, | u — up | • 
d/v 

X = momentum equilibration number, TU/L 

0VTU/RtT = lPEfl 
9 n 

Subscripts 

D = flow due to potential source distribu­
tion 

0 = conditions at the wall 
p = particle phase 
£ = flow due to vortex field 
00 = free-stream conditions 
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motion of a collection of particles. Thus the information carried by 
the packets determines the mean motion of the particles contained 
within the packet. 

Now we write the particle momentum equation (5) in discretized 
form yielding 

OuD g{u- Up,) 
(9) 

Dt A 

We propose to solve this equation by following the motion of particle 
packets. 

The motion of the particle packets is then described by 

dxp(ip) 

dt 

dyp(ip) 

dt 

' u„(ip) ip = 1, 

• Vp(ip) ip 

,N„ 

,NP, 

(10) 

(11) 

where Np is arbitrary and up(ip), vp(ip) are found by using a scheme 
presented in the section entitled "Numerical Details." 

Chorin's V o r t e x S c h e m e 
This section presents an outline of Chorin's [12] vortex method as 

it pertains to the problem under investigation. Since the flow is in­
compressible and two-dimensional, there exists a stream function ^ ; 
physically ^ is a measure of the two-dimensional fluid flow rate and 
is related to the velocity as follows: 

d j _ d^> 
(12) 

dy bx 

We first consider the flow of an inviscid fluid (i.e., Re = <»). Equation 
(3) becomes 

— = 0, A * : 
Dt -a (13) 

with the vorticity partitioned into blobs as described in (7), ^!j then 
has the form 

N 
V = £ * j with A¥y = -£ / . 

j-i 

When the distance between some arbitrary point and the ; th vortex 
blob is large (i.e., | r - ry | large), \j/j will have a form 

^ • a ^ l o g l r - o l , £, = J J V * d y . 

The foregoing equation is the expression for a point vortex stream 
function. In the neighborhood of a point vortex the fluid's tangential 
velocity varies inversely with the radius. However, the velocity field 
created by the vortex blobs is made bounded as opposed to the infinite 
velocity at the center of a point vortex. This is done by constructing 
a basic blob of the form 

*°(r) 

_1_ 

2ir 

X_r_ 

2w <7i 

log r r g <7i 

r < ffi 

(14) 

where r = | r | and ai is a cutoff length which will be discussed shortly. 
Since the blobs are small it is assumed that their total vorticity £; is 
small and hence their interaction effect with neighboring blobs is 
small. 

Now the stream function is written as 

f 
j=i ,= i 

(15) 

where each basic blob satisfies 

£Q = _ A ^ o ( r _ r . ) . 

The motion of the vortex blobs is then described by 

dt j^i dy 

dy: - d>J>° 
•jr--LSi—~(r-ry) i = 1,.. . 
dt j^i dx 

the components of the radius vector r are (xi, y;). 
These equations can be approximated by 

xf+1 = x? + ku"'1'2, 

yf+1 = y? + to"'1/2, 

,N 

(16) 

(17) 

where k is the time step. 
Now consider the case when Re ^ °°. The diffusion equation for 

the fluid is 

dt Re 

with initial data £(0) = l;(x,y,t =0) . A solution to this equation using 
a random walk is obtained as follows. Assume for the moment that 
f is a known function in space and time, then distribute over the x, 
y-plane points of masses £; with locations r; = (xi, y{), i = 1,. . . , N, 
N large. This is done so that the mass density approximates the initial 
condition £(0). Then the points are moved by the following equa­
tions: 

(18) 
•x? + m, 

where rji and 7j2 are Gaussianly distributed random variables with zero 
mean and variance 2fe/Re, k being the time step. 

The vorticity density generated by their mutual interaction and 
random walk is given by 

t?+1 = x? + kun-1'* + Vi, 
(19) 

which approximates the solution to (3), (12), and (13). 
This analysis has neglected the effect of boundaries. We must 

satisfy the no-slip condition and create a potential flow that will ex­
actly cancel the normal component of flow. The normal component 
is developed in the next section. To satisfy the no-slip condition 
(tangential component) the vorticity necessary to create a velocity 
exactly cancelling the flow velocity in the tangential direction must 
be determined. Integrating the vorticity in the boundary layer will 
yield the desired result. The total vorticity in a boundary layer of 
thickness 8 and length h is 

X h/2 s*l 

-h/2 Jo 
(V X u)dydx 

fh/2 rsl_du\ 

J-h/2 J o \ dyj 
dydx = -1 / (0 , &)h, (20) 

where the integral has been approximated using the midpoint rule, 
and (7(0, 5) is the free-stream speed. This total vorticity is assigned 
to the blob which has a constant velocity field inside a cutoff length 
ffi that exactly annihilates the tangential velocity and gives the ap­
proximate value of ffi as a\ = h/2ir from (12), (14), and (20). 

N u m e r i c a l D e t a i l s 
We must find a potential flow UD, such that UD • n = -u f • n for each 

point on the boundary of an obstacle. In this way »D + uj will satisfy 
the normal boundary condition. We require a solution to 

Af = 0 (21) 

subject to the boundary condition 

u • n = —uj • n on dD. (22) 

Laplace's equation can be satisfied by a flow of the form 

u = V0, (23) 

where $ is given by 

0 ( r ) = - ! - f a(q) log R(q)dq (24) 
27T JdD 
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Qi J^Q3 ..Up(ip) 

=Euf 

P yD=?yD(i) 

£j Vortex blob P(xp(ip),yP(ip)) 
Particle Packet Position 

Fig. 1 Vector and notational relationship between domain, vortex blobs, and 
particle packets 

here, q = (xq, yq) is a point on the boundary and 

R(q) = [(* - xq)
2 + (y - yq)2]1 /2- (25) 

This construction results from linear superpositioning of logarithmic 
potential functions (i.e., sources). It is readily shown [20] that if dD 
has continuous curvature and a(q') is bounded and integrable, </>(r) 
is continuous for all finite points r including passage through dD. If 
a(g') is continuous on dD which itself has continuous curvature, then 
if £ denotes the exterior to the domain D 

\d^| _ d(foj 
[dn i>n\q 

—- + — = - I a(q' 
dn on q ir Ji>D —(log «((/')) 

on 
d<?'. 

(26) 

(27) 

This follows from the Green's function solution to the corresponding 
Dirichlet problem. 

Now adding equation (26) and (27) we can solve for the single layer 
source function a(q) in the integral equation 

* ( < ? ) - - f a(q') —[log R(q')W = -2urn. 
ir JdD dn 

(28) 

For a full discussion of the applications of the theory of integral 
equations to Dirichlet's problem see Muskhelishvili [21]. 

We approximate (28) by a system of linear equations. A source of 
strength a(q) = 1 at Qi induces at Qj, i ^ j , a velocity field with 
components 

1 (Xj-Xj) 

2ir Rfj ' 

1 (Yj-Yd 

2w Rfj ' 

Rfj = (Xj - X;)2 + (Yj - Y;)2. 

Uidj) = 

U2(ij) •• 

(29) 

(30) 

(31) 

Now a(q) is approximated by the M component vector a = (a(Qi), 
. . . , OL(QM)), which must in turn satisfy the matrix equation, A n = 
b, where b has components that are the values of —uj • n computed at 
the points Q,. The components of the matrix A are given by 

mj - Ui(ij)ni + U2(ij)n2 (i ^ ;'), an = — i-
2ft 

1, , N. (32) 

The velocity due to the distribution of sources is found by summing 
up the contribution of each component: 

where 

3(0 

«DW = £ UD(J), 

' 1 r(O) 
iT^-^T if '(&>sih. 
2TT r^Qt) 

(33) 

(34) 

1,2ft 
a(Qi)n(Qi) if r(Q,) < Mi, 

where r(Qi) = |r(Q;)|, and n is a unit normal vector (see Fig. 1 for 
notation). 

Summing equation (33) with (34) we obtain the velocity at some 
arbitrary point P(xp(ip), yp{ip)) where a particle packet may be lo­
cated. Writing 

«(»P) = Ir E MQi) {Xpil^~Xi) + — Y. 2*(Qi)Xi + ut(ip) + U, 
2ir i r2(Qi) 2ir i 

(35) 

U(»P) = 71 E MQi) ( y p ( ' 9
P l ~ Yi) + -7- Z 2<*(Qi)Yi + v((ip) + V, 2TT rHQi) 2TT 7 

(36) 

where 

rHQi) = [(*p(»p) - Xi)2 + (yp(jp) - Xi)*\, 

2 j is for r{Qi) a ift 
2 2 is for r(Qi) < Jft 
i indicates points on dD 
U is the gas free-stream velocity in x-direction (U = 1) 
V is the gas free-stream velocity in y-direction (V = 0). 

We now have at hand the means to find up(ip) and vp(ip) and 
hence advance the particle packets. First, we rewrite (9) in terms of 
the ip particle packet velocity components 

Dupjip) g .. . . . . 
— = 7 (u(ip) - up(ip)), 

Dt A 

— — — = 7 (v(ip) - Vpdp)) 
Dt A 

(37) 

(38) 

where u(ip) and u(ip) are given by (35) and (36). Equations (37) and 
(38) are integrated using a Runge-Kutta fifth-order integration 
scheme with variable step size to preserve accuracy near boundaries. 
We assume over a time step k that g = g(Hep) (i.e., the drag coeffi­
cient) is constant. A test case of X = 1.0 and Re = 100,000 showed this 
to be true even when approaching a boundary in a normal direc­
tion. 

Once the packet velocity is known the position after the time step 
is found by approximating (10) and (11) with 

xp(ip)
m+1 = xp(ip)

m + fcup(ip)m,1/2> 

yP(ip)m+1 = yPdP)m + ftoP(ip)m'1/2> 

(39) 

(40) 

or more accurately by integrating (10) and (11) directly using the 
Runge-Kutta scheme. In the computer program1 equations (37), (38), 
(10), and (11) are integrated simultaneously yielding the approximate 
solution to (5). 

Boundaries are handled by keeping track of gas and particle vortex 
blobs; once a blob crosses the boundary it is destroyed. In this way the 
boundary conditions (1) are satisfied. 

The particle continuity equation (4) is satisfied by analyzing the 
rate at which mass accumulates on the boundary or any other arbi­
trary boundary. If M is the rate at which mass accumulates, the rate 
of accumulation can be found by tracing the paths (i.e., following the 
streamline) of all the particle trajectories from the points (X, Y) where 
the initial conditions are assumed, to the point (XQ, YQ) where the 
path crosses the boundary of the object {dD). We have, following after 
Glauert [13], 

M M • li­
ds 

dY 

dY0 

dY0 

ds 
(41) 

Uppa Uppa« 

where s is the nondimensional distance around the contour from some 
fixed origin. 

Chorin [12] has conjectured that the mean error in the gas flow is 
0(k) + 0(Re"1 /2), where the first term is the error in the deterministic 
technique used to solve Euler's equations. The second term arises in 
the random walk solution of the diffusion equation. The standard 

1 The computer program is available from the author. 
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Fig. 2 Particle packet paths (i.e., averaged particle paths) for several values 
of the momentum equilibration number; the flow is from left to right into the 
front of the cylinder; the vortex method solution is applied to an incompressible 
viscous fluid, and dilute particle suspension 

deviation of T]\ and 772 is (2k/Re)1/2. After m steps the random motion 
of the vortex blobs will displace the location of the vortex by an 
amount of order (m2k/Re)1/2 ~ 0(Re"1 / 2) . 

The error in the particle packet may now be estimated. Far from 
a boundary the flow may be considered inviscid; here, the particle 
packet is advanced by integrating between each time step taken in 
advancing the gas vortex blobs. In this way the errors introduced can 
always be made negligible compared to the error of 0{k) + 0(Re_ 1 / 2) 
of the gas vortex blobs. 

Now, close to a boundary the randomly positioned gas vortex blobs 
give a randomness to the gas flow field, and convergence on the so­
lution can only be expected by averaging over a large area. Further­
more, with each time step we expect roughly half of the newly created 
gas vortices to jump randomly over the boundary to be destroyed. 
Thus we expect the boundary layer to be noisy with convergence oc­
curring over long time averages. 

Fortunately, for values of X, the momentum equilibration number 
of order unity, the particle's vortex motion depends upon its entire 
history. In this way the particle packets move through the gas blobs 
with a motion determined largely by their previous history. In essence, 
the particle packets sample a space-time average of the gas vortex 
blobs. A more detailed error analysis considered by the author [19] 
indicates that for all values of X, the error in the particle velocity is 
always less than or equal to the error in the gas velocity. 

Application to Flow About a Circular Cylinder 
The origin is taken at the center of a fixed cylinder with a nondi-

mensional radius of 1. The negative %-axis is parallel to the undis­
turbed stream. The flow is from left to right; at time t = 0 the flow is 
started with constant nondimensional velocity of magnitude 1 in the 
x-direction. Thus the velocity at position (—<=, 0) is (1, 0). The 
boundary of the domain, i)D, is the circumference of the cylinder. 

The circumference is divided into M = 20 pieces of length h = 
2-K/M. The time step is k = 0.2. The value of k is chosen so that a de­
crease in k does not affect the flow. The time step must also be small 
enough so that the particle equations can be integrated without an 
excessive number of derivative evaluations. Furthermore, since in­
formation concerning the particle packet's position and velocity is 
only computed at the beginning and end of each time step, the particle 
path between steps must be small enough to be approximated by a 
straight line. This allows the impact angle and impact speed (com­
puted vectorially) to be computed accurately. The value of k = 0.2 
proved accurate for the range of Reynolds numbers of interest. 

Once k is chosen, M must be selected large enough so that any in­
crease in M does not change the solution. M must be increased for 
decreasing values of k because decreases in k give the gas vortices a 
higher probability of crossing the boundary of the cylinder and being 
eliminated. We require a minimum number of gas vortices present 
beyond the boundary; thus more gas vortices need be created on the 
boundary as some vanish. 

The average drag coefficient (averaged over 120 time steps) was 
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i 0.4 

> 
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Cylinder angle 8 (deg) 

Fig. 3 Relative number density flux as a function of impact location on the 
cylinder, using the vortex method 
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Fig. 4 Particle paths for the vortex method and inviscid flow; in the former 
case the particles are deflected around the cylinder; the vortex method 
demonstrates the effect of the displacement thickness on the particle's path 
since it solves the two-dimensional incompressible Navier-Stokes equa­
tions 

calculated using a scheme outlined by Chorin [12]. The gas vorticity 
near the boundary is sampled and from this the skin friction and 
pressure drag contribution to the total drag are evaluated. At Re = 
100 the average drag is Co = 2.02, the experimental value is 1.9 
(Schlichting [22, p. 16]); at Re = 1000, CD = 1.04, the experimental 
value is 1.00; at Re = 10,000, CD = 0.87, the experimental value is 1.05. 
Chorin [12] conjectures that the discrete number of vortices roughly 
representing a smooth boundary-layer trips prematurely the drag 
crisis, much like a rough wall does. The conjecture is apparently 
confirmed because at Re = 100,000, Co = 0.29, the experimental value 
is 0.28 beyond the drag crisis. 

Fig. 2 shows the computed data points for Re = 10,000 and X = 0.5, 
2, and 4. Using the vortex method, the cylinder has been expanded. 
in the y -direction to clearly show the particle deflection. The particles, 
due to the difference in their inertia, are driven away from the gas 
streamlines and impact with the cylinder. The higher values of X, 
corresponding to bigger or heavier particles yield particle paths af­
fected less by the gas flow acceleration away from the stagnation point. 
These larger particles follow nearly straight line trajectories. It is 
important to note that the particle trajectory represents the collective 
average motion of the many particles within a small neighborhood 
of the particle packet. 

Using a distribution of particles the relative number density flux 
at the cylinder surface is found using (41). This information (see Fig. 
3) is useful in determining the distribution of erosion about the cyl­
inder. 

Other investigations have ignored boundary-layer and separation 
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Fig. 5 Collection efficiency for various values of the momentum equilibrium 
number; the vortex method yields a viscous solution which alters the paths 
of particles predicted by inviscid potential theory 
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Fig. 6 Particle vectors in the wake region; dimensionless time = 48, Re = 
100, and X = 1.0; the small dots identify vortex blobs shed from the cyl­
inder 

effects, assuming inviscid gas flow given from potential theory [13, 
14]. One can argue that because the particle residence time in the thin 
boundary layer is negligibly small that the trajectories will not be 
substantially affected by its presence. This is because the work done 
on a particle by the boundary layer depends on the distance traversed 
which is very small, i.e., h ~ 0(Re _ 1 / 2 ) . However, this overlooks the 
obvious fact that the boundary layer creates a displacement thickness 
altering the apparent size of the object and consequently the inviscid 
flow (see Pig. 4). Even more significant is the separation that may 
occur. This drastically alters the flow profile and particle trajec­
tories. 

In Fig. 5 the collection efficiency of a cylinder is given for various 
values of the momentum equilibration number for the viscous vortex 
method and inviscid case. The collection efficiency, a number quoted 
frequently in the industrial literature, is the ratio of the number of 
particles impacting with object to the number which would impact 
if they followed straight line trajectories without deflection by the gas. 
Clearly the effect of viscosity is to reduce the collection efficiency for 
a given value of X. This is directly a result of the increased "apparent" 
size of the object due to the formation of a displacement thickness. 
As indicated in Pig. 5 the discrepancy between the viscous (Navier-
Stokes) and inviscid (potential flow) case is negligible for larger par­
ticles where X > 2.0. 

We now turn attention toward the back shoulder of the cylinder 
and the wake region. Shortly after the start of fluid motion the ex­
ternal pressure field causes fluid transversing the rear shoulder to 
reverse its direction. The reverse motion moves forward and the 
boundary-layer thickens. This motion gives rise to a vortex which 
increases in size, until it separates from the cylinder and moves 
downstream. At a distance from the cylinder a regular pattern of 
vortices moving alternately clockwise and counterclockwise is ap­
parent. This is known as a Karman vortex street. When viewed in a 
frame traveling with the vortex street system, the streamlines between 
the vortices have a sinusoidal appearance. 

Q; 

-IO 

X = 0,l 

Potential theory 

Re = 100,000 
Particle decelerates to zero 
velocity; gas velocity is zero. 

10 15 

x / R 
20 25 30 

Fig. 7 Particle path for small particle following fluid motion In the wake re­
gion 

This same effect is visible in the particle paths in the wake region, 
as calculated numerically (see Fig. 6) for Re = 100 using the vortex 
method. The small dots and streamlines show the vortex blobs swept 
downstream from the cylinder. The large circles and vectors indicate 
the particle's position and velocity. The vortex method predicts 
separation occurring asymmetrically, and produces the sinusoidal 
streamlines. It requires about 20 sec of CDC 7600 computer time to 
follow ten particle packets to the cylinder and about 17 min to follow 
the evolution from t = 0 to t = 50. In Fig. 7 the path of a particle 
completely entrained in the fluid flow is indicated. Here X = 0.1 and 
the motion is identical to fluid elements. This type of submicron size 
particle is used in laser-doppler anemometry techniques to determine 
the fluid velocity. 

It is difficult to compare the numerical results with experiments 
since to date two-phase, gas-solid experiments have measured only 
secondary effects such as erosion of surfaces. With the recent advances 
in laser-doppler techniques for gas-solid flow it is hoped in future work 
to measure particle and gas velocity components at any point in the 
flow domain. 

Some experimental work suitable for comparison has been con­
ducted on the velocity dependence of erosion. These experiments 
indicate that erosion varies with high exponent (typically 2-4) values 
of the gas free-stream velocity. Previous quantitative erosion models 
do not predict these high exponent values. It was shown by Laitone 
[23] that the high exponent values is partly an aerodynamic effect and 
is not entirely due to particle-surface material interaction mecha­
nisms. 

Variations of the numerically determined impact speed q on the 
cylinder as a function of free-stream speed U shows q <* Um where 
m varies from 1.15 to 1.23. This applies to shallow impacts high on 
the cylinder's front shoulder, where a < 20°. 

Finnie [2] developed a theoretical erosion model which gives ex­
cellent agreement with shallow angle impact experiments. The model 
gives a relationship between the impact speed of a particle (which 
must be deduced by solving the fluid mechanical system) and the 
resulting volume of surface material removed, or erosion, of a ductile 
metal. The model assumes the particles act as cutting tools with the 
cutting depth a function of the surface material hardness. The erosion, 
Er, is predicted to vary with impact speed squared, i.e., Er <* q2. The 
vortex method predicts q <* t/1-23. Combining this aerodynamic effect 
with the surface interaction effect predicted by Finnie, we arrive at 
Er cc q2

t thus Er oc (U1-23)2 and it follows that Er <x q2-™. 

In erosion experiments the impact speed is not measured, however 
the gas velocity, U, and hence particle velocity, U, is measured far 
from the body. Grant and Tabakoff [4] have conducted experiments 
with flat plates at shallow angles to attack (a = 20°) entrained in a 
gas-solid flow. They find Er « U28. The agreement between that 
predicted by the vortex method and experiment is quite good, however 
more importantly it points out the importance in solving the fluid 
mechanical system first, before applying an erosion model. Re­
searchers have proposed explanations for exponent values about 2.0 
based on particle fragmentation [24] and based on indentation 
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h a r d n e s s t heo ry [3]. T h i s analysis shows t h e e x p o n e n t va lues above 

2.0 m a y be due t o aerodynamics alone. T h e vor tex m e t h o d p resen ted 

in th i s s t u d y can p rov ide resea rchers wi th a numer ica l solut ion 

t echn ique sui table for a wide class of two-phase , gas-solid flows abou t 

var ious types of bodies . 

C o n c l u d i n g R e m a r k s 
I t h a s been t h e a im of t h i s work t o p r e s e n t a general solut ion t ech­

n ique appl icable to a wide var ie ty of commonly encoun te r ed geome­

t r ies in d i lu te gas-solid flow p rob lems , a n d t o apply t h e solut ion 

t e c h n i q u e to a specific geomet ry a n d t h e r e b y indica te t h e t y p e of in­

fo rmat ion ob ta inab le which m a y prove useful t o sc ient is ts a n d engi­

neers working wi th specific indus t r i a l sys tems . 

T h e appl ica t ion t o t h e cyl inder d e m o n s t r a t e s t h e d i sc repancy be ­

tween the viscous and inviscid solution. At Reynolds numbers of 1000 

a n d lower t h e inviscid a p p r o x i m a t i o n provides an accura te solut ion 

only for va lues of t h e m o m e n t u m equi l ib ra t ion n u m b e r grea te r t h a n 

2.0. By apply ing an erosion mode l t o t h e resu l t s p r ed i c t ed by t h e 

vor tex m e t h o d a good a g r e e m e n t was gained wi th t h e erosion found 

in expe r imen t s of par t ic les impac t ing surfaces a t shal low angles of 

a t t ack . 

One of t h e p rob lems t h a t m u s t be faced in t h e course of developing 

th i s t e c h n i q u e t o a wider class of flows is t h e inclusion of a two-way 

m o m e n t u m coupl ing effect. T h i s would ex tend t h e capabi l i ty of t h e 

m e t h o d t o inc lude nond i lu t e l iquid-sol id flows. 
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Reexamination of Stability of a 
Two-dimensional Finite Panel 
Exposed to an Incompressible Flow 
Stability of a flat or buckled panel exposed to an incompressible flow has been reanalyzed 
as the analyses on this problem by other investigators have errors in the fluid forces used. 
The deflection of the panel in an oscillatory motion is assumed in such a way that there 
occurs no change in the fluid volume in a control surface enclosing the panel. The nonlin­
ear equation of motion of the panel on a continuous elastic spring is solved by using the 
Galerkin method and the generalized fluid forces which are derived in the author's previ­
ous papeTXThe stability of the flat and buckled configuration in static equilibrium is ex-

~amined~against,,smalLiisti^baikc£M!_Existmce of the limit cycle oscillation is studied by 
applying the harmonic balance methodjJjumerical results are compared with those of 
the analysis on a two-dimensional finite elastic channel conveying an almost incompress­
ible flow. -\ 

1 Introduction 
Stability of plates of finite length in a subsonic flow has been ex­

amined by many investigators. A controversial point of the problem 
is possibility of postdivergence flutter oscillation of the plates with 
the leading and trailing edges supported or clamped. Some debate 
on this topic was held between Dowell, and Weaver and Unny [1]. 
Dowell [2] examined the stability of a flat or buckled plate by using 
a nonlinear plate and linearized potential flow theories, and his nu­
merical result showed occurrence of divergence at a certain critical 
speed, but no flutter above the divergence boundary. Recently Holmes 
[3] investigated the behavior of a panel from the view point of dif-
ferentiable dynamics, taking into account structural nonlinearity and 
damping. He confirmed Dowell's result. 

On the other hand, by using a linear plate theory, Dugundji, Dowell, 
and Perkin [4] predicted postdivergence flutter of a traveling-wave 
type and found it experimentally for a two-dimensional panel of 2642 
mm length and 610 mm width resting on a continuous elastic foun­
dation. Ishii [5] also observed two different types of postdivergence 
flutter of a two-dimensional plate of 300 mm length and 70 mm width, 
that is, small amplitude oscillation with a high frequency and large 
amplitude oscillation with a low frequency. His interesting finding 
is that a positive static pressure gradient along the flow direction has 
a destabilizing effect toward flutter. On the contrary, Gislason [6] 
reported that no flutter oscillation of the plate with a chord-to-span 
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ratio of 2 was observed when the dynamic pressure was increased up 
to about twice the divergence speed. 

The debate just mentioned remains, still, to be resolved. As is well 
known, there is the same question about postdivergence flutter os­
cillation of fluid-conveying tubes supported or clamped at both ends. 
As for a two-dimensional elastic channel conveying a flow, Matsuzaki 
and Fung [7, 8] show that no postdivergence flutter of the channel 
walls can occur if structural nonlinearity and viscous damping are 
considered and a linearized potential flow theory is used. 

Recently, Matsuzaki and Ueda [9] have reexamined the fluid 
pressure acting on a two-dimensional finite plate at small Mach 
numbers, and presented simplified expressions for the generalized 
fluid forces. According to their analysis, as the Mach number tends 
to zero, the virtual mass induced by an oscillating fluid becomes in­
finitely large for a natural mode symmetric with respect to the mid-
chord point. That is, for instance, no motion of the plate in the first 
natural mode is possible for M = 0. They also pointed out that for the 
incompressible and almost incompressible flow cases Ishii [5] and 
Weaver and Unny [10] have errors in the velocity potentials and 
generalized forces which are used in the stability analyses of the 
plate. 

Kornecki [11] examined the possibility of flutter of a two-dimen­
sional flat panel constrained to zero displacement at both the edges 
in the incompressible flow. When M = 0, the disturbed velocity po­
tential corresponding to the aerodynamic forces which are defined 
by equation (Al) of reference [11] agrees with that given by equations 
(40) and (41) of reference [9]. Therefore, the discussion made in ref­
erence [9] can be applied to the generalized incompressible aerody­
namic forces which are used by Korneki [11]. As for the flat panel, 
since unsteady generalized forces cannot be evaluated for the first 
natural mode, his flutter analysis is invalid. 

472 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 

Copyright © 1981 by ASME
Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Therefore, we shall reexamine the stability of the plate, especially 
taking into account such a symmetric oscillatory mode as given by 
equation (39) of reference [9], which does not produce a large virtual 
mass. This means that the behaviors of small disturbances and peri­
odic oscillations are analyzed by considering dynamic coupling be­
tween such a particular symmetric mode and an antisymmetric nat­
ural mode. 

2 Problem Formulation 
A two-dimensional plate resting on a continuous elastic spring is 

simply supported by semi-infinitely long, and flat rigid walls at its 
ends, as shown in Fig. 1. The equation of equilibrium of the plate 
undergoing cylindrical bending and the boundary conditions are 
given, respectively, by 

Eh3 d4w Eh 

12(1 - v2) dX4 2(1 - v2)L U 
cL M2

dx 
Jo \dX) 

d2w 

dX2 

dw , d2w , , 
-p + k*w + c — + psh—-=0 (1) 

dt dt2 

d2w/dX2 = 0 (2) 

where w, h,E, v, ps, c, k*, andp are, respectively, the deflection of the 
plate, the plate thickness, Young's modulus, Poisson's ratio, the 
density of the plate, the viscous damping coefficient, the spring con­
stant, and the fluid dynamic pressure (positive for downward). The 
flow is assumed to be inviscid and low subsonic. The space below the 
plate is empty. We will use the pressure expressions obtained by 
Matsuzaki and Ueda [9] for M « 1 and 0(k) < 1. Although they have 
been derived under the assumption of a harmonic oscillation, we as­
sume like in references [8,10] that the expressions are applicable to 
a slightly divergent or convergent oscillation. 

Let the deflection of the plate satisfying equation (2) be 

2 m-wX I wX 
w = X. wm sm h w3 Ism 

m=l L \ L 
3 sin ¥) (3) 

As shown in reference [9], the last term of equation (3) represents a 
symmetric mode which requires no change in the volume of fluid 
contained by an arbitrary control surface enclosing the elastic plate. 
Applying to equation (1) the method of weighted residuals in which 
the weighting functions are taken to be the same as the assumed 
modes, we obtain 

Ml(l + PQf^Wi/dt2 + (1 + PQ^)d2W3/dt2} + $(dWJdt 

+ dWddt) + ( # ! - Q{°1
)Q)W1 + (fei • •Ql?Q)Wa 

+ 7 {(Wi + W3)2 + 41V|+ 81 W|) (Wi + W3) 

+ ^fp~MQ^dW2/dt=Q (4a) 

Ml + PQ¥l)d2W2/dt2 + fdW2/d£ 
+ [k2 ~ Q f Q + iy [(W1 + W3)

2 + 4 W | + 81 W§) ] W2 

+ VpjQ(- QftdWJdt + Q$dW3/dt) = 0 (46) 

n\(l + PQfhd^WJdt2 + (10 + PQW)d2W3/dt2} + $(dWx/dt 

+ 10dW3/dt) + (kx - Q{fQ)W1 + (kx + 9k3 - Q™)W3 

+ y |(Wi + W3)
2 + 4W2 + 81 Wl\ (Wi + 82W3) 

- VitfQQ$dW2/dt = 0 (4c) 

where 

!H> = ' 

3<i> : 

' = Qff - 3QJS', Q. <«> 

tt) 

Wm = wjh, Q = pU2/E, km = K* 

(mir)4 /M3 

: QW - 6QW+ 9QW 
for q = 0, 2, 

(5) 

12(1 - v2) \L) ' y 4(1 

K4 IhV 

- v2) \L) 

0 = pL/(psh), p. = pshL/E, f = cL/E, K* = k*L/E (6) 

The generalized forces Qmn are cited from reference [9]: 

Y 

////. 

U, M 
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7?fT 
rn 7777 

— L -

/ / / / 

Fig. 1 The panel geometry and a coordinate system 

Qmn = ~Q(1 + Q 0 2 d2 

dt* 

QJ L d 
Qmn = Qmn~~T 

U dt 

for m + n • 

for m + n = odd 

(7a) 

(76) 

where 

Q<°> = 2n[Si (mr) - jl - (-1)") /(nit)} 

Q<°>„ = 4mn (Ci (m*) - Ci (MTT) 

+ l n (n /m) ) / iT r (m 2 -M 2 ) | for m * n 

Q« = [8 | m Si (rnr) + nSi (mir))] / fr2(n2 - m2)\ 

Q® = (l/mx)*[QS» - (imlmr) (Ci ( A T ) 

- 7* - In (nir)}] - (2c*/mnir3) 

x | i - H M [ i - ( - i ) » ) 

c* = ITT/2 + 7* + In (feM/2), k = U/(wL) 

(8) 

(9) 

k, 7*, Ci, and Si are, respectively, the reduced frequency, Euler's 
constant, and the cosine and sine integral functions. It is noted that 
Q^li for m = 1 to 3 and Q$are real and positive and Q%]n for m = 1 
and 3 are complex. Numerical values of Qmn for small Mach numbers 
are given in Tables 1-3 of reference [9]. 

3 Stability Analysis 
We shall now analyze the stability of the static equilibrium con­

figuration by considering small disturbances about it. If the distur­
bances decrease with time, then we define the static configuration is 
stable. Let (Wio, W20, W3o) denote the deflection in static equilib­
rium. 

Two-Mode Approximation (W3 = 0). The stability of the flat 
or buckled configuration will first be analyzed by employing a con­
ventional two-mode approximation, that is, by putting W3 = 0 in 
equation (3), like in references [3, 10, and 11]. Omission of the time 
derivatives from equations (4a) and (46) yields stationary expres­
sions 

(QfiHQi - Q) + 7(Wio + 4W|o)) Wio = 0 

IQi»(Q2 - Q) + 4 7 (Wf 0 + 4W|o)| W20 = 0 

where 

Qm = kJQ (0) 

(10a) 

(106) 

(11) 

From equations (10), we obtain four different types of the deflec­
tions: 

(1) Flat Configuration: 

Wio = W20 = 0 for Q > 0 (12a) 

(2) First-Mode Deflection: 

Wio = ± (QrT(Q - Qi)/7l1 / 2 , W20 = 0 for Q>QX (126) 
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(3) Second-Mode Deflection: 

Wio = 0, W20 = ± \Q®(Q ~ Q 2 ) / T ) 1 / 2 / 4 for Q>Q2 (12c) 

(4) Mixed-Mode Deflection (Ww * 0, W20 * 0): When Q = QM 

where 

QM = (4fei-A2)/(4QS )-Q2°2
)), (13) 

equations (10a) and (10b) coincide with each other and become 

Q<ft(Qi ~ QM) + y(W\0 + 4Wf„) = 0 . (14) 

and there are an infinite number of static configurations of the mixed 
mode. It is necessary for the mixed mode to exist that QM ~ Qi is 
positive. Then, we obtain QM < Q I < Q2 from equation (13). 

Let am(t) for m = 1 and 2 be infinitesimal disturbances about the 
static equilibrium configuration Wmo. Then, the disturbed motion 
is written as 

Wm(t) = Wm0 + am(t) for m = 1 and 2 (15) 

Substituting equations (15) into equations (4a) and (46) and ne­
glecting the higher-order terms of « i and a2, we obtain 

aid2ajdt2 + Idajdt + ha2 + VnPQQ2
l}da2/dt = 0 (16a) 

- VjIfSQQfldai/dt + a2d
2a2/dt2 + £da2/dt + I\a2 = 0 (166) 

where 

am = M l + 0QL2L) for m = 1, 2 (17) 

h = Qi?'(Qi - Q) + Y(3W?o + 4Wl0) (18a) 

II = Qsf (Q2 ~Q) + 4 T (W 2
0 + 12WSo) (186) 

Letting 

«m = « m exp (et) for m = 1, 2 (19) 

and substituting equations (19) into equations (16), we have a char­
acteristic equation for nontrivial solutions 

C4e
4 + C3c3 + C2e2 + C16 + Co = 0 (20) 

where 

C4 = a i a 2 , C3 = f(ai + a2), C2 = ^ + ai72 + a2 / i + M(3Q(Qi12))2, 

Ci = f(/i + I\), Co = /1/2 - 647
2W2oVKlo (21) 

The real parts of c* and a\ become infinitely large as M tends to 
zero. If the real part of a 1 is sufficiently larger than 02, then equation 
(20) may be written as 

ai(o2€2 + fe + H)e2 + Cte + C0 = 0 (22) 

The first and second modes become less and less coupled to each other 
with decreasing M, since the smaller the Mach number is, the larger 
the real part of a 1 is. 

Incompressible Flow. Let us here assume M = 0. Then, it follows 
from equation (22) that 

e2 = 0 (23a) 

a2€2 + fe + I\ = 0 (236) 

Equations (23a) and (236) are related to the first mode W\ and second 
mode W2, respectively. Since the disturbance of the first mode re­
mains to be constant, only that of the second mode need to be exam­
ined. 

From equation (236), we obtain 

e = ( - f ± x / D ) / ( 2 a 2 ) (24) 

where 

D = f2 - 4a2Z2 (25) 

It is obvious that, if 72 > 0, i.e., if D < f2, then the static equilibrium 
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is stable. However, if l\ < 0, that is, if VI) > f; then the disturbance 
of the second mode grows in a divergent manner. 

We shall examine the stability of the deflections in static equilib­
rium described by equations (12) and (14). 

(1) Flat Configuration. Substituting equations (12a) into 
equation (186) yields 

I\ = Q22HQ2 - Q) (26a) 

Therefore, the flat configuration is always stable for Q < Q2 and un­
stable for Q> Q2 regardless of the value of Qi. 

(2) First-Mode Deflection (Q > Qi). Similarly, using equations 
(126) we have 

I\ = (4Qff - QfMQ - QM) (266) 

When Qi > QM, the first-mode deflection is always stable. If Qi < QM, 
the deflection is unstable for Qi < Q < QM and stable for Q > QM. 

(3) Second-Mode Deflection (Q > Q2). This configuration is 
always stable since 

I\ = 2Q$(Q - Q2) > 0 for Q>Q2 (26c) 

(4) Mixed-Mode Deflection (Q = QM). Substituting Q = QM 
and equation (14) into equation (186), we have 

7*2 = 3 2 7 l V | 0 > 0 (26d) 

Hence, the mixed-mode deflection in static equilibrium is stable. 
We have seen that dynamic coupling between the first and second 

modes becomes weak as M decreases, and that a complete decoupling 
between the modes occurs when M = 0. For M = 0, no motion of the 
plate in the first mode can occur, since the virtual mass for the first 
mode becomes infinite. The instability is of divergence type. 

2 Three-Mode Approximation (W3 + 0). For the incom­
pressible flow, the three-mode approximation is now taken in order 
to examine instability which is caused by dynamic coupling between 
the second and last modes in equation (3). The last mode W3 is con­
sists of the first and third natural modes. Being different from the first 
or third natural mode itself, this symmetric mode with respect to the 
midchord point induces much smaller virtual mass for M « 1, and 
may oscillate more rapidly. Since the flow is incompressible, no motion 
of the first or third natural mode is possible [9]. The time derivatives 
of W\ in equations (4) must be deleted. Small disturbances can be 
considered only in terms of the second and last modes. Therefore, the 
disturbed motion is given as 

Wi = W10 

W2 = W20 + 52 exp (et) (27) 

Ws = W30 + «3 exp (et) 

When Wio vanishes, equation (4a) is discarded. Otherwise, we must 
use all of equations (4). 

(1) Wio = 0. Two types of static configurations are derived from 
the stationary expressions for equations (46) and (4c). 

(la) Flat Configuration 

Wio = W20 = W30.= 0 for Q > 0 (28a) 

(lb) Second-Mode Configuration 

w20 = ±{Q2°M-Q2)hV/2/4 

W10 = W30 = 0 for Q>Q2 (286) 

Substituting equations (27) into equations (46) and (4c) and ne­
glecting the higher-order terms of a2 and 03, we obtain a fourth-order 
characteristic equation defined by equation (20). The coefficients of 
the equation are 

C4 = a2a3 > 0, C3 = f(a2 + a3) > 0, 

C2 = f2 + a2 /3 + a3 /2 + C22, 

Ci = f( /2 + / 3 ) , C0 = / 2 / 3 (29) 
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h = Q i ; (Q 2 -Q) + 4y |(W10 + Wa0)
2 + 12W2

0 + 81W§„) 

(30a) 

/3 = [ Q l ? ( Q 3 - Q ) + 3287lVlo!/10 (30b) 

a3 = nil + |8Qg>/10), C22 = nfiQiQ^WW > 0 (31) 

Q3 = (fci + 9fcs)/Qj? (32) 

Since all the coefficients are real, the stability of the disturbances 
can be examined by using the Routh-Hurwitz criterion. If and only 
if 

and 

where 

C „ > 0 (n = 0 , . . . ,4) 

R>Q 

(33) 

(34a) 

R = CiC2Cs - C0Cl - C2C4 

= P l(a2 + a3)(/2 + Ia)(? + C22) + (a2 /3 - a3/2)2! (346) 

then the disturbances will decrease with increasing time and the static 
configuration is stable. 

( la) Since Qt$ and Qif are both positive, the flat configuration 
is stable for a range of 0 < Q < Qs, which is defined as the smaller of 
Q2 and Q3, but becomes statically unstable at Q = Qs because of Co 
= 0. For Q> Qs the configuration is always unstable because at least 
Co or Ci is negative. 

(16) Next, we examine the second-mode configuration. Substi­
tution of equations (286) into equations (32) yields 

/2 = 2 Q g | ( Q - Q 2 ) 

h = (20.5Q2? - Qg>)(Q - QA) (35) 

QA = (20.5*2 - (fci + 9*3))/(20.5Q2°2> - Q<«) (36) 

where 

It is clear that h is always positive for Q > Q2. Since 20.5Q221 - Qj? 
is positive, if QA is greater than Q2, then the second mode is unstable 
for Q2<Q < QA- Otherwise, this configuration is always stable. 

(2) Wio + 0. Let us omit the time derivatives in equations (4a) 
and (4c). Prom the resulting equations, it is clear that Ww and W30 
are always coupled, that is, W30 cannot vanish whenever Ww + 0. 

(2a) Symmetric Coupled-Mode Configuration (Ww $ 0, W30 

+ 0, W20 = 0). This configuration is numerically evaluated by using 
the stationary expressions of (4a) and (4c). We will here examine the 
number of the configurations and the range of Q in which the con­
figurations exist. 

From the stationary equations, we obtain the following quadratic 
characteristic equation with respect to J for nontrivial solutions of 
Ww and W30 

where 

9{yJ)2 + A1yJ + A0 = 0 (37) 

J = (W10 + W30)
2 + 4 W|o + 81 W3

2o (38) 

Ao = (Q - QB+)(Q ~ QB-) (39a) 

Ai = (9QB> + Q®)(Q ~ Qc) (396) 

QB± = [Qi + Qa ± f(Qi - Qs)2 + 4Q1Q3(Q3i ,)2!1/2]/ 

[2 (1 - (Qi?)VQi?Qfflf)] (40) 

Qc = (9*i + *3)/(9Qi0i» + Qsf) (41) 

J must be real and positive. Since the discriminant of equation (37) 
is always positive, that is, 

T> = A\- 36A0 

= (9*! - ks - (9QS>- Q3°3>)QP + (6Qg>)» > 0 (42) 

positiveness that there are two static configurations for Q > QB+ or 
Q <QB~, and Q> Qc because of Ao > 0 and Ai < 0, one for QB- < 
Q < QB+ because of Ao < 0, and none for the remaining range of Q. 

Next, we analyze the stability of the configurations. Subtract 
equation (4a) from equation (4c). Substituting equations (27) into 
the resulting equation and equation (46), and neglecting the higher-
order terms of a 2 and a3, we may again derive a fourth-order char­
acteristic equation, the coefficients of which are given by equations 
(29). The necessary modifications in equations (30) and (31) are 

a3 = nil + /?Q<i>/3), C22 = W 8QQgQ#/3 , 

Q%> = 3QW ~ Qs?> for p = 0,2, 

h = ~Q?z\Q ~ <?4)/3 + y{(Ww + 2WM)2 + 242W!o)/9 (43) 

Q4 = 3ks/Q'~ ^ (44) 

As in the preceding section, the dynamic behavior of small distur­
bances about the configurations can be examined by applying the 
Routh-Hurwitz criterion to equations (29). 

(26) Mixed-Mode Configuration (Ww 4= 0, W20 * 0, Wa0 * 0). 
Like the mixed-mode configuration of the two-mode approximation, 
this configuration exists at a discrete value of the dynamic pressure. 
The stability of the configuration in static equilibrium can be exam­
ined in a similar manner. 

4 H a r m o n i c B a l a n c e M e t h o d 
Let us study the possibility of a limit cycle oscillation about the flat 

or buckled configuration with the viscous damping included, i.e., f 
+ 0. We shall assume the limit cycle oscillation in a form of 

Wi = A10 

W2 = A20 + A2i sin ut 

W3 = A30 + A31 sin (at + 8) 

(45a) 

(456) 

(45c) 

Like in the preceding section, equation (4a) is discarded when 
Aio = 0. 

(1) A10 = 0. Substituting equations (456) and (45c) into equa­
tions (46) and (4c), and balancing the terms of the constants and first 
harmonics, respectively, yields the following six equations: 

Constant terms: 

[Qm + 7 f t » E fr(A2o + A r
2

1 /2)]A m 0 + yPmWmAm0Aml 
r=2 

sin wt or sin (u>£ + 6): 
+ PjAjoAj! cos 6]Aml = 0 (46a) 

[(17 - 9m)ama>2 + Qm + y£m £ ft.(Ar
2

0 + A2
rl/2) 

r = 2 

+ yl32
m(2Al0 + AL/4 ) ]A m l + [ W V ^ S Q Q S 1 sin 8 

+ |32le37(2A2oA3o cos 8 + A2iA31 cos 26/4)]An = 0 (466) 

cos tot or cos (tot + 8): 

( - l ) m ( 1 7 - 9m)ftoAml + [ toV^QQ'V cos 8 
+ ^2/337(2A20A30 sin 8 + A2iA3i sin 20/4)]A;1 = 0 (46c) 

where m = 2 and 3, and j = 5 — m, 

Q2 = Q®(Q2-Q), Qa = Q£ ,(Q*3-Q), ft = 4, ft - 82 (47) 

For nontrivial solutions of A21 and A3i, we obtain, from equations 
(45c), 

10(fto)2 + jtoVwSQQiV cos 6 + ft2|337(2A20A30 sin 8 

+ A21A31 sin 20/4)j2 = 0 (48) 

It follows from equation (48) that 

to = 0 (49) 

J is assured to be real. Therefore, it follows from the requirement of 

because of f + 0. That is, there is no limit cycle oscillation about the 
flat (A10 = A20 = A30 = 0) or second-mode (A 10 = A30 = 0, A2o + 0) 
configuration. 
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Fig. 2 Static equilibrium deflections of the first and second modes and their 
stability; W1 0: — (stable), (unstable); W2 0: (stable) 

(2) A10 + 0. In the same way as for the case of A10 = 0, using 
equations (4a)-(4c), we obtain seven equations governing Amo (m = 
1, 2, 3), Am\ (m = 2, 3), a), and 6. In this case, the equation corre­
sponding to (48) becomes 

10(fo>)2 + [wVJtfQQ® cos 6 + fofcy |2A2o(A10/J83 + Aao) sin 0 

+ A21A3i sin 20/4)]2 = 0 (50) 

Consequently, we have again equation (49) for A10 4= 0. 
Therefore, we conclude that no limit cycle oscillation is predicted 

about flat and buckled configurations, even though two modes being 
capable of oscillatory motions are taken into account in the anal­
ysis. 

5 Numerical Results and Discussions 
Numerical calculations were carried out for a latex rubber panel 

exposed to airflow. The parameters used are the same as in references 
[7, 8]: L/h = 100, /3 = 0.143, n = 0.952 X KT9sec2, v = 0.5, K* = 0, 2 
X 10"4, f = 0.01 lc where fc = 2VMI-

(1) Two-Mode Analysis. In Fig. 2, the static deflections of the 
first or second buckling mode of the panel are represented by solid 
and broken curves or thin chain-dotted curves, respectively, for (a) 
K* = 0 and (b) K* = 2 X 10~4. The critical boundary pressures asso­
ciated with the Case (a) or (b) are indicated by a suffix a or b, re­
spectively. As is shown analytically, the second-mode deflection is 
always stable against small disturbances, while the first-mode de­
flection may become statically unstable. This occurs for Case (b) since 
(^becomes greater than Q\. The broken curve represents the un­
stable deflection. 

(2) Three-Mode Analysis. Fig. 3 illustrates the static deflections 
of the symmetric coupled-mode (Wio + 0, W30 + 0, W20 = 0) and the 
second mode against the dynamic pressure Q. Wio or W30 is, respec­
tively, shown by thick or thin solid and broken curves, W20 chain-
dotted ones. Since the symmetric and second modes are not coupled, 
the deflections of the second mode are exactly the same as in Fig. 2. 
Since the numerical result shows that QB- <Qc< QB+, there are two 
configurations of the coupled mode for Q > QB+, but none for Q < 
QB— The coupled-mode deflection which starts to exist at Q = QB-
is considered to correspond to the first-mode configuration given in 
Fig. 2, as the amplitude of W30 is quite small compared with that of 
Wio- Like the first-mode configuration, this static deflection is always 
stable for K* = 0. For K* = 2 X 10"4, it is unstable below Q = 1.11 X 
10 - 4 which corresponds to QM = 1.16 X 10"4, and gains its stability 

+ W. 10 
t w 2 0 

•0.1 

Fig. 3 Static equilibrium deflections of the symmetric coupled mode 
(W-,0 4= 0, W30 * 0) and second mode (W20 ± 0) , and their stability, W-,B: 

(stable), (unstable); W3B: — (stable), (unstable); W20: 
(stable) 

above it. As for the second coupled-mode configuration, the ratio of 
the amplitude of W30 to that of Wio is negative and of order of unity. 
It is unstable for both K* = 0 and 2 X 10~4. According to the nu­
merical result, QA is negative for the Cases (a) and (b). Hence, the 
second-mode deflection is always stable. Additionally, since Q2 is 
smaller than Ql, the flat configuration remains to be stable up to 
Q = Q2 like in the two-mode approximation. 

The effect of dynamic modal-coupling on the stability is taken into 
account in the three-mode approximation analysis, but not in the 
two-mode analysis. The static configurations in equilibrium and their 
stability which are predicted by the two and three-mode analyses are 
similar. 

Let us compare the present results with those of the analysis on a 
two-dimensional channel conveying a compressible, but almost in­
compressible flow which are given in reference [8]. First, we shall 
summarize the results of reference [8]: The flat configuration of the 
channel walls in static equilibrium is stable up to Q = Qs, that is, the 
smaller of Qi and Q2, but unstable above Q = QS. When Qi < Q2, the 
static first-mode configuration is always stable, whereas the second 
mode is always unstable. If Q2 < Qi, then the second mode is stable 
for Q2 < Q < QM but becomes unstable above Q = QM- The first-mode 
configuration which is unstable for Q\ < Q < QM obtains its stability 
above Q > QM- NO occurrence of the limit cycle oscillation of the walls 
is predicted. 

The main difference between both results is the number of the 
stable static equilibrium configurations. At any dynamic pressure 
there is always only a single one for the channel walls. On the other 
hand, there may be two for the panel, as is seen in Figs. 2 and 3 of this 
paper. The addition of one more stable configuration of the panel 
might be caused by the limitation on modal oscillation due to the 
assumption of incompressible flow. If the compressibility is accounted 
for, then, for instance, the stable flat configuration in the range be­
tween Qi or QB- , and Q2 for K* = 0 might become unstable since the 
disturbance in the first mode would be able to increase with time 
there. 

According to the linear stability analysis of reference [4], a finite 
flat panel is unstable for a narrow band range of the flow speed. Above 
this range, however, the flat configuration regains its stability. It was 
concluded that flutter oscillation occurs with further increase in the 
speed. In order to compare with this analysis, we will go back to (la) 
Flat Configuration of Section 2. 
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Fig. 4 The curve of D" and the stable and unstable ranges of the small dis­
turbances about the flat static configuration. _ _ : stable, - • - : C0 < 0, — X 
—: C, < 0 

In equations (29) and (30), let us put Ww = W20 = Ws0 = 0 as well 
as f = 0 like in reference [4] so that we have, instead of equation (20), 
a biquadratic characteristic equation 

C4e
4 + C2e

2 + C0 = 0 (51) 

Since C4, C2, and Co are real, if a set of a ± ib (a, b: real) is a pair of 
complex conjugate roots, so is —a ± ib. In this case the small distur­
bances described by equation (19) will increase oscillatorily. For 
stability £2 must be real and negative. Because of C4 > 0, the condition 
for stability is 

C2 > 0, C0 > 0, D* > 0 

where 

D*[Q] = C ! - 4 C 0 C 4 

= (a2/3 - a3/2)2 + 2C22(a2/3 + a3/2) + C\ 

(52) 

(53) 

Let Qc2 be the dynamic pressure at which C2 vanishes 

Qc2 = 1(1 + /3Ql')Q<?Q*3 + (1 + iSQW/lOJQgQsl/Cd. (54) 

where 

Cde = (1 + |8Qg?)Q»> + (1 + /?Q<2
S>/10)Q2°2> - /?(Qi!>)2/10 (55) 

Qc2 is a monotonic function with respect to /?. When 

0 > ft - 10Q$(Q 3 - Q2)/[KQ<!>)2 - Qg 'Q^ l Q*3 + QifQf^l, 

(56) 

Qc2 is greater than Q'3. In this case, putting 

Qc2 = Ql+a (a> 0) 

we obtain 

D*[Qc2] = -4a2a3Q2°2
)Q<?«(Q3 - Q2 + a ) < 0 

because of Q*3 > Q2. In addition, it is obvious from equations (53) that 
D* > 0 for 0 < Q < Q3. Let us illustrate the curve of D* and the stable 
and unstable regions in Pig. 4 where Qm and QD2 satisfy D* = 0. 

The stability characteristics of this plate is the same as predicted 
in reference [4], That is, the flat configuration is stable for both 0 < 
Q <Q2 and Ql < Q < Qm and unstable because of divergence for Q2 

< Q < Q3. The small disturbances will increase in an oscillatory 
manner for Qm < Q < QD2- In reference [12], the similar linearized 

analysis is detailed for a cylindrical tube conveying a flow. As is ana­
lytically shown in Section 2 of the present paper where the viscous 
damping is taken into account, i.e., f + 0, once the flat configuration 
starts to be unstable, its stability is never regained at the higher dy­
namic pressure. And no limit cycle oscillation is predicted about the 
flat configuration. Above the divergence boundary, there always exists 
at least one stable buckled configuration. Therefore, the oscillatory 
growth of the small disturbances about the flat configuration does not 
necessarily lead to occurrence of flutter oscillation. In this regard, it 
is recommended to reexamine the stability analyses on the simply 
supported tube conveying fluid, for instance, reference [13], in which 
the occurrence of flutter oscillation is predicted. Needless to say, the 
effect of the damping must be included. 

In order to take into account dynamic instability due to coupling 
between the symmetric and antisymmetric modes, the third term is 
included in equation (3). In a higher-mode approximation, the de­
flection might be assumed like equation (3) to be 

. irX N 2m7rX 
w = Wi sin 1- J_, W2m sin 

L m = l L 

N 
+ E U>2m+1 

m = l 

(2m + 1)%X . irX 
(2m + 1) sin sin 

L L 

for N = 1, 2, 3 , . (57) 

A simpler modal assumption is, however, given by the ordinary Fou­
rier sine series 

2N+1 rmrX 
•• Y. u>m sin for N = 1,2, 3, 

m=l L 
(58) 

When the stability is examined, it is necessary that the disturbed 
motion represented by 

Wm = Wm0 +am for m = 1, 2 , . . . , 2N + 1 (59) 

satisfies 

£ «2m+i/(2m + 1) = 0 (60) 
m=0 

Otherwise, the condition of no change in the fluid volume is vio­
lated. 

Anyway, the present simplest analysis is considered to clarify the 
characteristic features of the stability. It is pointed out that the in­
compressible flow assumption imposes an artificial condition, and 
that there may exist the excess stable static configuration. Therefore, 
it is most important to employ a compressible flow theory in a further 
investigation. 

6 C o n c l u d i n g R e m a r k s 
The stability of a two-dimensional panel of finite length exposed 

to an incompressible flow has been reexamined by using the gener­
alized aerodynamic forces which are presented in the author's previous 
paper. In analyzing the dynamic behavior of the panel the deflection 
is assumed in such a way that during the oscillation of the panel there 
occurs no change in the fluid volume in an arbitrary control surface 
enclosing the plate. For the numerical example used, the flat config­
uration in static equilibrium is stable below Q = Q2 regardless of the 
values of Qi and QB- for the two and three-mode approximations, 
respectively. Therefore, there are pressure ranges in which the panel 
possesses two stable static configurations. No limit cycle oscillation 
is predicted about the flat or buckled static configuration. A com­
parison with the stability analysis on a two-dimensional channel 
conveying an almost incompressible flow suggests that the assumption 
of incompressibility of the flow may induce an excess stable static 
configuration. Therefore, it is recommended to use a compressible 
flow theory in a future investigation. In addition, it is important to 
take into account the damping which always exists in reality. 
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On Stress-Strain Relations Suitable 
for Cyclic and Other Loading 

[The analysis and design of pressure vessels and other structures subjected to cyclic load­
ing and occasional large overloads requires stress-strain relations sufficiently simple to 
be usable with computer programs and yet adequate to describe the essential aspects of 
the response of the material! One such form with two quite different options is proposed 
for the time-independent domain which avoids the difficulties of earlier approaches. It 
has the kinematic hardening attributes needed for reversal of loading, allows for cyclic 
hardening or softening, gives zero mean stress as the asymptotic response to cyclic strain­
ing between fixed limits of strain, and reduces to a Jz stress-hardening form for radial or 
proportional loading so that it can model both cyclic and other loading to a good first ap­
proximation. 

<£> 
Introduction 

Many important machines and structures such as pressure vessels, 
turbines, and railroad wheels are subjected to cycles of load, or to 
cycles of temperature, or both, that produce significant inelastic re­
sponse. Their design also must encompass the probabilities of occa­
sional large excursions of load or temperature that may precede, in­
terrupt, or follow this exposure to low cycle fatigue. 

Considerable attention has been devoted to the experimental de­
termination of the behavior of material subjected to cycles of uniaxial 
stressing or straining, or subjected to cycles of shear. Cyclic hardening, 
cyclic softening, and the usual approach to cyclic stability have been 
demonstrated by the extensive investigations of Dolan, Morrow, their 
colleagues and students, and many others throughout the world [1, 
2]. However, little is known about the response of materials to more 
complex cycles beyond the preliminary study made by Lamba 
[3,4]. 

Many models have been proposed to fit one or more aspects of the 
response that has been observed in experiments. Time-independent 
behavior is of sufficient interest and complexity to have attracted 
major attention, but with the full recognition that time effects often 
are significant and may well govern design. Some models aim at a, 
detailed and accurate representation of observed behavior over a wide 
range of loading paths. Consequently, they are rather elaborate and 
difficult to incorporate in computer programs for complex structures. 
Others are addressed to an important but limited aspect of the be­
havior of the material and are not to be used outside of that range of 
applicability. 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Washington, D. C, November 15-20,1981, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, July, 
1980; final revision, January, 1981. Paper No. 81-WA/APM-6. 

• The purpose of this paper is to propose a model for consideration 
ffiaTis simple enough to be used effectively in computer programs and 
yet matches the essential features of the time-independent inelastic 
behavior of materials reasonably well for cyclic loading and for oc­
casional overloading separately and in combinationjln the sections 
that follow, .an outline will be given of the features of material behavior 
perceived as most essential and relevant. A simple model with two 
options will be proposed for cyclically stable material. One option 
matches the rounding of cyclic stress-strain curves, the other without 
the rounding matches the behavior on reloading following almost 
purely elastic unloading. The difficulties or limitations of earlier 
models will be exhibited along with possible physical or mathematical 
explanations for them. Cyclic hardening or softening then will be 
introduced into the simple model for each of the two options and the 
ability to match experimental information will be demonstrated. 
Finally, more elaborate forms of such a model, that include time-
dependent behavior and other ignored aspects of the real world, will 
be touched upon briefly. Their development seems premature in the 
absence of an accepted, broadly useful, elementary form for the 
time-independent idealization. 

Material Behavior Perceived as Most Essential and 
Relevant 

The complexity of all the details of the inelastic behavior of material 
is infinitely great even when all time effects are ignored. Obviously, 
therefore, the selection of just a few key aspects as the most essential 
and relevant for the purpose is a debatable matter of judgment and 
definition of essential. The choice is strongly dependent upon the 
perception of purpose and relevance. Our purpose here is to write a 
simple usable form that will include as a minimum both large excur­
sions of loading well out into the plastic range and the cyclic loading 
that gives plastic hysteresis loops and can result in low cycle fatigue. 
Our short list of the most essential and relevant aspects of material 
behavior prior to significant material damage is: 

1 Load excursions well out into the plastic range overwhelm or 
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Fig. 1 Data on 304 stainless steel [18] 

wipe out many of the effects of the history of plastic deformation prior 
to such large overloads. It is relevant but not essential that, for such 
excursions, a Mises or J 2 stress-hardening form is usually a satisfac­
tory approximation for those metals and alloys that are fairly isotropic 
in their initial state. 

2 Under symmetric cycles of stress or strain, metals and alloys 
in a soft or annealed state to start will harden cyclically and tend to 
a stable limit cycle, Pigs. 1, 2; those in a very hard or cold-worked 
condition to start will soften to the stable cycle; and those already in 
the stable condition neither harden nor soften but simply go through 
the stable cycle so evocative of kinematic hardening [5]. 

3 Unsymmetric cycles of stress in the plastic range will cause 
progressive "creep" or "ratcheting" in the "direction" of the mean 
stress, right-hand side of Fig. 3. 

4 Unsymmetric cycles of strain in the plastic range will cause 
progressive relaxation to zero of the mean stress in the cycle, left-hand 
side of Fig. 3. 

A model will be presented here with two options, each of which 
satisfies our four requirements 1-4. The first option gives full 
rounding of the stress-strain curve on each load reversal following 
appreciable plastic deformation, a condition often encountered in 
practice. The second option gives a sharp transition when going from 
purely elastic to elastic-plastic response, which is the correct picture 
for reloading following almost purely elastic unloading. Neither of 
these model options is as appropriate for both types of loading as are 
the models of Mroz [6] and the other assemblages of many simple 
models in parallel that correspond to a large set of closely nested yield 
or loading surfaces [7]. However, the broader match by such assem­
blages is at the sacrifice of simplicity and some important elements 
of reality. 

A Simple Model for Cyclically Stable Material 
The expression for the increment or rate of plastic strain ifj of a 

time-independent material with a smooth yield surface / = 0 is 

ef; = G a/ a/ 
' Gmn (1) 

where G is a scalar multiplier, Oij is the current stress, amn its incre­
ment or rate, and repeated subscripts denote summation. 

Cyclic creep or ratcheting and stress relaxation can occur whether 
the material hardens, softens, or is stable. Therefore, it is reasonable 
to postpone the examination of hardening or softening and consider 
a cyclically stable material first. 

A combination of the Mises stress-hardening form and the kine­
matic hardening proposed by Prager [5] and modified by Shield and 
Ziegler [8,9] includes the key aspects 1 and 2 of cyclically stable ma-

Fig. 2 Data on 2024-T4 aluminum 

Fig. 3 
terial 

Unsymmetric cycles ot strain and of stress for cyclically stable ma­

terial behavior. The simplest permissible and yet appropriate choices 
appear to be 

and 

G=AJ$ 

f = h(sij-s1j)(sij-s!j)-k* = 0 

(2) 

(3) 

where A, N, and h are constants, 1/2 = 2 SijSij, sij is the stress deviator 
aij — 3 Cqq<>ij> sij is the center of the spherical yield domain in stress 
deviator space, and k is the yield stress in simple shear when the yield 
domain is centered at the origin, sjj- = 0. The center moves in the di­
rection of stj — s'j at a rate equal to the projection of smn on that di­
rection in accordance with a Ziegler type of rule that satisfies the 
consistency condition of the stress point Sy remaining on the current 
yield surface, or / = 0 

and 

$ij ~ {Sij Sij) \Smn Smn) Smn/Zfi 

efj = AJ$ (stj - sij) (smn - sc
mn) s„ 

(4) 

(5) 

for this simplest of the analytic models of an initially isotropic and 
symmetric cyclically stable elastic-plastic material. 

Simple tension or simple shear or any radial (proportional) loading 
is represented by 

! R <*ij> ; = Rsl ~Rs% (6) 

where the fixed state of stress <J% or stress deviator s?j is on the (initial) 
yield surface for sij = 0 = <r;;-. The response of the material is purely 
elastic up to R = 1 and then is elastic-plastic in accord with equations 
(4) and (5) as R increases. When plastic deformation takes place in 
this forward direction or in the reverse direction as R decreases and 
becomes negative 
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Fig. 4 A poor representation by the rounding option when plastic deformation 
occurs on unloading to zero stress and on subsequent reloading 

sij ~ siji sij sij ~ ^iji ±«r, (7) 

The stress-strain relation (5) can be written in terms of sf,- from (4) 
and then with Sy from (7) 

efj = 2k2AJ$sij = 2k2AJ$sij = 2A k2N+2 \R\2Nstj 

= 2Ak2N+2\R\2NRsl (8) 

For monotonically increasing R, direct integration of (8) gives the total 
plastic strain 

<)A U2N+2 
rf.-— ( f l2W+l_ 1 ) s Q 

; 2N+1 ' 
(9) 

but the incremental form (8) will normally be more useful here. 
When the radial loading path is simple tension a = R CTO, where Co 

= V 3 k is the initial tensile (or compressive) yield stress, the plastic 
tensile strain 

£P = 2A( i<4)" + 1 ( |< r | /< ro ) 2 N ( !U (10) 

When the path is simple shear T = RTO, where T 0 = k is the initial yield 
stress in shear and ef2

 = 1 7 P 

H P = 2 A ( T § ) W + 1 ( | T | / T O ) 2 W T (11) 

The introduction of a stress-dependent plastic modulus inversely 
proportional to J% gives the correct qualitative picture of cyclic creep 
and stress relaxation in simple tension or simple shear. This is shown 
in Pig. 3, where the elastic-plastic stress-strain curves are identical 
except for a translation along the strain axis. 

The rounding option, illustrated in Fig. 3, uses a yield surface of 
small diameter. Unfortunately, on reloading following appreciable 
unloading or reverse loading with small plastic deformation, the 
stress-strain curve exhibits full rounding well before reaching the 
stress level from which unloading began, Fig. 4. This is the price paid 
to obtain proper rounding of the hysteresis loops. There is also a 
somewhat more subtle problems with this option. When reverse 
plastic deformation occurs on unloading (before reaching zero stress) 
the reciprocal of the plastic tangent modulus starts off with a positive 
value but then decreases to zero as the stress goes to zero before it 
begins to increase again. This clearly is an incorrect representation. 
However, it occurs only in the region of small stress for a reasonable 
choice of k and, although not aesthetic, can be ignored because the 
plots obtained will differ only very little from purely elastic response. 
The apparent elastic range is extended. For all practical purposes, no 
significant plastic deformation is computed until the sign of the stress 
reverses and the magnitude of the reversed stress is a significant 
fraction of the initial yield stress. 

Corresponding errors of representation appear for loading paths 
and cycles that do not include the origin, paths for which the J2 form 
itself is a less satisfactory approximation. 

The sharp corner option or representation, appropriate for a se­
quence of unloading and reloading, is obtained by introducing a large 
diameter yield surface, so that only the flat portion of the elastic-

Fig. 5 Elastic range for the sharp corner option and measurements for the 
determination of a and Wo 

plastic stress-strain curves of Fig. 3 is used. This rules out reverse 
plastic deformation on unloading. 

The choice of a small or large diameter yield surface will be gov­
erned by the aspects of behavior most important for the application 
at hand. 

The parameters of the model are found from the upper or lower half 
of a stable hysteresis loop of the material. 2Af comes from the slope 
of a plot of log ep/a or log yp/i, the logarithm of the reciprocal of the 
plastic tangent modulus, versus log a or log T, in the range of plastic 
strains that is of greatest interest to the user of the model. Elastic 
strain increments must, of course, be taken into account in reducing 
the data; ee = &/E, ye - f/ft, etc., add to the plastic strain increments 
or rates to give total increments or rates, e = ee + ep, etc. 

In the rounding option k should be taken as large as possible con­
sistent with the desired rounding of the loop, in order to suppress or 
minimize plastic deformation on unloading and to reduce improper 
rounding on direct reloading. Except for these two and closely related 
loading cases, the model will be insensitive to the particular choice 
of k, as can be seen from Fig. 3. 

In the sharp corner approach, however, the size of the yield surface 
has a dominant effect because it determines the stress level of the 
plastic response. The elastic range 2V3 k in tension-compression is 
comparable to the total height of the hysteresis loop and is taken as 
the vertical distance at zero total strain, Fig. 5. Because of their flat­
ness, the computed stress-strain curves (Fig. 7) will be affected little 
by large variations of N, 

Finally, A should be chosen to match the value of stress at some 
intermediate value of strain within the range of plastic strains of 
greatest interest. 

A wide variety of more complex stress-strain relations are available 
for time-independent behavior [10-14] that can model one or more 
aspects of material behavior more closely than the simple three con­
stant form proposed here. Before considering the next step of modi­
fying the present form to include cyclic hardening or softening, it is 
worth examining those time-independent models that have been 
proposed and used for cyclic loading. 

Scope and Limitations of Some Earlier Models 
One or another aspect of reversed or of cyclic loading has attracted 

attention in the past and led to suggestions of mathematical models. 
A set of bars in parallel can model a simple tension curve as accurately 
as desired. If each bar is elastic-perfectly plastic with the same 
properties in tension and compression, the assemblage is immediately 
cyclically stable for an unsymmetric cycle of stress or strain [7], Fig. 
6. The assemblage does not "creep" or relax as it should in accord with 
the requirements 3 and 4 listed under essential material behavior. 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 481 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cr 

1 
J 

i 
/-i 

t 

/ 

/ / / i j-

5/J7 

/ / 

„ Strain 
Cycle 

/ 

B. 

1 

1 

Stress 
Range 

e 

MPa 

300 

200 

100 

- 100 

-200 

-300 

i / 
-0.01/ 

-

'/ ' 
1 -0.005 

a 

0 
' i 

0.005 i 
/// ' 
Wo.oi € 

Fig. 6 An immediate and inappropriate unsymmetric stable cycle 

Fig. 7 Model simulation by the sharp corner option computed with data of 
Fig. 1 

The more general assemblages of elastic-perfectly plastic homo­
geneous elements or states in parallel with their nested yield surfaces 
have the same ability to model stress-strain behavior accurately for 
generally outward loading paths and to exhibit a significant realistic 
Bauschinger effect for a single reversal of loading. However, they too 
suffer from the defect of not creeping as they should in the direction 
of the mean stress in an unsymmetric plastic cycle of stress and not 
settling down to zero mean stress in an unsymmetric plastic cycle of 
strain. 

Permitting one or more elements of the assemblage to harden, as 
each strains plastically, produces a model of a cyclically hardening 
material but does not overcome the basic difficulty of an inappropriate 
response to unsymmetric plastic cycles of stress or of strain. The 
models of Caulk and Naghdi [13] and of Popov [12] have this basic 
drawback. So also to a far lesser extent does the model of Mroz [6] with 
two or more nested yield or loading surfaces. However, each model 
was devised for its own special set of requirements for matching 
particular aspects of real world behavior. None began with all the 
requirements 1-4 that have been chosen here as essential. 

Differences in principle of the degree of thermodynamic revers­
ibility between assemblages of states in parallel or series and dislo­
cation structure were pointed out still earlier by Drucker [7] for both 
conventionally cyclically stable models with nested loading surfaces 
and cyclically hardening models with intertwined loading surfaces. 
Useful and physically appealing as such assemblages may be for a 
variety of problems, whether they are in the forms just described or 
in the form of parallel layers for beams, plates, and shells [15], they 
cannot represent unsymmetric cyclic behavior properly. 

Alternative approaches have been proposed to give proper rounding 
of reversed loading curves as well as proper cyclic response [11]. They, 
as well as several of the earlier suggestions, seem more elaborate than 
can be handled economically on computers today for boundary-value 
problems with pointwise varying multiaxial states of stress in which 
large load excursions are superposed occasionally on low-cycle fatigue 
loading. Some of the complexity appears to be caused by the manner 
in which the consistency condition is employed. 

It is necessary for the stress point to remain on the yield surface(s) 
and for the center of each surface to move appropriately as plastic 
deformation continues. However, when this is built into the model 
automatically through a specification in stress space as in equation 
(4), the choice of a reasonable stress-strain relation is quite free. The 
reverse approach, which relates the motion of the stress point and the 
center of the yield surface through an incremental stress-strain 
relation that is chosen in advance, can lead to a consistency relation 
that may not be satisfied conveniently. This more difficult approach 

so common today for nonlinear plastic hardening has not given good 
results except for the model of Arutyunyan and Vakulenko [14]. It 
may have developed as a consequence of generalizing Prager's illus­
trative example of linear kinematic hardening, in which the motion 
of the yield surface in stress space is proportional to plastic strain. Any 
linking of the location of the yield surface in stress space to the current 
components of plastic strain causes a severe difficulty. This class of 
models can match observed Bauschinger effects for a single reversal 
of loading extremely well, as demonstrated in a paper with Edelman 
[10]. However, such models are not appropriate for cyclic loading 
because unsymmetric strain cycles give unsymmetric stress cycles. 

The temptation to think of the special form f(oij, eg,) as a good first 
approximation to reality must be resisted here. Writing 

f = 0-
i>(Jii 

Oii + 
df 

and replacing 

-— <nj by - — - «£,„ 

generally leads to undesirable and misleading constraint. 

Modification of the Proposed Simple Model to Include 
Hardening or Softening 

The term hardening or softening in the cyclic context could refer 
to the increase or decrease in the diameter of the yield surface or to 
the increase or decrease in the plastic tangent modulus at a given 
stress or to both. The first definition is appropriate for the general­
ization of the sharp corner approach and the second definition for the 
rounding representation. Pure kinematic hardening with a translating 
yield surface as given by equation (3) and a purely stress-dependent 
plastic modulus as given by equation (5) is neither hardening nor 
softening in either sense although the stress-strain relation (5) gives 
rise to the usual work-hardening picture for each radial loading as 
exhibited by form (10) for simple tension and form (11) for simple 
shear. 

The sharp corner form with cyclic hardening or softening is ob­
tained by replacing k2 in (3) by F, a positive scalar function of the path 
of straining, thereby permitting the diameter of the yield surface to 
change. Increase in F gives cyclic hardening, decrease gives cyclic 
softening. However, the more general expression 

/ = % (sis ~ slj) (sij - sfj) -F = 0 (12) 

does not require any alteration in the form of expression (5) of the 
stress-strain relation 
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eg- = AJ$ (sij - sty (smn - sc
mn) smn 

and any of the specialized forms such as (10) for simple tension. The 
somewhat strange result is that for a hardening material purely in the 
sense of Co increasing, the plastic modulus cr/ep at a given value of 
stress a decreases. The motion of the center of the yield surface sy 
is affected significantly by the increase or decrease in F. Equation (4) 
is replaced by a more general form that reduces to (4) when F is con­
stant. 

/ = 0 = (Sij - sij) (Sij - sjj) - F 

$ij {Sij Sij) w/r n) Smn & 

(13) 

(H) 

With the Prager-Ziegler type of assumption thatsjj- is in the direction 

Sij = {(Smn ~ SC
mn) Smn ~ F] (Sij - S°ij)/2F (15) 

Any one of a variety of choices for the functional dependence of F 
might be selected on a trial basis. F as a function of plastic work, 

WP = J on ifj dt= f sij efj dt, 

or of cumulative plastic strain measured by 

Jji/ipjjdt, 

is not unreasonable. The choice of F as a function of 

Wpc = ft(sij-s!j)e?jdt (16) 

will be made here instead because it also is not unreasonable and it 
does result in a convenient form for s£;-. When plastic deformation 
takes place, (16) may be rewritten using (5) and (12) as 

WP< = j (2F) A J% [smn - sc
mn) smn dt (17) 

It is of some interest to note that St Vej) efj dt is given by the same 
form (17) except for y/2F instead of IF and so is proportional to W"c 

for cyclically stable material. Substitution of 

F = (dF/dWPc) WPC (18) 

in (15) gives 

sij = [1 - 2F(dF/dWPc) A J$] 

X \(smn - sc
mn) smn\ (Sij - scij)/2F (19) 

One of many reasonably simple choices for F that permits an ad­
justable asymptotic approach to the cyclically stable value F = k2 

F = k2 [1 =F a exp {-WPC/WO)]2 (20) 

where the upper sign applies for hardening from F = k2(l - a)2 to F 
= k 2, with a restricted to lie between zero and one. The lower sign 
applies for softening from F = k2(l + a)2 to k2 for any positive a. The 
other disposable constant Wo in (20) permits adjustment of the rate 
of hardening or softening. W0 is the value of WPC at which F = k 2(1 
=F ale)2. Also, from (20) 

dF a 
= ± 2k2 — exp (-WP'/Wo) [1 =F a e x p (~WPC/W0)] 

dWpc Wo 

= ± 
2F(a/Wo) exp (-WP'/WQ) 

l = F a e x p ( - W 7 W o ) 
(21) 

In the rounding representation, expansion or shrinking of the yield 
surface does not affect the hysteresis loops appreciably. Cyclic 
hardening or softening must be provided by the alternate definition, 
i.e., an increase or decrease in the plastic tangent modulus at each 
stress point. Perhaps the simplest approach is to maintain a constant 

(small) diameter yield surface and to give a hardening form by re­
writing (5) as 

' B ( = * ) % « - « & ) ( « » ' Smn/ S; mnJ °mn (22) 

(%) * (25) 

Cyclic hardening is given by an increase in the normalizing stress a, 
cyclic softening by a decrease. Following the same steps which lead 
to the functional dependence of F in the previous form, one can write, 
similarly to equation (20), 

a = a* [1 T a exp ( - WPC/W0)] (23) 

where a* is a constant stress and the sign before a is chosen in the 
same way as for equation (20). The stable form of (22) is identical to 
(5) if one lets 

B 
A = (24) 

(a*)2N 

Because the size of the yield surface remains constant, the motion of 
its center is still described by (4). However, the specialized forms for 
radial loading, (8)-( l l ) , must be modified. For example, (10) be­
comes 

ZBall\o\\™ 

3N+1 { a I 

No matter what form of incremental stress-strain relation is chosen, 
the solution to a boundary-value problem requires keeping track, at 
each point of the body, of the state of stress, the location of the current 
yield surface in stress space or equivalent information, and the in­
crement or rate of strain accompanying the increment or rate of stress. 
The iterative process to be followed for each increment of load and 
displacement or temperature change applied to the body, and the 
direct updating of sfj to give the state and response of the material 
at each point, can be done sequentially within the accuracy of repre­
sentation of the model. Equation (19) for the motion of the center of 
the yield surface in the sharp corner option and equation (22) for 
plastic strain rates in the rounding option are more complicated than 
the corresponding equations (4) and (5) for the cyclically stable ma­
terial, but their use and the calculation of Wpc are straightforward 
given sij and current values of Wpc, F or <r, s;y, and sf;-. 

The parameters of the model for both forms are conveniently 
chosen from a fully reversed, strain-controlled test in tension-com­
pression, as explained below, or analogously for shear. Material con­
stants A or B/(ff*)2N, k, N are determined in the manner already 
described for the stable loop.However, in the sharp corner form, and 
for a cyclically hardening material, the log-log plot of the reciprocal 
of the plastic tangent modulus versus stress, which provides N, is now 
a plot for the initial loading curve, where N has the most influence 
on model predictions, Fig. 7. Similarly, in the rounding form, k is 
taken as large as possible, consistent with the stress level of the initial 
loading curve. 

Quite independently of the values chosen for A or B/(u*)2N, k, N, 
the initial response and the approach to the stable cyclic response 
determine the remaining constants a and Walk. Let ffi and a*, be the 
stresses at the end of the initial curve and at the tip of the stable loop, 
Fig. 5. Equations (20) for the sharp corner option or (23) for the 
rounding option suggest that a first approximation to a is 

(Tl/(T„ = 1 =F ( (26) 

The choice of Wo/k for the rounding option requires picking two 
points A and B at the end of any two curves in the course of hardening 

• or softening and measuring the stress differences Aff/i and A<TB from 
the tip of the stable loop, Fig. 5. In view of the exponential rate of 
approach to the stable cycle described by (23), an approximate value 
of Wo/k is given by 

AffB 
A aA 

• exp 
Vlfe (2n)AeP 

W0 

(27) 

where n is the number of cycles between A and B and Aep is the av­
erage plastic strain range of a cycle and is measured as indicated in 
Fig. 5. For the sharp corner option, one must in addition use the 
stresses a A and O\B, Fig. 5, to get W0/k from 
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(28) 

More elaborate methods can determine a and Wo more accurately. 
However, they probably are not worth developing because a close 
match of a single set of data does not guarantee a correct response to 
a different, e.g., nonradial, loading path. 

Of course, a model with 3 constants available for radial loading and 
stable cyclic response and two more for cyclic hardening or softening 
cannot aim at a precise description of material behavior for a variety 
of paths of loading. Far more elaborate forms than the J2 or Mises 
form are known to be required for radial loading alone. Quite com­
plicated functions of the history of loading, not constants, are needed 
to obtain just a moderately good representation in detail of the strain 
history for more general loading paths. 

However, just as the very crude approximation of perfect plasticity 
and the resulting plastic limit theorems and the shakedown theorems 
have a meaningful place in analysis and design [16,17], so also should 
a simple but essentially valid approximation to both cyclic behavior 
and response to occasional overloads provide a useful basis for life 
prediction and safe design. It is too early to tell how well the particular 
proposed simple form will do, but some comparisons with the ex­
perimental results of others will prove encouraging. Surely, much 
more detailed matching of cyclic stress-strain behavior is not essential 
for low cycle fatigue prediction. Some scalar measure such as WPC, 
or perhaps WP or J"t Vefy c?j dt based on the proposed simple model 
should provide a first approximation of value. 

It is obvious that any representation that matches the stable cyclic 
stress range of a material, and is flexible enough to permit a choice 
of the initial response and the rate of approach to the stable cycle, will 
match the data from which it is taken reasonably well. 

Fig. 7 demonstrates this for the sharp corner form and the test of 
Fig. 1 on 304 stainless [18] with the choice of A k2N+3 = 0.3, k = 140 
MPa(20 Ksi), N=l,a = 0.5, W0/k = 0.05, E = 120 GPa(17 X 103 

Ksi). 
The rounding form, Fig. 8, shows better agreement with these data, 

where the improper representation of Fig. 4 cannot appear. Fig. 9 
demonstrates how closely the same form matches the cyclic hardening 
of 2024-T4 aluminum in a symmetric strain cycle followed by a large 
excursion which in turn is followed by an unsymmetric strain cycle. 
Corresponding data, Fig. 2, were provided by Morrow and Kurath. 
Parameters in Figs. 8 and 9 were, respectively, (B/(<r*)2N) fe2N+3 = 
9 X 103, k = 50 MPa(7.3 Ksi), N = 6, a = 0.5, W0/k = 0.07, E = 120 
GPa(17 X 103 Ksi), (B/(a*)2N) k2N+3 = 7 X 10"6, k = 140 MPa(20 
Ksi), AT = 5, a = 0.3, W0/k = 0.2, E = 70 GPa(104 Ksi). 

No claim can be made that either choice of constants in the fore-

Fig. 9 Model simulation by the rounding option computed with data of 
Fig. 2 

going examples is adequate to describe the stress-strain behavior of 
the material for more general paths of loading. Nevertheless, in dis­
tinction to all other simple models that have been proposed, and many 
of the complex, the character of the response to unsymmetric plastic 
cycles of stress or strain is correct in principle as is the general be­
havior for combinations of large excursions of stress with a dominant 
pattern of cyclic loading. 

Concluding Remarks on Rounding, Time Effects, and 
Other Aspects of Reality 

It is possible to break the connection between the desirable 
rounding of the stress-strain curves for reversed plastic loading and 
the undesirable rounding for reloading following an almost elastic 
reversal, Fig. 4, by keeping track of the unloading-reloading paths and 
introducing the physically correct transition from elastic to elastic-
plastic response. Whether this added degree of reality is worth the 
complexity for general paths of loading is doubtful. The inclusion of 
time and temperature effects certainly is of far greater practical im­
portance for many materials, such as the stainless steels, under op­
erating or emergency conditions in pressure vessels and piping or other 
engineering structures and devices. Although much is known about 
time-dependent creep and relaxation at a variety of temperatures [19], 
very little experimental information exists on the time effects oc­
curring in conjunction with cyclic loading interspersed with large 
excursions of load, along with temperature variation. Bodner [20] and 
Onat [21] have suggested forms on the basis of the limited available 
experimental information. When time and temperature effects are 
primary, entirely different models of material behavior are required 
from that proposed here. However, when elastic-plastic response 
dominates but time and temperature effects are significant, a modified 
form of the proposed simple model should be appropriate, one which, 
adds a linear or nonlinear viscous response and employs a temperature 
modified stress [22] along with a time at temperature modified stress 
for plastic response. 

This assumes the simple model proposed is an adequate model or 
can be made adequate with minor revision, an assumption that re­
quires further experimental exploration and study. The generalization 
from isotropic to anisotropic cyclic hardening or softening suggested 
by the data of Lamba [3] poses no difficulty in principle within the 
mathematical theory of plasticity. However, the functional form for 
the yield surface / = 0 will be far more complicated and could hardly 
be classed as a minor revision. 

In concluding it is worth returning to the two somewhat related 
classes of models that have long been popular because they can exhibit 
a proper Bauschinger effect for a reversal of loading. One includes the 
current individual components of plastic strain explicitly and sepa­
rately in the yield function / . The other assembles well-defined 
time-independent simple elements in parallel to produce a model that 
has great physical appeal because it can actually be constructed and 
its mechanical behavior is easily visualized. Unfortunately, neither 
of these classes of models is basically appropriate for cyclic loading. 
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Neither exhibits a proper response for repeated unsymmetric plastic 
cycles of stress or of strain. 
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a. 

An Analysis of Power Law Viscous 
Materials Under a Plane-Strain 
Condition Using Complex Stream 
and Stress Functions 
The equilibrium and compatibility equations for nonlinear viscous materials described 
by the power law are solved by introducing the complex stream and stress function^ The 
stresses, strain rates, and velocities derived from the summation form of the stream func­
tion and the product form of the stress function are identical to the results obtained from 
the axially symmetric field equation. The stream function solution is used in the deforma­
tion analysis of a viscous hollow cylindrical inclusion buried in an infinitely large viscous 
medium assuming an equal biaxial boundary stress. The stream function approach is 
used in determining the stress-concentration factor for a cavity in a viscous material 
subject to the identical boundary biaxial stress. The results agree with the results of 
Nadai. The effect of the strain-rate-hardening exponent, the geometry of the inclusion, 
and the material constants on the hoop stress-concentration factor in the interface be­
tween the inclusion and the matrix are discussed. 

I n t r o d u c t i o n 
When a hollow cylinder buried in a matrix is subjected to various 

loading conditions a fracture may be observed due to the stress con­
centration of the interface. The stress concentration causes a void 
growth [1, 2] and eventually a ductile fracture. This kind of phe­
nomenon needs to be addressed in order to adequately perform the 
general deformation analysis, to predict the fracture or to establish 
the fracture criteria. 

Pfes1lrTted"hereims the deformation analysis for a hollow cylindrical 
inclusion of a rate-dependent material buried in another rate-sensitive 

' material subjected to equal biaxial tension or compression boundary 
stresses^The constitution equation of the material is assumed to be 
expressed by the power law in the steady creep stage. The direction 
of the applied boundary stress is perpendicular to the inclusion axis. 
The strain rate perpendicular to the plane is neglected, thus the 
plane-strain condition is valid. 

The analysis consists of three parts: 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Washington, D. C, November 15-20,1981, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, April, 
1980; final revision, December, 1980. Paper No. 81-WA/APM-l. 

1 The analysis associated with the complex conjugate stream 
function. 

2 The analysis using the complex conjugate stress function ap­
proach. 

3 The analysis of the axially symmetric problem with a uniform 
external pressure. 

Reducing the results to the solution of the problem of a single hole 
in a rate-sensitive material the hoop stress-concentration factor in 
the cavity is compared with the results of Nadai [3]. The comparison 
shows the validity of the complex conjugate stream and stress function 
approach associated with nonlinear viscous creep materials. 

From the results of the analysis 

1 The effect of the rate-sensitive exponent on the stress distri­
bution at the interface is discussed. 

2 The effect of the radius ratio of the hollow cylinder, aila\, on 
the stress concentration at the interface is addressed. 

3 The validity of the complex conjugate stream or stress function 
approach associated with nonlinear viscous materials is proved by 
comparison of the results herein and the results of Nadai [3]. 

Analysis 
The Stream Function Approach. Nadai [3] considered that the 

shearing stress is assumed to be expressed in terms of the shear rate 
in the octahedral plane during the steady stage of creep (strain-
rate-hardening material) even though the stress components of the 
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rate-dependent material may, in general, be expressed in terms of the 
rate of the deformation tensor. Nadia [3] then established the relation 
between plastic stress and strain rates. The plastic strain-rate com­
ponents are given by a scalar multiplier (X) times the deviatoric stress 
components as in the Levy-Mises law without assuming rate-inde­
pendence and without a yield condition. Hence, the applicability of 
the analysis is limited to small strains and the steady creep stage. The 
analysis is not valid in the early portion of creep. A detailed expla­
nation of the constitutive equation for a steady creep material is given 
byNadai[3] . 

The governing equation (in the absence of work hardening) for 
plastic flow under a plane strain condition in accordance with the 
Levy-Mises equations is derived for materials with stress-strain rate 
behavior of the type 

— ff„:m <T = ffof (1) 

where a, ?, and <xo in equation (1) are the effective stress, strain rates, 
and flow function, respectively. 

The constitutive equation given by X(oy- + ap&ij) = hj where ap 

is hydrostatic pressure, the strain rate given by ey = \(utj + Uj,i) and 
the incompressibility condition under a plane-strain condition are 
substituted into the two equilibrium equations. Using the stream 
function definition, u = dfyldy and v = —d<j>/dx, the equilibrium 
equations are expressed in terms of the hydrostatic pressure gradient 
and the higher derivatives of the stream function with respect to x 
and y. Eliminating the hydrostatic pressure gradient from the two 
equilibrium equations gives [4], 

d2 12 d2d 12 d2<M ( a 2 _ JP\ fl_ / a y _ a y 
dxdy\\dxdyl \dy2 dx2j\2\\dy2 

:0 (2) 

On transformation of the stream function 
plane, 

dz2lU>22J \ dz 2 / j + dz2 

dx2 

into the complex 

Aaz"2) W 2 / 
(3) 

where n = (1 + m)/2,0 < m < 1, and <j> is the stream function, z and 
z are the complex conjugate variables. 

Expressing equation (2) in terms of the complex flow functions, the 
effective strain rate (in two-dimensional Cartesian coordinates) and 
the scalar-valued multiplier, gives 

dz2 dz2 

• 3 ? _ j _ / /iu-"i fay a y 
" 2~a~ 2a0\ V 3J idz2dz2 

(l-m)/2 
(4) 

Note that for m = 1 or X = constant (perfectly viscous material, [3]), 
equation (3) reduces to the familiar biharmonic form. Solution of the 
biharmonic equation subject to the boundary conditions of plane-
strain extrusion through a square-cornered die was illustrated in 
reference [5], 

Summation Form Solution. Letting 

<p(z,z) = 0i(z) + 02(2) 

and denoting the second derivatives by 

d20i , d2(ji2 

upon substitution of equation (6) into equation (3) yields 

d2pn~l 

dz2 • - Dp" = 0 and 
dz2 0 

(5) 

(6) 

(7) 

where D is a constant. The detailed derivation of equations (3) and 
(7) is given in [5]. 

Solutions for (pi and 4>i are then given by 

0i(z) = 2(n - l)(2ra - 1)K In (z - A0) + A\z + A2 

02(z) = - 2 ( n - l ) (2n - 1)K In (z - K0) + K& + K2 

where K, A;, and K; (i = 0-2) are constants. 

K = 1/D (8) 

JJJJLIJJIJLJ 
« 4 m, 

ff = 0-, # m 2 M A T R I X 

-»- UNIFORM 
-e» TENSION 

rrrTTtTTTTt 
Fig. 1 Schematic diagram of problem 

The stream function is given by letting A; = K; = 0 in equation 
(8) 

</> = 2m(l -m)(K\nz -KInz) 

Equation (9) can be rewritten as 

<t> = 2m(1 - m)d22K(\n z - lnz) 

(9) 

(10) 

where aq. is the radius defined in Fig. 1. 
Equation (8) is not valid for m = 0.0 and 1.0. For m = 0, the stream 

function is obtained as 

0 = 2Re 
1 1 
— In — 

Ao2 Aoz. 

For m = 1.0, a perfectly viscous material, any biharmonic solution is 
valid. For m ^ 1.0 velocities, strain rates and stresses in the field are 
expressed in terms of the first and second derivatives of the stream 
function obtained from equation (10). 

To find the stress component using the strain rates, the hydrostatic 
pressure is required. The hydrostatic pressure (negative mean stress) 
<rp can be obtained from the equilibrium equation written in terms 
of the stream function gradients: 

daD d / 1 d24 
+ — T-

d 
+ — dx dx\kdxi>yj dy 

_ ^£> - — (- d 2 ( M _?_ 
dy dy \X dxdy) dx 

2_ /ay _ ay 
2X\dy2 dx2, 

i_ /ay _ ayy 
2X" [dy2 ~ dx2J. 

0 

^0 

Differentiating the first equation with respect to y and the second with 
respect to x and adding yields 

- 2 
dVp / a2 a2 

— + ~ r + ~~o 
dxdy \ay2 dx2, 

2X lay 2 ' 
J)2 

dx2 = 0 

Transforming equation (11) to the complex plane gives 

av, 
az2 

where 

h2n - fl2 

P = 2ci — (pd+m)/2q(m-l)/2 + q(m+l)/2p{m-l)/2) 
dz2 dzdz 

(11) 

(12) 

3\l-m = 2oo 

3 

Substituting the second derivative of the stream function into equa­
tion (12) yields 

a2<rD a2o-D 

dz2 dz2 
•• - 2 1 + m c | b 0 w ( l - m)\ 

X (1 - m 2 )a 2
2 m (z-( 2 + m»z-m - z-'»z-(2+'n)) (13) 

where K = boi. 
The solution of equation (13) is found as 

<xp = -{2)1+mb0c{b0m(l-m)}m-m - m)2 f—j"* N ™ + A (14) 
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Thus the velocity components in the horizontal and vertical direction 
are 

dz dz 

" 2 
= — 4£>o'Ml — m)o2 — cos f 

v = -ib0m(l — m)d2 — sin f (15) 

where z = ije1?. 
The velocity field under biaxial tension or compression associated 

with a hollow cylindrical inclusion or hole has a symmetric plane. The 
horizontal velocity, u, is zero at f = TT/2 corresponding to the y-axis 
and the vertical velocity, v, vanishes at the x -axis (f = 0). To satisfy 
this condition, the constant K is K = boi. 

The strain-rate components are 

_ . IdH _ dĵ A 

/ a 2 \ 2 

= 4b0m(l — m) — cos 2f 

/o2 \2 

kxy = 4b0m(l — m) — sin 2f (16) 

Substituting equations (14) and (16) into the constitutive equations, 
"y" = fey A ) — Op&ij, the total stress components can be obtained. The 
components are 

ax = (2) i + mc6 0( l - m)\b0m(l - m))™-1 

(dn\2m 
—J | m c o s 2 f +(l-m)} + A 

(2)1 + mcb0(l - m){b0m(l - m)}" (17) 

— j - m c o s 2 f + (l-m)\ + A 

— sin 2f 

Transforming the velocities and stresses shown in equations (15) and 
(17) to cylindrical coordinates gives 

ur = 4bom(l — m)a2 

ue = 0 

(7) 
(18) 

and 

<*2 
or = A + 21 + mci60m(l - m))m-160( l - m) 

ae = A + 21+mc{60m(l - m) | m - 1 6 0 ( l - 2m)(l - m) 

Ore = 0 

02' 

(19) 

Stress Function Solution. The stress analysis associated with 
a biaxial stress controlled system is performed using the stress func­
tion. The compatibility equation expressed in terms of the second 
derivatives with respect to x and y of the strain rate can be repre­
sented in terms of the stress function gradient by using the consti­
tutive equations under a plane-strain condition. Substituting the 
stress function definitions, ax = ^>,yy, <Jy = iplXX, and a>xy = — \piXy into 
the compatibility equation, the resulting governing equation as de­
rived in [4] is 

\dy2 

J)2 

d*2. 2U.V2 dx2 

d 2 / . d2i/< 
+ 2 X — -

dxdy \ dxdyi 
•0 (20) 

The scalar multiplier X is expressed in terms of the second derivatives 
with respect to the complex conjugate variables. 

3 w /d2^\d-"»)/2'" 
: _ (4)<l-m)/m i i X A 
2c 1 Ida2/ 

, v 3\<1-m)/'n 

where A = 

and the governing equation (20) becomes 

d2 f/d2^\(i-">>/2*> /d2i/'\(i+'")/2m 

dzHldi2/ Idi2] 

ci = (<ro)1/m (21) 

+ -dz2 

d2l//\(l+m)/2m ld2\P\a-m)/2m 

dz2/ Idi2 •• 0 ( 2 2 ) 

The solution of equation (22) may be obtained by assuming the 
stress function \p in the form of either a summation or a product of the 
conjugate functions 1̂ 1(2) and i/^z). When the solution cannot be 
separated by either the summation or the product form, equation (22) 
is solved by the mixed mode approach. 

Product Solution. In this section, the stress function \p is assumed 
to be the product of two complex functions that is, 

f = \//i(z)\p2(z) + Azz 

Substitution of this solution form into equation (23) yields 

(23) 

/d2iWU>+M d2 

dz2 

+ 

fa dz2] J 

V I dz 2 / Jdz2 Uz2/ 

where o> = (1—m)/2m. 

Equation (25) is assumed to be 

i1(z)=A(A1 + A0zY 

where v is determined subject to the following condition: 

* i ffi"> 

•• 0 ( 2 4 ) 

(25) 

(26) 

the constant D is obtained from the boundary conditions. Substituting 
equation (25) into equation (26), v and A are obtained as 

7 = 1 — m 

D (l-m)/2 

exp m,(l — m)Ao2 

Hence, equation (26) can be rewritten as 

( 1 - m ) 
(27) 

ti(z) • 
D 

iM?); 

m(X — m)Ao2 

D ](l-m)/2 

(l-m)/2 ( 1 - m ) ,,A 

exp — m\(A0z + Ax)1"™ 

m( l — m)Ko2. exp 

2 

( 1 - m ) 
(tfoz + ^ i ) 1 

and 

D 

m(l — m) 

(1-m) 
(ro)-W-m) 

X ((Aoz + A t) (K& + Ki) J1-"" + Azz (28) 

The stress and strain components in the plane-strain field can be 
obtained. 

It Ai = K\ = 0, equation (28) can be simplified further as 

D Id-m) 
(zz)*1-"1' + Azz (29) 

m( l — m)J 

since Ao and Ko are complex conjugate integral constants. 
The stress components, ax, ay, and axy are obtained by using 

equation (29) 

V-

\dz dz/ 

D (1-m) 

m(\ — m) 

X (1 - m ) ? r 2 m ( - m cos 2f - 1 + m) + A 

(30) 
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d d\2 , 
- + — "P = 2 
dz dzl 

D 

m(l - m) 

(l-m) 

X (1 - m)?T 2 m(-ra cos 2f + 1 - m) + A 

D 

m(l — m) 

(l-m) 
m(l - m)?)-2m sin 2f (30) 

(Coni.) 

The strain rates, derived from the Levy-Mises constitutive equations, 
are 

ey= ^ ( 2 ^ 3 ) 
4 c i 

l /m 
D (1—m)lm 

m(l — m) 

X m( l - m) 1 / m (zf) - 1 

cos 2f 

z z - + 
z z 

= — (2V3)1/m(Z))(1-m)/mm(l - m) 
2c i zz 

• — (2V3) 1 / m (D) ( 1 - m ) / m m(l - m) ^ ^ 
2c i zz 

(31) 

The velocity components u and v can be obtained by solving the 
equation defining the linear strain rate, given by 

du du 
tx= — + —-

dz dz 

when this is done, the horizontal velocity, u, is given as 

-A. 2C; 
-(2V3)1 / mD(1- 'n> / mm(l - m)??"1 cos f (32) 

(33) 

The vertical velocity component, by similarity, is given by 

— /S 
v = —— ( 2 ^ ) 1 / m D < 1 _ m ) / m m ( l - m)??"1 sin f 

2c i 

Equations (30)-(33) obtained from the stress function are identical 
to equations (15)-(17) obtained from the stream function. 

Axially Symmetric Approach. The equal biaxial stress field 
corresponds to the axially symmetric problems subjected to a uniform 
external pressure. The dynamic and axially symmetric stress field 
subjected to a sudden step internal pressure or static pressure has 
been solved in [6]. Nadai [3] determined the stress concentration in 
a single hole for a strain-rate-hardening material. The states of the 
field obtained using the axially symmetric equilibrium equation will 
be compared in this section with those obtained from the complex 
stream and stress functions. 

The equilibrium equation for a strain-rate-hardening material 
described by the power law under a plane-strain condition is given 
by 

*£p + E i d ldu^m 
= 0 (34) 

d?j id?) \ dril 

Using the incompressibility condition, the radial velocity and radial 
strain rates are obtained and given as 

ur - — 4A/i) 

er = 4A/??2 (35) 

Substituting equation (35) into equation (34) the hydrostatic pressure 
can be found as 

ffp = 2 l + m c y +Kc 
and the stress components are found from the constitutive equation. 
These are 

31 
A\™ 

-Kc 

l - 2 m AV» „ 
(36) 

2ffo 

3 m 
Equations (35) and (36) are the same as those obtained from the 

complex conjugate stream function given in equations (18) and 
(19). 

The constant, A, in equations (35) and (36) corresponds to {&o'"(l 
— m)az

2\ in equations (18) and (19). As seen from the previous sec­
tions, the results obtained from the complex conjugate stream and 
stress function and the solution of the axially symmetric field equation 
are identical. This confirms the validity of the complex stress or 
stream function approach to nonlinear viscous material problems. 

Boundary-Value Problem. Using the stream function solution 
transformed into cylindrical coordinates, a boundary-value problem 
is solved. The stress or strain rate and velocity distribution in com­
posite cylinders comprised of nonlinear viscous materials is deter­
mined for different flow functions, <To, and different strain-rate-
hardening exponents, m. The boundary stress is identical in the x and 
y-direction, consequently the field can be replaced by an axially 
symmetric field subjected to a uniform external pressure under a 
plane-strain condition. Specifically, the solution emphasizes the 
stresses, strain rates, and the velocities at the interface between two 
composite cylinders. The schematic illustrating the problem is shown 
in Fig. 1. 

The material constants and the states of the field of the hollow 
cylindrical inclusion are described by subscript 1. The matrix is ex­
pressed by subscript 2. The constant c in equations (16), (18), and (19) 
for the inclusion is given by 

2<ri / \ / 3 \ 1 - m i 

3 \ 4 

and the constant for the matrix is denoted as 

- = 2 j M V 3 \ 1 " m 2 

C 2 _ 3 I 4 j 

The boundary conditions of the problem are 

Url = Ur2 at ?! = (32 
o>2 = s (tension) at r\ —>- <* 
ffri = a>2 at r\ = 02 
o>i = 0 at ?j = a\ (37) 

where 02 is the outside radius of the inner cylinder. 
Using equation (18) and the first condition of equation (37), the 

relation between the two constants is 

6imi(l - m{) = bimiil — m2) (38) 

where b; (i = 1-2) is the integral constant of the inner cylinder and 
matrix. Prom the second boundary condition and equation (19), A2 
can be determined by letting r\ —• °° 

A2 = —s for tension 

where A2 is the constant of the matrix in equation (19) 
From the fourth boundary condition, Ai is given as 

Al = -2(1+mi)c1ife I^1(l - / i ) i ) h - | - f " 
mi \ail 

where A\ is the constant of the inner cylinder in equation (19), 
From the third boundary condition 

(39) 

(40) 

mi 
- 2(i+mi)c1j61m1(l - m i ) ) " H 1 -

a2 \2n>l 

All 

•• 21+m2c2|b2m2(l ~ m2))
mi s (41) 

ro2 

where 

Denoting 

R = bimi(l — mi) = &2"i2(l — m2) 

Equation (41) can be written as 
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Rm1 + (W2R
m2-s) = 0 

where 

Wi = ci-

Cl 

2l+mi 

m.\ 

o2^
2mi 

l\aii 

m2 

Equation (41a) can be rearranged as 

(41a) 

Rmi + -

U 
I 3 \ M | i - » i /_sj 

^(T™(o&r-i\» 
where 

ro2 

m i ' 

Equation (42) is a nonlinear equation. The root, R, is obtained 
numerically for various values of (02/01), a, and ft. Once the value of 
R is found, the stress strain rate, the velocity for various combinations 
of the rate-hardening exponents and a and fi for the inclusion and for 
the matrix can be determined. The solutions associated with the 
composite cylinders shown in Fig. 1 subjected to both uniform internal 
and external pressure can be obtained using the methods described 
in this paper. 

Perfectly Viscous Material (m = 1.0). The equilibrium equation 
results in a biharmonic equation and the solution is 

(43) 

where 0(2,2) = <j>i(z) + 02(2). 
Using equation (43), the velocities, strain rates, and stresses for 

perfectly viscous materials can be found. The radial and hoop stress 
of the inside cylinder is found as 

'a2 

1(2) 

2(2) 

Ao z 

a 2 a2 

Ao 2 

3-1 S"-(̂  
0-9 = • 

02 

l\ai # 

a-2 (44) 

and the stresses for the matrix are given as 

<T0= S 1 + 

H 
• ~ 

WaJ 

2 , C2 

+ —-
Cl 

1 

- 1 

W + 52-1 
Wail ci 

ajW 

V 
(45) 

If c~i = c2, and ax = o2 in equation (45), the problem is reduced to the 
problem of a hole in an infinite linear viscous material. The hoop 
stress-concentration factor is 2.0 at r\ = o2. This corresponds to the 
linear elasticity solution at y = a2. The solution corresponds to 
an axially symmetric problem with a uniform external pressure at 
r) —• °°. 

Stress Around the Cylindrical Cavity. From equation (19) and 
the boundary condition, ar - 0 at i) = 02, the constants are found 

\b0m(l - m)\m •• 
Am 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

0.7 

0.6 

-

/ 
/ 

/ 

_ / 
/ 

- 4ry. 

1 

/ 
X 

y 

a2/a 

OBOB> 

^ . - " ' * .Ar, = 1.0 

— — M A T R I X 

—— —INSIDE CYLINDER 

1 • a 1 
y AT l) • 8, , 3.0 

' i -12 J jy 2.0 
^ ^ ^ _ _ , „ i/<r, - 1.0 

- r f ^ ^ ^ T — —- >/crl = 20 

MATRIX: 3s = <r2 f m2 

INSIDE CYLINDER: 3? = c, $ m 1 

I I I I 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MATRIX STRAIN RATE HARDENING EXPONENT (m2) 

Fig. 2 Hoop stress at interface for various matrix strain-rate-hardening ex­
ponent and boundary stress (m-i = 0.1) 

and using the boundary condition, or • 
is given as 

<r at i) —• <», the constant, A 

A = a (tension) 

Hence, the stress field associated with the cylindrical cavity is given 
as 

Hi)' 
Of = <T 1 - (1 - 2m) \fm 

The hoop stress at i\ = ai gives 

K = ath = 2m 

(46) 

(47) 

The stress-concentration factor at the hole is 2m which agrees with 
Nadai's solution [3]. Nadai noted that the tangential stress is redis­
tributed in a uniform manner at m = 0.5 and when the strain-rate-
hardening exponent is smaller than 0.5, the hoop stress at the cavity 
becomes smaller than a, the boundary stress. 

The radial and hoop stress obtained by Nadai [3] for a hole in a rigid 
perfectly plastic material is 

2ffo, a 
• — l n -
V3 

and ue '• 
a 

| l n - + 1 
2ao_i 

v ' va\ 
which do not satisfy the condition that ar = <J as r; -» •». Nadai did 
mention however, that "the cases when m tends to zero are of no 
practical interest." The validity of the complex stream and stress 
function application to nonlinear viscous materials is illustrated by 
the boundary-value problem. The solutions obtained by applying the 
complex conjugate stream function are reduced to the linear viscous 
material case and to the case of a cavity in a nonlinear viscous mate­
rial. These reduced solutions agree with existing solutions. 

R e s u l t s and D i s c u s s i o n 
The numerical results of composite cylinders comprised of different 

nonlinear viscous materials are shown in Figs. 2-5. Figs. 2-5 illustrate 
the effect of the strain-hardening exponent and the boundary stress 
on the hoop stress-concentration factors and radial velocity at the 
interface of the two cylinders. 

Fig. 2 presents the results for c^/ci = 1.2, a 2 /a i = 2.0, and for mx 

< mi- The hoop stress-concentration factor for the inside cylinder, 
if i i , and the matrix if2i , for m2 < 0.5 is inversely related to the 
boundary stress, sloi. if 21 is less than one for m2 < 0.5 and is directly 
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0.2 0.3 0.4 0.5 0.6 0.7 X m, 
RATE HARDENING EXPONENT OF MATRIX (m2) 

Fig. 3 Hoop stress at interface for various matrix strain-rate-hardening ex­
ponent and boundary stress (m-i = 0.9) 

10-5 

S 

\- / 
/ , _L 

0.2 0.9 0.3 0.4 0.5 0.6 0.7 0.8 

MATRIX RATE HARDENING EXPONENT OF MATRIX (m2) 

Fig. 4 The radial velocity at interface for various matrix strain-rate-hardening 
exponent, boundary stress, and geometry of inner cylinder (m, = 0.1) 

proportional to the boundary stress for mi > 0.5. Fig. 2 shows the 
results for 02/01 = 1.2,02/01 = 2.0, and m\ > mj. Ku and K21 are both 
proportional to the boundary stress for m^ < 0.5. Therefore, the results 
shown in Fig. 1 are opposite to those shown in Fig. 3. When Figs. 2 and 
3 are compared three common aspects are noted: 

1 Kn and K21 are both proportional to the strain-rate-hardening 
exponent of the matrix, m% 

2 At mi = 0.5, K21 is independent of 02/01, 02/01, and sla\ and 
equals 1.0. 

3 K21 is less than one for m^ < 0.5. 

The second and third items are consistent with the hoop stress 
concentration of a cavity in an infinite nonlinear viscous material 
shown in equation (46). The radial velocity, ur, at the interface (?) = 
02) for « i < m% aila\ = 2.0, and 02/01 = 5 subjected to various 
boundary stresses is shown in Fig. 4. Fig. 5.presents the velocity for 
mi > m2. The magnitude of the radial velocity is larger for mi < m2 
than for mi > m2 when the boundary stress = 3.00. The converse is 
true for s/01 = 1.00. When Fig. 4 is compared with Fig. 5 two common 
points should be noted: 

1 The radial velocity increases with increased strain-rate-hard­
ening exponents of the matrix. 

2 As expected, the radial velocity is lower for both mi > m2 and 
mi < m2 for a stiff inclusion (02/01 = 5). 

The results show both Kn and if 21 for mi = 0.1 (<m2) to be in­
versely related to 0-2/0-1 for various values of 02/^1 and 02/0-1 and both 
are nearly independent of o2/oi at m2 = 0.7 for various 02/ai-values. 
The effect of 02/01 and 02/01 for mi = 0.9 (>m2) on Ku and K21 shows 
that Ku is independent of 02/01 and aVci and proportional to 02/01 
at /t!2 = 0.63. K21 is independent of 02/01 and 02/01 for m2 = 0.18 and 
is barely proportional to o2/ffi and inversely related a2/ai for m2 = 
0.63. 

0.2 0.3 0.4 0.5 0.6 0.7 X m, 
RATE HARDENING EXPONENT OF MATRIX |m2l 

Fig. 5 The radial velocity at interface for various matrix strain-rate-hardening 
exponent, boundary stress, and geometry of inner cylinder 
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Conclusions 
The following conclusions can be drawn from the analysis: 

1 The complex stream and stress function approach is valid for 

nonlinear viscous materials described by the power law. 

2 The dominant parameter affecting the stress-concentration 

factor at the interface between the inclusion and the matrix is the 

strain-rate-hardening exponent of the inclusion and the matrix rather 

than the value of 02/01 or nilo\. 
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An Analysis of Contact Between a 
Pair of Surface Asperities During 
Sliding 

/An cmalysis of friction junction formed by a pair of interacting hemispherically shaped 
surface asperities was carried out. Depending on the maximum geometrical interference 
of the asperities junction deformation can be elastic or plastic. Elastic junctions were an­
alyzed using Hertz solution. Depending on whether the junction is welded or nonwelded 
it was assumed that the interfacial shear stress is constant and equal to or less than the 
bulk shear strength of the weaker material. §olution for the case of plastic junction was 
approximated by Green's slip-line field solutions 

Introduction 
The problem of contact of a pair of rough surfaces has been of in­

terest to many scientists and engineers. It has long been realized that 
surfaces are rough on microscopic scale and that this causes the real 
area of contact to be extremely small compared to the nominal 
area. 

The real contact area is a significant parameter in determining 
friction, wear and the thermal behavior of a pair of interacting sur­
faces. It is well understood that the real area of contact consists of a 
number of microcontacts. The problem of relating friction to the 
surface topography in most cases reduces to the determination of real 
contact area and studying the mechanism of mating microcontacts. 
Relation of the friction force to the normal load and the contact area 
is a classical problem. Amonton's law of friction that the friction force 
is directly proportional to the normal load and it is independent of 
the contact area is one of the earliest available theories in this re­
spect. 

Bowden, Moore, and Tabor [1] introduced the notion of adhesion 
at microcontacts formed by the interacting asperities. They explained 
friction by continued forming and shearing of such junction. This 
argument leads to the conclusion that the friction coefficient, given 
by the ratio of shear strength to the normal pressure, is a constant 
(«0.17), since for perfect adhesion the mean pressure is approximately 
equal to the hardness Hb and the shear strength is «(l/6)ff(,. This 
value is rather low as compared with those observed in practical sit­
uations. With the notion of surface roughness and asperity interaction, 
investigations pertaining to geometrical description of asperities and 
the mechanism of junction deformation were promoted. 

Contributed by the Applied Mechanics Division for publication in the 
J O U R N A L O F A P P L I E D M E C H A N I C S . 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1, 1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, June, 
1980. 

Archard [2] using the Hertz solution for elastic contact of spherical 
bodies showed that though for a single elastic junction the contact area 
is proportional to 2/3 power of normal load, nearly direct propor­
tionality results in case of actual surfaces, where contact takes place 
at many points. 

Plastic junction under combined normal and shear stress were 
analyzed by Green [3]. Green proposed slip-line field solutions for 
junctions of rigid plastic materials for plane-strain and plane-stress 
conditions. Various geometrical shapes were considered and some of 
the theoretical models were verified experimentally. It was also shown 
that a distinctive feature of steady sliding is that the two surfaces 
move parallel to each other and some limits on the validity of the 
theory were discussed and related to the failure of Amonton's law. 

A further support to Green's solutions was provided by Greenwood 
and Tabor [4]. O'Connor and Johnson [5] studied experimentally the 
effect of tangential force, less than the limiting friction, on the de­
formation of interacting asperities and deformation of bulk bodies. 
The initial stages of junction deformation were investigated by Cocks 
[6]. He concluded that junctions do not break when sliding begins; 
instead the relative motion is accommodated by the plastic shear of 
underlying material in a direction somewhat inclined to the interface. 
The mechanism of formation and destruction of friction junctions, 
in relation to the physical and mechanical properties of the materials 
concerned, has been studied by Ainbinder and Prancs [7]. Edwards 
and Hailing [8, 9] have provided an upper bound plasticity solution 
for interacting wedge-shaped asperities. With the assumption of a 
kinematically admissible velocity field they minimized the work 
dissipated in plastic deformation and frictional effects, to obtain the 
desired angles. 

With the understanding that the contact of a pair of rough surfaces 
takes place only at a number of interacting asperities, study of indi­
vidual asperity interaction is the primary objective of this paper. 

Asperity Contact Model 
The estimation of normal and friction forces carried by a pair of 
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rough surfaces in sliding contact is primarily dependent on the be­
havior of the individual junctions. Knowing the statistical properties 
of a rough surface and the mechanism at any junction, an estimate 
of the desired forces may be made. Thus an appropriate model of a 
junction in sliding contact is necessary. Furthermore, depending on 
the properties of surfaces in contact and the load to be supported by 
the junction, a general method for defining the type or class of a 
junction is essential. Hence, before modeling a junction, a systematic 
classification of junctions will be briefly presented. 

Classification of Contacts. A number of models for a junction, 
formed by two interacting asperities, have been investigated in the 
available literature. Most of these investigations are limited to static 
contacts. In other words, very little or no sliding is assumed. In the 
case of a sliding contact the problem of solving for the friction and 
normal forces becomes extremely difficult. One of the possible ways 
of approaching the required solution is to consider the problem to be 
of a quasi-static nature. This is the basic assumption which will be 
made in determining the variation of loads carried by a junction as 
it goes through its life cycle. 

After assuming a certain geometry for asperities in contact, is is 
simple to define two types of junctions, namely, elastic and plastic. 
For exceptionally smooth surfaces, the deformation may be purely 
elastic but for most surfaces, the contacts are plastic. Adhesion be­
tween mating asperities is one of the important properties which 
determines the frictional behavior of a pair of surfaces. That is, the 
friction coefficient will depend on the adhering properties of the 
contacting asperities. Depending on whether there is some adhesion 
or not we may introduce the concept of two further types of junctions, 
namely, welded junction and nonwelded junction. We can define these 
two types of junctions in terms of a stress ratio, /3, the ratio of s, the 
shear strength of the junction to k, the shear strength of the weaker 
material. 

P = s/k 

For welded junction, the stress ratio, 

P = slk = 1, 

i.e., the ultimate shear strength of the junction is equal to that of the 
weaker material. 

For nonwelded junction, the stress ratio, 

P = s/k<l 

A welded junction will have adhesion, i.e., the pair of asperities will 
be welded together upon contact, due to the adhesive forces. On the 
other hand in the case of a nonwelded junction, adhesive forces will 
be less important. 

For any case, if the actual contact area is A then, the total shear 
force, 

S = sA = PkA, (1) 

where 0 < j8 < 1, depending on whether we have welded junction or 
nonwelded junction. 

There have been no direct measurements of the strength of adhesive 
bounds between individual microscopic asperities. Current work with 
field-ion tips provides a method for simulating such interactions but 
even this is limited to the materials and environments which may be 
examined. At present, therefore, information on the strength of as­
perity junctions must be sought in macroscopic experiments. The 
most suitable source of data is to be found in the literature concerning 
pressure welding. Milner and Rowe [10] have pointed out that the 
deformation required to give significant adhesion is two orders of 
magnitude greater than the strain at which the elastic-plastic tran­
sition takes place. Thus the assumptions of elastic contacts and strong 
adhesive bounds seem to be incompatible. Therefore, it is assumed 
that elastic contacts lead to nonwelded junctions only for which /3 < 
1. Plastic contacts, however, can lead to both welded and nonwelded 
junctions. 

Geometrical Configuration of Contacting Asperities. Fig. 1 
shows geometrical configuration of a pair of contacting asperities 

Fig. 1 

schematically. Geometrically, a single asperity is idealized as a 
hemisphere of radius equal to the radius of the asperity curvature at 
its peak. 

There is some experimental evidence [11] that the statistical cor­
relation of radius of curvature at the peaks and the peak heights, for 
most rough surfaces is not significant. Thus, assuming identical radius 
of curvature distribution at all asperity heights will not introduce any 
serious error in further calculations. A junction is formed and de­
stroyed as one hemisphere slides past the other at a given sliding ve­
locity. For simplicity it will be further assumed that the center of the 
hemisphere in motion moves along a fixed horizontal line. 

Elastic Contact. The Hertz solution is applicable in case of static 
contact of two elastic bodies. Therefore with the known geometry of 
contact the normal force and the area of contact can be determined. 
An estimate of friction force as sliding occurs is the main problem. 
With the assumption of quasi-static motion during the life cycle of 
a junction, the normal and friction forces at any time may be calcu­
lated separately. With the geometry of interacting asperities shown 
in Fig. 1 the deformation, as the center of lower asperity moves from 
O2 to 0 2 with respect to the upper asperity, may be divided in two 
distinct steps: compression according to the Hertz law from O2 to 0 2 

and subsequent sliding from O2 to O2. At any position 0'2 of the center 
of lower asperity, the normal and shear forces, P and S, respectively, 
can be estimated. These forces may be resolved in horizontal and 
vertical components and hence V and H are determined. The neces­
sary calculations are performed as follows. 

The Hertz solution for elastic contact of two spherical bodies of radii 
R\ and R2 is given by the following equations: 

Total Normal Load 

P = -E'w*l*y/R-iRzl(Rl+Ri) 

Area of Contact 

A=TTW[R 1R2/(R1+R2)] 

(2) 

(3) 

Here w is the geometrical interference between the two spheres and 
E' is given by the relation, 

1 _ 1 - V\ {, 1 - 4 

E' Ei E2 

where E\, Ei, and j»i, v2 are the Young's moduli and Poisson's ratios 
for the two materials. 

By geometry shown in Fig. 1, the geometrical interference w, which 
is equal to the normal compression from O2 to 0 2 is given by 

w = (R1+R2)-^d2 + x2 (4) 

where d is the distance between the centers of two hemispheres in 
contact and * denotes the position of the moving hemisphere. By 
substitution of (4) into (2) and (3), the load P and area of contact A, 
at any time may be estimated. Now the inclination of load P to the 
horizontal 6 is given by (see Fig. 1), 
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cos 6 : 

Vd2 + *2 

Vd2 + x2 (5) 

The friction force, depending on the type of junction under question 
may be determined by equation (1). Thus the total horizontal and 
vertical forces, H and V at any position x, of the sliding asperity, are 
determined, 

V = P sin 6 - S cos 6 

H = P cos 6 + S sin 6 (6) 

Equations (l)-(6) can be solved for different values of d and /3. 
Elastic Limit of Junction Deformation. A limiting value of the 

geometrical interference w can be estimated for initiation of plastic 
flow. For Hertz solution, the maximum contact pressure occurs at the 
center of contact spot and is given by 

9o ; 
3 P 

' 2A 

The maximum shear stress occurs inside the material at a depth of 
approximately half the radius of the contact area and is equal to about 
0.31<jo [12]. From the Tresca yield criterion the maximum shear stress 
for initiation of plastic deformation is Y/2, where Y is the tensile yield 
stress of the material under consideration. Thus 

Y 3 P 
- = 0.31 
2 2A 

Substituting P and A, from equations (2) and (3) we get 

w = 6.4 I—I RiR2/(R\ + R%) 

Since Y is approximately equal to one third of the hardness for most 
materials, we have 

where <p = R1R2/R1 + R2. 
The foregoing equation gives the value of w for initiation of plastic 

flow. For fully plastic junction or a noticeable plastic flow, w will be 
rather greater than the value given by the previous relation. Thus the 
criterion for fully plastic junction can be given in terms of maximum 
geometric interference, by the relation 

: > W„ 

and 

E' <P (7) 

Hence, for the junction to be completely plastic, wmax must be greater 
than wp. 

Plastic Contact. An approximate solution for normal and shear 
stresses for plastic contacts can be determined through slip-line 
theory, where the material is assumed to be rigid plastic and nonstrain 
hardening. One of the well-known solutions of this type is due to 
Green [3] in which a slip-line field for two wedge-shaped asperities 
in contact has been suggested. This solution is reviewed in the Ap­
pendix. Green's solution is valid for a plane-strain problem and most 
surfaces fall within the geometrical limitations of the solution. For 
hemispherical asperities, the plane-strain assumption is not valid. 
However, in order to make the analysis feasible we will approximate 
the solution to our problem by the Green's plane-strain solution. 
Plastic deformation will be allowed in the softer material and the 
equivalent junction angle a will be determined by the geometry. 
Quasi-static sliding will be assumed and green's solution will be used 
at any time of the junction life. 

The slip-line angle 7 may be determined by velocity boundary 
conditions or the shear stress at the interface, as will be explained later 
in this section. Thus, knowing the angles a and 7, at any time the 

b) 

Fig. 2 

stresses normal and tangential to the interface AE are given (see the 
Appendix), 

(8) 

p =k 1 + sin 27 + --ir + 2Y - 2<x 

s = k cos 27 

Now assuming that the contact spot is circular with a radius a, even 
though Green's solution is strictly valid for plane strain, we get 

P = pira2 

S = sira2 
(9) 

Radius a is determined by geometry as in the Appendix. Resolution 
of these forces in two fixed directions gives 

V = P cos & — S sin 5 

H = P sin 5 + S cos 5 (10) 

where 5 is the inclination of the interface to the sliding velocity. Thus 
V and H may be determined as a function of the position of the sliding 
asperity if all necessary angles are determined by geometry. We will 
consider the case of welded and nonwelded junctions separately. 

Welded Junction. For welded junction the geometry shown in Fig. 
2 will be assumed. For simplicity of the analysis the deformed material 
will be assumed to flow outside ways and the equivalent junction angle 
a will be determined by the minimum inclination of the line AB to 
the interface, when the incompressibility requirement for the mate­
rials is satisfied. A detailed calculation of a is given in the Appendix. 
Here it is sufficient to say that the minimum inclination of line AB 
is equal to that of a tangent to the spherical surface when the two 
shaded areas (see Fig. 2(a)) are equated in order to satisfy incom­
pressibility. 

Since no motion is allowed at the interface AE, the angle a is de­
termined by the direction of velocity U, i.e., 

7 : (ID 

Thus, knowing a by geometry and 7 by equation (11), the required 
normal and tangential stresses may be calculated by equation (8). It 
is clear from the geometry of Fig. 2(a) that the interference w reaches 
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Vs 

T-«4 
Fig. 3 

a maximum value, when the center O2 of the lower asperity reaches 
the central position O. As 0 2 moves to the right of O, the junction will 
instantaneously go in tension because we are ignoring elasticity here. 
To allow for this tensile loading we rotate the slip-line field as shown 
in Fig. 2(6). Hence V and H through the whole life cycle of a welded 
junction may be determined. 

During tensile loading of the junction, the maximum allowable 
stress will be limited by the adhesion strength. We denote this stress 
by pa- When the normal stress a t the interface, p , exceeds the bond 
strength p„, the junction immediately breaks and the life of the 
junction is completed. Another failure mechanism which might occur 
during the junction life can be explained by the slip line geometry, 
shown in Fig. 2. When slip lines BC and DE both become parallel to 
the sliding velocity, i.e., when 0 = 0, the material will be sheared off 
at constant stresses along the straight slip line BE. Such a geometrical 
configuration is shown in Fig. 3. We assume that during the remainder 
of the junction life shear along BE occurs. The termination of junction 
will take place when the two asperities are separated during the sliding 
motion. Whether this failure mechanism will take place or not, will 
depend on the initial geometry of the interacting asperities, i.e., fli, 
J?2, and wmm. 

Nonwelded Junction. For the case of a nonwelded junction sliding 
at the interface is allowed and further it is assumed that the shear 
stress at the interface is constant. We ignore the flow of deformed 
material and approximate the junction angle a by the inclination of 
the tangent AB to the interface AE as shown in Fig. 4. With a geo­
metrical interference w at any time the following geometrical relations 
may be derived (see the Appendix): 

Contact Radius 

and the angles 

/ 2RlR2 

Vfl i+f l 

a = arcsin(a/jR2) 

8 = - 7T — arctg(d/;c) (12) 

Since we are assuming the shear stress s at the interface to be constant 
and less than the shear strength k of the weaker material, i.e., j8 < 1. 
This assumption is consistent with the one made by Green [3]. Thus, 
knowing the shear stress s, at the interface AE, from equation (8) we 
have 

s = k cos (27), 

Hence, for fi < 1, 

7 = -arccos (s/k). 

7 = - arccos / 
2 

(13) 

After determining the equivalent junction angle from the geometry 
(equation (12)) and the angle 7 from equation (13), the required 
stresses in the case of a nonwelded junction may be estimated. Now 

b) 

Fig. 4 

V and H are determined by equations (9) and (10). After about half 
the life of a nonwelded junction, i.e., after C^'moves to the right of O 
(see Fig. 4) and the interface becomes parallel to the direction of ve­
locity, two possibilities must be considered: 

Possibility 1. The junction instantaneously goes into tension and 
the solution is determined by a procedure similar to that used in the 
case of a welded junction, except that here the shear stress at the in­
terface will remain constant. 

Possibility 2. Another possibility might be that the two inter­
acting bodies just slide off with the interface remaining horizontal, 
as shown in Fig. 4(6). 

The normal compressive stress for Possibility 2 will be, in fact, a 
function of the elastic deformation in the contacting bodies. However, 
as the two bodies slide off, as shown in Fig. 4(6), the normal stress will 
increase, because the contact area is reduced and stresses on a part 
of the interface, which was originally in contact, are relieved. More­
over, this increased value of compressive stress will be limited by 
plastic stress obtained by slip-line field solution. Since the shear stress 
is constant and by geometry of Fig. 4(6) the equivalent junction angle 
a remains constant, the normal compressive stress given by the slip-
line field solution will remain constant. Though this stress will be an 
upper bound for the actual normal stress, it will not be very unrea­
sonable to assume that the normal stress during the process of sliding 
remains constant and is equal to the upper bound obtained by the 
plastic solution. 

The area of contact for Possibility 1 is determined by equation (12). 
However for Possibility 2, by geometry of Fig. 4(6) we have 

A = 2[a2 arccos - (a - t)y/2at • 

where 

t = a (14) 

Thus the total vertical load V and the horizontal force H may be de­
termined from equations (8), (13), and (14). By substitution of a and 
7 in equation (8), the normal pressure p is determined, hence, 

P = pA 

S = sA = fikA, 

496 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



here A is the area of contact given by (14) during the later half life of 
the nonwelded junction. If Possibility 1 takes place the forces V and 
H are determined by equations similar to equations (10). However 
for Possibility 2, since the interface remains horizontal, 

H = S (15) 

This is valid for the later half life of the nonwelded junction. The 
junction life will be completed when the area of contact is reduced to 
zero. 

Discussion of the Asperity Contact Model 
It was assumed earlier that the stress s for a nonwelded junction 

is constant throughout the junction life and this constant value is less 
than the shear strength k, of the weaker material. However, for a 
welded junction the shear stress behaves as a cosine relation (equation 
(8)) and has a maximum value of k. During the asperity interaction 
the junction may therefore be nonwelded for part of its life and welded 
during the remainder of the life, depending on the interfacial shear 
stress. We can represent such a behavior of the plastic contact by 
assuming that the adhesion stress pa is such that Possibility 2 of the 
nonwelded junction is relevant. Thus the normal stress remains 
compressive during the entire junction life for nonwelded junction 
solution, whereas the junction goes in tension and fracture takes place 
in case of a welded junction. As the life of the junctions starts, the 
shear stress required for a welded junction ss is less than that for 
nonwelded junction sw. Thus the junction will behave as welded and 
the shear stress 

s = ss. 

When ss = s,„ and later when ss > sw, the junction will behave as a 
nonwelded junction and the shear stress 

s = sw. 

The nonwelded junction solution will be relevant until Ss = sw and 
ss > sw during the remainder of the junction life. Thus the junction 
will once again tend to become welded. However, due to the limiting 
tensile stress pa the tensile stress given by the welded junction solu­
tion may or may not be supported by the junction and therefore the 
junction life can terminate. 

Conclusions 
Junction deformation models for sliding interaction of hemi­

spherical asperities have been considered. For elastic deformation 
the normal force and contact area are approximated by Hertz solution. 
The friction force is assumed to be proportional to the contact area, 
in other words a constant interfacial shear stress has been assumed. 
Depending on the interfacial characteristics this stress may be varied 
from any small value up the bulk shear stress of the weaker material 
and hence nonwelded and welded junctions are formulated. 

Plastic junctions have been approximated by the plane-strain 
slip-line field solution proposed by Green. For a welded plastic 
junction no displacement is allowed at the interface and perfect 
welding is assumed. In case of nonwelded plastic junction interfacial 
sliding is allowed and a constant shear stress is assumed. The value 
of this shear stress, will again depend on the interfacial characteristics. 
Tension is allowed in the junctions until a limiting stress pa, the ad­
hesion stress, is reached. Beyond this failure takes place and the 
junction life is terminated. 

With a known junction model and statistical description of the 
surface parameters, the overall average contact forces, area of contact, 
and contact resistance can be computed for different surface pairs 
with varying surface roughness. 
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APPENDIX 
Fig. 5 shows the slip-line field suggested by Green [3]. The solution 

is determined by the junction angle a and the angle y, which is de­
termined by the velocity boundary condition. Using the notation 
shown in Fig. 5 for a and /3-lines, it is easily seen that for motion from 
DtoE, BCDE is a /5-line. The stress relations along the slip lines are 
given by 

p + 2kij> = constant, along a-line 

p — 2kij> = constant, along /3-line (16) 

where p is the hydrostatic pressure, k is the ultimate shear stress of 
the material as determined by the yield criterion and <f> is the anti­
clockwise rotation of a-line from any fixed direction. In triangle ABC, 
p = k and using (16) along CD we have 

pD - 2k(w + y) = k - 2k(Tr -- 1/4TT - a) 

or 

pD = k(l + 1/2TT + 27 - 2a) (17) 
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The stresses p* and s*, normal and tangential to the interface AE may 
be determined by resolving the forces acting on ED and AD. Thus 

P* = PD cos2 7 + ft sin 7 cos y + PD sin2 y + k sin 7 cos 7 

s* = —PB sin 7 cos 7 + ft cos2 7 + p c sin 7 cos y — k sin2 7 

p * = Pr> + ft sin (27) 

s* = ft cos (27) (18) 

Substituting for pn from (17) into (18) we get 

p * = ft [1 + sin (27) + 1/2TT + 27 - 2a] 
s* = ft cos (27) (19) 

The limitation of this solution is imposed by the angle DAC which 
should be positive, i.e., 

ir - (1/27T - 7) - (l/4ir + a) > 0 

l/4ir + 7 - a » 0 

7 > a - 1/47T (20) 

For most practical surfaces, the junction angle is very small as 
compared to 1/47T. Therefore the lower limit of 7 is zero. The upper 
limit is obtained when the field can be first extended to the sides EF 
or AG, i.e., when 

Fig. 7 

angle which the line AB should make with the interface AE in order 
to satisfy incompressibility. Such a line will be tangent to the spherical 
surface. By the simple geometry 

area CEF = - (6 - sin 0 cos 0) 
2 

(22) 

If we denote the coordinates of any point with respect to the coor­
dinate system shown in Fig. 6, the equation to the straight line AB is 
given by 

where 

and 

y = mx + c 

m = [(VB - u)/(xB - xA)] 

7 = l/4ir + (a- <t>), if <p > I 

7 = l/4ir + (a - 6), iid><l (21) 

C = \(UXB ~ yBXA)/(XB ~ XA)] 

The area ABC is now given by the following integral: 

• (y~c)/m 

'y=ya 'Jx=sJ\-yi 

Integrating the foregoing equation and rearranging it gives 

j (dxdy). 
y=yB Jx=J\-y% 

The relevant geometrical parameters during plastic interaction of 
hemispherical asperities may be determined by simple geometrical 
relations. Since the geometry will differ slightly for welded and non-
welded junctions, we consider these two cases separately. 

Welded Junction 
When two hemispherical asperities interact during sliding to form 

welded junction, such that complete welding is assumed at the in­
terface and no interfacial displacement is allowed, we can assume that 
the deformed material flows outside ways as shown in Fig. 6. The 
equivalent junction angle a will be determined by satisfying the in­
compressibility requirement for the deforming material by equating 
the shaded areas. Furthermore a will be determined by the minimum 

ABC = - [XA(U — cos a) + u(sin a — sin 6) + 6 — a] (23) 

where 

XA — (1 — u cos a)/sin a. (24) 

Note that u = cos 6 and all the distances are measured in terms of the 
radius of the upper hemisphere R\. 

Substituting XA in equation (8) and then equating the two areas 
gives the final equation for a 

2u — cos ail + u2) , , 
a = ^ (25) 

sin a 

Equation (25) may be solved by Newton's iteration method and the 
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desired junction angle a may be computed. Knowing a, for any given Also 

value of u, the contact area is determined by evaluating the value of 

XA from equation (24) which is the radius of the contact spot. 

Nonwelded Junction 
In this case the flow of the deformed material is neglected and the 

junction angle is determined by a tangent to the spherical surface at 

the point B (see Fig. 7). Thus 

Wi(2Ri — w\) = a2 and u)2(2i?2 — ^2) = a2 

Wi = and UJ2
 = 

2iii 2/V2 

Also, since, w = wi + 102, 

2ri 2fl2. 

Thus 

i2tpw where <p • 
R\Ri 

R1 + R2 
(26) 

or J = arcsin [dl(R\ + R2- w)] (27) 
R1 + R2-w 

Since 5 = 1/27T — 6, we have 

8 = l/2vr - arcsin [d/(R1 + R2- w)] (28) 

Considering the sum of all angles at the point B on the line AB we 

get 

l/27r - i^i + 1/2TT + a = -ir 

or 

a = 1̂ 1 

But since by geometry 

we have 

1̂ 1 = arcsin (alR\), 

a = arcsin (a/R{) (29) 

where the radius of the contact spot, a, is given by equation (26). 
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Stable Phase of Ductile Fracture in 
Two and Three Dimensions, Final 
Stretch Model 
'Analysis given here is based on the final stretch concept employed in conjunction with 
a line plasticity modpl as suggested by the author in 1972 [6] and in this Journal in 1974 
[8]. Its objective is to provide the equations governing quasi-static extension of a tensile 
crack contained in either partially or in a fully yielded specimen. Differential equations 
defining the apparent material resistance developed during the early stages of a ductile 
fracture process are derived from a requirement that the "essential work of fracture" dis­
sipated in a small volume immediately ahead of the crack front, or equivalently, the 
"final stretch," remains invariant in the process of ductile tear. The model suggests a cer­
tain near-tip distribution of displacements associated with a quasi-static Mode I crack 
such that the resulting strains are logarithmically singular at the crack tip. In contrast 
to the earlier work on this subject, here we impose no restrictions on the amount of plas­
ticity which precedes the onset of crack growth and which accompanies spread of stable 
ductile fracture up to the point of global failure. The final results, which are illustrated 
in the diagrams of J-resistance curves, are analogous to the data obtained by other re­
searchers on the basis of the incremental plasticity theory. Similarities between the 
present results and the solutions due to Hutchinson, Paris, and coworkers as well as the 
most recent data obtained by Shih and coworkers, are pointed out. 

1 Introduction 
Objective of the analysis given her-e rr!IS btren to provide equations 

governing quasi-static crack extension in either partially yielded or 
in fully yielded specimens. The basic assumption made was that crack 
flank angle (or "crack tip opening angle," CTOA) remains constant 
during crack propagation. The experimental and numerical data 
available today seem to confirm such assumption: It has been also 
suggested (although not necessarily generally accepted) that the COD 
at which crack advances is typically about half or a quarter of the COD 
observed at the onset of crack growth. Such initial decrease and 
subsequent constancy of the COD during slow crack growth is implied 
by the solutions given in this investigation. Note that the assumed 
values of 8, which is a COD for a propagating crack, are usually about 

1 On leave from South Dakota State University, Brookings, S. D. 57007. 
Contributed by the Applied Mechanics Division for presentation at the 

Winter Annual Meeting, Washington, D. C., November 15-20, 1981, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1, 1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by AS ME Applied Mechanics Division, 
December, 1979; final revision, September, 1980. Paper No. 81-WA/APM-5. 

half of Oi, the COD at which the initially blunted crack begins to 
propagate. 

To make the problem susceptible to a mathematical treatment a 
major simplification has been imposed: a line-plasticity model of the 
DBCS type has been employed for description of a quasi-static crack. 
Such model, supplemented by the concept of final stretch (which in 
essence simulates the constancy of the CTOA), has been first sug­
gested by this author in 1972, and then further developed by Wnuk 
[22,23] and Smith [20]. Agreement of the end results of such highly 
idealized model with those obtained from the recent studies of Praridtl 
slip-line fields associated with a growing crack, cf. Rice and Sorensen 
[3] and Rice, Drugan, and Sham [5], is remarkable. Thus one is 
tempted to conclude that despite widely acknowledged deficiencies 
of one-dimensional modeling of near crack tip plastic stress and dis­
placement fields, and despite somewhat unrealistic details inherent 
to this model, the gross features of the ductile fracture phenomenon 
are predicted correctly. 

The objective of this paper is to discuss solutions, derived from a 
line-plasticity model supplemented by a concept of final stretch and 
extended to incorporate a nonsteady quasi-static motion of a crack. 
The restriction of the contained yielding is removed. 

2 Final Stretch Criterion of Failure 
Failure of a volume element located on the prospective path of the 
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CRACK 

2u(x,0 

Fig. 1(a) Model of the crack and the associated structured end-zone con­
sisting of the process zone (A) embedded within the yield zone (fl); (b) 
Closeup view of the crack tip as it appears during the crack advancement; 
note the relations between the initiation COD, 5/, the final stretch 8, and the 
process zone size A 

crack front is linked to the incremental work dissipated within the 
process zone just prior to the collapse of this zone. If t denotes the 
instant at which the control element breaks down, then the incre­
mental accumulation of damage occurs within the time interval t — 
bt ^ T < t, where the increment 8t ( =A/f) corresponds to the time 
used by the crack front to traverse its own process zone. Size of such 
hypothetical zone, over which an intensive straining occurs before the 
crack may advance, is characterized by the length A which is assumed 
to be a microstructural constant. The process zone is presumed in all 
the considerations which follow to be fully enveloped by the plastic 
zone R (this requirement is somewhat analogous to the Hutchinson-
Paris condition restricting the size of the HRR zone to be small versus 
the extent of the yielded ligament). 

The rate of damage accumulation is given by the product of the 
stress restraining separation of new surfaces, S, and the rate u at 
which these surfaces are being separated, observed at a certain fixed 
control point P (see Fig. 1). The integral of this product taken over 
the time interval St represents the damage accumulated in the ma­
terial element adjacent to the crack tip while it undergoes the final 
stages of straining preceding failure. Requiring that the prior-to-
fracture work done at a fixed material point P, while the process zone 
of a microstructural dimension A passes through it, is a material 
constant, Wnuk [6, 8] postulated the failure condition 

"»A = I SP[XI(T)]UP[XI{T)]CIT = constant (=Yd) 
Jt-it 

(1) 

Symbol * i = x i (T) denotes the distance from the crack tip. Since point 
P is stationary while the crack front moves, this distance is time-
dependent. 

For a constant2 restraining stress (S s yield stress, Y) the equation 
above reduces to the so-called "final stretch" condition proposed by 
Wnuk [6] 

u(0,l + A) -u(A,l) = u (2) 

The opening displacement u = u(xi, I) is regarded here to be a func­
tion of two variables, the time-dependent coordinate, x\, and the 
current crack length /. On the right-hand-side of equation (2) we have 
the opening constant u. According to the condition (2) for a continued 
crack extension an increment 8 (=2u) of opening must be attained in 
a small segment A of yield zone immediately adjacent to the crack tip. 
From examination of Fig. 1 it becomes obvious that the second term 
in the LHS of equation (2) represents displacement ahead of a DBCS 
crack evaluated at the outer edge of the process zone, i.e., at the dis­
tance A from the physical tip of the crack whose current length is l. 
The first term in the LHS of equation (2) should be evaluated at the 
same point but when the crack tip has moved to the right and now 

coincides with the control point. We conclude, therefore, that the 
quantity u(0,1 + A) is identical with the tip displacement when crack 
length equals I + A, i.e., utip(l + A), while a(A, I) can be identified as 
a displacement prevailing a small distance away from the tip when 
crack length equals I, say UUP+A(1). Note that we are using the current 
crack length as a time-like variable. 

3 G e n e r a l C o n s i d e r a t i o n s — R - C u r v e for an 
A r b i t r a r y C r a c k Conf igura t ion 

When a ductile crack initiation occurs near or after general yield 
of the specimen, material resistance to cracking continues to rise 
steeply with crack advance. Such behavior of the material fracture 
toughness may be represented by either R -curve or a JR -curve; both 
representations being equivalent between each other. Even if the 
initiation parameters, R t or JJQ, are known from observations of the 
onset of crack growth, they alone are not sufficient means for pre­
dicting the instability which eventually terminates the process of slow 
stable cracking under fully plastic conditions. Therefore, it is neces­
sary to devise a technique which would supply a more complete in­
formation regarding material response to propagation of ductile 
fracture, i.e., a resistance curve represented in (R, I) or in (JR, I) plane 
if I denotes the current size of an advancing crack. 

Let us now summarize the mathematical procedures required to 
obtain a resistance curve for a quasi-static crack. Discussion involves 
Mode I fracture, but it would remain equally valid for Modes II and 
III. 

The essential feature of the analysis is the final stretch condition 
which presumes that the displacement accumulated at a fixed control 
point during the final act of fracture, i.e., during fracturing of a finite 
process zone adjacent to the crack front, remains a material property, 
say u. (or 5 = 2(2). All one needs in order to set up the final stretch 
equation is an expression for the displacement normal to the crack 
plane at a small distance from the tip of an advancing crack. Let this 
displacement be given as 

[u(xi, 0 ] n - o = u(0,1) - xi 
8u(xi, I) 

8xi xi—0 

[u(xi,l)]xl^Q = C[F(l)-xMxi,l) + . 

(3) 

(4) 

where C is a constant, C = 4Y/wEi, u(0,1) is identical with the crack 
tip opening displacement, ut (I), while F and $ are certain functions 
of the arguments shown. The modulus E\ is identical with the Young 
modulus E for plane stress, while for plane strain it equals (1 — 

Note that the expansion of the kind (3) is not a Taylor series, since 
the derivative du{xi, l)/i>X\ becomes singular at X\ = 0, while the 
derivative-like quotient3 hu/8xi when evaluated at the point located 
a small distance (x\ - A) away from the crack tip (xi = 0), is finite. 
Substituting the forms (3) and (4) into the final stretch criterion for 
fracture (2) we obtain the differential equation which governs the 
growth of a quasi-static crack, i.e., 

(dut/dl)xl=A + [8u/8xi]xl=A = u/A (5) 

3 Note that the symbol [5«/5.ri]XI=(i used in equation (3) should not be in­
terpreted as a partial derivative, although it is somewhat analogous to a partial 
derivative of the function u(xi,l). This point is brought out when the following 
two forms are compared: 

du(xi, 1) ,. \u(0, I) — u(x±, I) 
= lim ' (a) 

2 Interestingly, other assumptions concerning the distribution of the re­
straining force S over the process zone lead to identical end results, i.e., the 
equation governing extension of a ductile fracture in its subcritical (stable) 
range, cf. Smith [20]. 

* ( A , 0 - C - i [ * ^ 1 ' 0 ' = c-
1 lim 

;ti—>-A 

u(Q, Q-u(xi , Ql 

*i J 
(b) 

in which the constant C = 4Y/irEi. It is noted that for the displacement dis­
tribution u(xu I) associated with a quasi-statically moving crack the form (o) 
is singular while the form (fc) is not. Specific examples of function <1> are given 
in Section 4. 
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(dFldl)xl^ + *(A, 0 = C-Mft/A) (6) 

For a wide class of problems the function F(l), which describes the 
opening displacement at the current crack tip, may be represented 
as follows: 

F(l) = C-^uS) = F[l, R(l)] = l<t>[R(l)/l] (7) 

Thus we assume that the nondimensional part of F(l), i.e., the func­
tion <j>, depends only on the ratio R(l)/l. This is true for a broad class 
of crack configurations. Confining our attention to this type of 
problems we may reduce the governing equation (6) a little further. 
At this point we should note that within the subcritical range of ex­
ternal loads imposed on the body containing a crack, the plastic zone 
size R, used here as a measure of the external field intensity, remains 
a function of the current crack length. This function, R = R(l), is a 
priori unknown and it will be subject to determination. Following 
equation (7) we find 

dF_dF dFdR 

dl dl dR dl 
(8) 

If we now denote the ratio R(l)/l by x(l), then the partial derivatives 
in equation (8) can be evaluated as follows: 

dF 

dl 
—- = 4> ~ (d4>/dx)x 

dF 
— = dtb/dx 
dR 

(9) 

When these expressions are substituted in equation (8) and then into 
equation (6), one obtains a nonlinear differential equation which 
defines the R -curve for a broad class of crack configurations, 
namely, 

— = *(/) + (—I"1 ( A f - * ( A , 0 ~ <M*)1, x(l)=R(l)ll (10) 
dl \dxl 

Here, the symbol M (= u/CA = (xEi/8Y) (5/A)) denotes the tearing 
modulus, a material property required for characterization of ductile 
fracture process. If the material resistance is represented by the J-
integral rather than by the function R = R(l), the governing equation 
(6) simplifies considerably. This follows from the known relationship 
between the tip displacement u(0,1) and the J-integral, namely, 

JR = {2nY)u{0,1) = (2nY)CF(l) = nF(l) (10a) 

where the new constant K = 8nY2/irEi and n is a certain material 
sensitive coefficient whose value lies usually in the range 1 to 2.6. 
Obviously, the derivative dF/dl needed in evaluation of the difference 
F(l + A) — F{1), as implied by equation (2), becomes identical with 
the slope of the J- resistance curve, dJR/dl, within the accuracy of a 
numerical constant. Replacing dF/dl by K.~1dJR/dl in equation (6) 
we obtain an alternative representation for the apparent material 
toughness associated with the slow stable cracking process, i.e., 

dl 

^ = nY(S/A)-
dl 

2rcYC*(A, /) 

(H) 

(11a) 

This last equation is perhaps an easiest vehicle to generate the data 
pertaining to material resistance developed during the course of 
ductile fracture. If the "correction term" 2nYC$(A, I) is small versus 
the first term, a constant ra Y(CTOA) appearing on the left-hand-side 
of equation (11a), then the ductile tearing process obeys Paris' sug­
gestion of constant slope dJR/dl, expected to be valid in highly ductile 
materials. Indeed, Smith [20] has shown that an assumption of finite 
specimen dimensions does not upset the general form of equation 
(11a), and he also pointed out to a possibility of having the second 
term in equation (11a) neglected when the amount of stable cracking 
is small. It appears to us that the conclusions of this kind may not yet 
be sufficiently justified and more numerical and experimental work 

is needed to verify the validity of such presumptions. It is also nec­
essary to establish more precisely the restrictions under which ap­
proximations of the Paris type are valid. In particular it will become 
mandatory for anybody who would want to apply the analytical results 
of the theory given here for reduction and processing of the empirical 
data collected on the small laboratory specimens, to provide bounds 
on the minimum size of such specimens (otherwise it is impossible to 
test the validity of our equations). An analysis aimed at this end will 
be developed in a future paper. 

To provide an evidence that the slope dJR/dl does not necessarily 
remain constant during slow stable crack extension, we have inte­
grated numerically the governing equations (a different equation for 
each of the four configurations considered). The results are gathered 
and shown by the plots in Fig. 2. It is seen from this figure that neither 
is the slope of any of the JR- curves constant, nor are such resistance 
curves a unique material property. Their shapes and slopes depend 
not only on the initial crack size but they are also influenced by the 
loading and crack configurations. 

It is noteworthy that the point of transition from stable to unstable 
fracture can be predicted directly from equations (10) and (11). For 
the particular crack configurations considered here the partial de­
rivatives dRA/dl and J^/dl (index "A" denotes outer field parameter) 
can be replaced by the ratios RA/1 and JA/1, i.e., 

(12) 
dRA_ 
dl 

At instability we have 

j J A
 =

 JR 

\dJA/dl = dJR/dl 

R_A 

I 

dJA_ 

dl 

or 

JA 

I 

'RA = R 

pRA/dl = dR/dl 

(13) 

Recalling that JR/1 = KCJ> and combining equations (12) with expres­
sions (10) and (11) we arrive at the following equality which has to be 
satisfied when the global failure occurs 

($(A, I) + 4>(R, 01/ = M (14) 

This equation contains two instability parameters // and Rf which are 
subject to determination. A second equation is therefore needed, and 
it is given by the top line in (13). One ought to point out that while the 
equations (10) and (11) describing material resistance curves are valid 
for an arbitrary crack configuration, the conditions at the terminal 
instability, as given by equations (12), are rather strongly dependent 
on the choice of specimen and loading configurations. In view of this 
the reader is reminded here that the instability locus defined by the 
expressions (14) applies only to the crack configurations for which 
the relations (12) are valid. 

In closing let us point out that the only quantities needed to set up 
the governing equations for the problem considered, <t> and $ , can be 
derived, respectively, from (1) the expression for the crack-tip opening 
displacement for a given crack configuration, and (2) the gradient of 
the displacements in the immediate proximity of the crack tip, i.e., 

(15) 
0 (0 = (7nEi/4Y)(utip(Z)/0 or 0 = (irE^nY^JW/l 

*(A, /) = (TvE1/4Y)ldu(x1, 0 / « X I ] « = A 

The predictive powers of the results given in this section, i.e., 
equations (10) and (11) are of rather sweeping generality. Verification 
of validity of these equations against physical reality will be an es­
sential step in deciding in favor or against the model suggested 
here. 

4 E x a m p l e s of S o l u t i o n s for 2D and 3 D Crack 
C o n f i g u r a t i o n s 

To illustrate the outcome of numerical solutions of the four dif­
ferential equations involved in this study, Fig. 2 was constructed in 
which the JR resistance curves are plotted for all the four configura­
tions considered, i.e., 

[(a) traction-free, 
2D crack 

(b) pressurized, 
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a.2D . 

b ,2D \ 

Crack Length , i/L 

Fig. 2(a) J-resislance curves for a 2D crack subject to (a) tensile stress 
applied remotely from the crack, (b) hydrostatic pressure acting on the crack 
surface. Input data: tearing modulus, M = 5, Initial crack length, /0 = 1000A, 
initial extent of the yield zone, Rt = 10A. 

3D crack 

and 

(o) traction-free, 

(b) pressurized. 

Material properties are chosen in the intermediate range so that the 
complete equations given in this text had to be used rather than their 
reduced forms. 

The discrepancies between the respective JR resistance curves are 
obvious upon examination of Fig. 2. A trend of an increased slope is 
noted when fracture initiates from a disk-shaped crack. Note also that 
for a vanishing plasticity, i.e., when R/l -* 0, the slope of an .R-curve 
for a 3D crack, dR/dl becomes nearly infinite as then an R -curve de­
generates to the step-like function which allows no stable crack 
growth, as it would be expected for the Griffith (brittle) limit. 

The nonlinear differential equations which were employed to obtain 
the curves shown in Fig. 2 were derived from the basic condition for 
propagation of subcritical fracture, i.e., equation (6), applied to the 
four configurations just listed. All four equations are of the general 
form g(l, R(l), dR/dl) = 0, as given in the Appendices A and B, cf. 
equations (47) and (55) for a 2D crack, cases (a) and (b); and equations 
(68) and (73) for a 3D crack, case (a) and (6), respectively. Once these 
equations are integrated numerically for a given set of the initial data 
((0, Ri), the J/j-resistance curves can be obtained by replacing R and 
JR , according to the following formulas: 

JR(D > 
[I log (1 + R/l)] 

R\l + 2 log [ V l + (RID+ -

for a 2D crack configuration (K = 2nYC = 8nY2/irEi), and 

JR(D = Ki • 

Rl(l + (RID) 

1 + (R/l) + V?M; 

(16a) 

(166) 

(17a) 

(176) 

1.0 1.06 1.02 1.04 

Crack Length, 

Fig. 2(b) ./-resistance curves for the four configurations: 

2D crack 

3D crack 

(a) traction-free 
(b) pressurized 
(a) traction-free 
(b) pressurized 

Input data: tearing modulus, M = 5, initial crack length, /0 = 1000A, initial 
extent of the yield zone, R, = 10A. 

These relationships result from the simple formula, JR = 
(2nY)uz(Ot I), which connects the crack tip opening displacement 
with the material resistance to ductile fracture. The constant K\ = 
(2nY)C\ = 8nY2(l — v2)/irE applies to a 3D crack configuration. 

It might be of interest to note that the ssy and Isy limiting cases can 
be readily deduced from the basic equations given in the Appendices. 
For the 2D configuration (case a) one obtains 

dl 

M-- log (4eR/A), ssy, A«R«l 

M- M3 
(18) 

Isy, A«R»l 

The equivalent representation of the material resistance to crack 
growth (JR versus /) leads to these forms4 for a 2D crack, case a, 

dJR 

dl 

4Y2 /Tr£1)log(J s s /5 /B),ssy 

I2el\ (19) 
nY(8/A) - (4nY2/irEi) log — , Isy 

\A 

Similarly, in the limiting cases of small scale yield (ssy) and large scale 
yield (Isy) one obtains for a 2D crack, case b, 

for a penny-shaped crack. 

4 It should be noted that in the analogous equation given by Wnuk [23] and 
by Smith [20] the empirical constant n was assumed to be 1. Wnuk's [23] paper 
contains also a misprint due to which the base of the natural logarithm "e" 
appears in the denominator of the argument of the log-term present in the 
second of equations (4.4). 
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dl 

M-UogM,ssy 

log (4eW/l) KHx)) Isy 

(MR 

dl 

M - • i l o g f — I 
2 U A . 

,ssy 

K \M log 
(l, 

(20) 

(21) 

, fey 

The nondimensional quantity x, which appears in the second equation 
written in the foregoing, is related to the material resistance JR 
through the relation 

KX log (4ex) = JR/1 (21a) 

Analogous reduction of the basic equations valid for an arbitrary 
R/l ratio, for the two limiting situations considered here, can be per­
formed for the 3D configuration. The results are6 

dR 

dl ' 

M - - log (8J/A) + (1/2R) + 5/4, ssy 

fl\2 
M -

and 

dR_ 

dl 

«-H!) 
i_ 

\AR M - M 

2fl , 
+ —-, Isy 

R , 

case (a)(22) 

case (b)(23) 

If the JR versus l representation is used, then for a 3D crack one ob­
tains 

dJu 

dl 
= K l 

M — log 
A] 4 [KII 

M- H! + 1 

I, 

,lsy 

ssy 
(24) 

for the case (a), and 

dJR 

dl ^ 

M-ilogp' 
2 \A 

8? 

1 
+ — + 

2x 

M - x log |—| + 2x2 

5 
+ -

2x 4 

'y/jRliKll 

X=JR/KII 

Isy 

,ssy 
(25) 

for case (b). 
Note that the relations, x = JR/K\1, for the ssy condition and, x = 

{JR/2KII)1/Q; for the Isy condition are the limiting expressions obtained 
from the equation (b) in (17) when x assumes very small (ssy) and very 
large (Isy) values, respectively. 

The new constant Jss, which appears in the top equation in (19), 
denotes the steady-state level of the material resistance to cracking 
attained during a fully developed ductile tear process, i.e., when 
djR/dl —»• 0. Within the small scale yielding range the derivatives 
djR/dl and dR/dl differ only by a constant factor. Setting, therefore, 
the slope dR/dl given by the top equation in (18) to zero, we obtain 
first the constant 

Rss = (A/4) exp (2M - 1) (26) 

and then the constant 

Jss = (2nY2A/ir£i) exp ((ir£i/4Yn)(§/A) - 1) (27) 

Smith [20] considers only the case of limited amount of stable crack 

5 If the terms of order lesser than IIR are omitted in the top equation in (22) 
and (23), then the material resistance in the small scale yielding range becomes 
insensitive to the loading configuration, as it would be expected (compare also 
the corresponding 2D solutions). 

growth for which the terms other than the constant M in the corre­
sponding Isy equations may be neglected. The JR-resistance curve 
reduces then to a straight line. 

JR(AI) = Jic + nY(5/A)M, Isy (28) 

Such approximation becomes in fact equivalent to the Paris concept 
of constant slope of the resistance curve (djR/dl),. It follows from 
equation (10) that when all the imposed restrictions are met the fol­
lowing equality should hold: 

dJR _ ldJR\ 

dl [ dl )i 
•• nY(S/A) (29) 

or, in terms of the Paris' (Tj) and Shih's (Tj) tearing moduli, we ob­
tain 

Tj = nTb, Tj = (E/<j0
2)(dJR/dl) 

Ts = (E/a0)(S/A) or (E/a0)(CTOA) (30) 

Equality of this kind suggests an approach to testing the validity of 
the model discussed here. An independent study by Curry [24], aimed 
at evaluation of a J-resistance curve resulting from measurements 
obtained on a single edge notched bend specimen (SENB) loaded in 
four point (pure) bending, has shown that initial gradient of the JR 
versus Al curve is indeed given by an expression of type (29). Through 
application of Burns and McMeeking [25] expression which relates 
the bending moment to the jR-integral computed for a slow crack 
growth test performed on a SENB specimen, Curry [24], predicts the 
initial slope of the resistance curve as 

(dJR/dl)i c± 1.7o-o(CTOA) (3D 

If the crack opening angle (CTOA) is identified with the ratio of the 
final stretch to the process zone size, 5/A, then formulas (31) and (29) 
are in agreement. 

Curry [24] concludes that since the crack tip opening angle remains 
essentially constant during slow crack growth, the Paris tearing 
modulus Tj is also a constant; TjadjR/da « (dJRJda)ia CTOA. 

This need not be the case if the amount of slow crack growth prior 
to the terminal instability does not fulfill the restriction Al/lo « 1. 
As shown by Wnuk [23] a substantial amount of postyield stable crack 
extension may precede the transition into an unstable fracture if the 
tearing modulus has sufficiently low value and/or when the yield point 
of a material is increased, e.g., due to cold-working or irradiation. 
Then, it appears that a more complete representation of the crack 
growth history is necessary, and it is provided by the closed form so­
lutions of the "Isy" equations given by the bottom line in (18) and (19). 
These solutions for a center-cracked infinite width plate are 

R(l) = Ri(Wo)1/2 exp • (1 + 2X,-)(1 - lo/l) 

JR(l) = Ji + 

where K = 8nY2/irEi and 

Ji + — (1 + 2A,) 
I \ KI jl\ 
- - 1 - - l o g -
h 2 5 i o 

A;H 
M + - log 

2 \2eR, 

M - (Ji/do) - (1/2) log (2e/0/A) 

(32) 

(33) 

They suggest a variable tearing modulus, Tj, namely, 

Tj^Jl 

1 

l-V2 

\Ji 1 

Mo 2 I 
(34) 

plane stress 

plane strain 

The plot of Tj versus the dimensionless crack length I/IQ is given in 
Fig. 3. It shows that there may be a distinct variation in the tearing 
modulus (considered by Paris and his coworkers to be a material 
constant), and that the initially high value of Tj (see, e.g., Fig. 3) is 
followed by a gradual monotonic decrease with a tendency to level off 
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V 

S ^ - T j " " 

^ " ' T j " ^ — - ' 

Crack Lsngth, x./Mt 

Fig. 3(a) Material and applied tearing moduli for the "Isy" case plotted 
versus the current crack length. The coefficient a - (Snco/TT) (V7r/o)2 is about 
41.7 when the constraint factor (Y/<r0) is assumed to be 3, <o = 1 — v2 = 0,91, 
and the empirical factor n ~ 2. With these values the initial tearing modulus 
( r j M A T ) ; is about 119 while (r jA P P L ) , is about 52. Other input data are as 
follows: /0 = 10A, R, = 35A, M = 4.8S. 

prior to occurrence of t h e t e rmina l instabil i ty. P e r h a p s it ought t o be 

po in t ed o u t t h a t t h e g r a p h shown in Pig. 3 was ob ta ined u n d e r an 

assumpt ion of a cons t an t crack t ip opening angle (or 61A) t h r o u g h o u t 

t h e slow crack g rowth p h a s e of duct i le f rac ture . 

For comparison the quan t i ty (£ / ( ro 2 )5Jx /d i is added in Fig. 3. Th i s 

en t i t y is of t h e s a m e d imens ion as t h e ma te r i a l t ea r ing m o d u l u s Tj, 

b u t it reflects t h e a m o u n t of energy avai lable for f rac ture (note t h e 

index "A " which emphas izes t h e " a p p l i e d " n a t u r e of t h e J - i n t e g r a l , 

used in th i s con t ex t as an ex te rna l field in tens i ty ) . I t has been sug­

ges ted by W n u k [23] t h a t t h e difference 

X = ( T r S t / 8 Y 2 n ) [ d J R / d / - dJA/dl] (35) 

X = (7r<r0
2 /8Y2 r e)[TM A T - T A P P L ] 

T M A T = (E/<r0
2)(dJR/dl), T A P P L = (EW)(<>JA/dl) (36) 

be used as a measu re of t h e " d i s t a n c e " of a n y given s t a t e encoun te red 

in t h e course of a ducti le fracture from the s ta te of te rminal instability; 

t h i s difference is p lo t t ed in lower half of Fig . 3. Indeed , when b o t h 

en t i t i e s T M A T and T A P P L become equal , an u n s t a b l e br i t t le - l ike 

f racture is imminen t . For a s table crack extension t h e s tabi l i ty index 

X is r equ i red t o be a posi t ive n u m b e r , i.e., T M A T > T A P P L -
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APPENDIX A 
(a) 2D Traction-Free Crack. Equation describing an opening 

displacement ahead of a traction-free tensile crack extending in an 
infinite plate can be briefly written as 

where 

I = log 

II : 

uy(xi, I) = cl]l - II|, c = 2Y/irE1 

1 + X , 1 + e + X , l-X2 + e(l + X) 

l-X 

1 + e + X 

'l + e-X 

1 + e-X 
= log 

1 - X 2 + £ ( 1 ~ X ) 

(37) 

(38) 

, X=X[Xl(l),R(l),l] 

The entity may be expressed in terms of the R/l ratio, denoted by x, 
and a small quantity e = x\/l as follows: 

S2 = 1 - 2X€ - X«2- X = (2x + x 2 ) - 1 

i - x f - - x ( i + x)f2 + ---

(39) 

Substitution of (39) into (38) leads to 

I = log 

II = e log 

1 + X + ---
X(l + « + • • •) 

2 + (1 - x )e + • 

. 1 + X 

(1 + X)e + • • • 

X 

•• e l o g 

- log (1 + e + ...) 

(1 + X)e 1 + X 
; + . . (40) 

It follows then that the expansions of these forms for e -*• 0 are 

I = log 
1 + X 

- € + . . . = 2 log (1 + X) - € + . . . 

II = 6 log 
(i + xk 

+ . . . = e log 
2x(l + x) 

6(1 + x)2 (41) 

Note that the second expression just shown contains a logarithmic 
factor log (1/e) which is typical for a quasi-static crack problem in any 
configuration. It reflects the singular behavior of strains when e ap­
proaches zero. Of course, the product e log (1/e), which appears in the 
formula for the near tip displacements, vanishes when € = 0. 

Combining expressions (41) with the equation (37) gives the desired 
near-tip displacement for a 2D traction-free crack 

2ex(2 + x) 
[uy(xu /)]Jcl_o = 2c/ log(l + x) - - l o g 

2 l<Kl + x ) 2 + . 

Setting e = 0 one retrieves the tip displacement 

uy(0,1) = utip(l) = (4Y/TT£I ) / log (1 + Rll) 

•nil 

(42) 

(43) 

Using this result the formula (42) can be written in an alternative 
form 

[ M * i . ' ) k - o = "tipW - (2Y/wE1) | y | log 
2iex(2 + x) 

X i ( l + X ) 2 

(44) 

or, if the notation of Section 5 is employed, one has 

[uy(xi, /)]xl-»o = C\l<t>{x) - x i#(xi , DU=x[i) (45) 

The coefficient C = 2c = AY/irEi, while the functions F(D and <j>(xi, 
D are obtained through a comparison of (45) and (42), namely, 

0(x) = log (1 + x), x = R(l)/l 

$(xx , D = 2 l o g 
2elx(2 + x) 

(46) 
xi( l + x) 2 . 

Hence, the application of the general result (6) yields the differential 
equation defining an R -curve 

dR R R\ f 1, 
— = - + 1 + - M - - l o g 
dl I \ I { 2 

'2eR(2l + R) 

IA 
(47) 

(b) 2D Pressurized Crack. We begin with Rice's formula [21] 
which with our notation reads 

" y
< p , (* i , /) = CRWl-xJR - III + IV) 

Xi 
III = — l o g 

2R 

1 + (1 - xJR) 1/2-

IV = log 

1 - (1 - Xl/R)l/2_ 

A + (l-xi/R)1'2 

' A - (1 - xJR)1'2 

A = (1 + l/R)1'2, C = 4Y/TT£I 

Expansions of III and IV at the point xi = 0 give 

III = ^ l o g f ^ + . . . 

(48) 

IV = log 

2fl \xil 

A + 1 - xi/2fi + . 

A - l + xi /2# + . . 

A + l , 
; i0g + i0g 

A 

2 log 

A - l 

A + l 

1 - -
A2-1\R 

X i 

+ .. 

^ + . . 
1 A2-l\R 

R\m IR\i/i\ y(-r- (49) 

Replacing V l _ xJR by 1 — x\/2R and substituting (49) into the top 
equation in (48) we obtain 

\l/2l 
[uylp)(Xl,D]xl-~o = CR 

Hence it follows 

1 + 2 log HM?) 

: (4y/?r£i)fl 1 + 2 log 1 + - + ' 
R=K(() 

(50) 

(51) 

and 

4>(x) = xjl + 2 log [y/TTx + yfx~\] 

*(xx , /) = (1/2) log I — I + V x ( l + x) 

x(l)=R(l)/l (52) 

Application of equation (6) leads to the governing equation of the 
problem, namely, 

dR 
t + x di --i{^4iog(x)-v^rT^-H" 

<Mx) = xjl + 2 log [V l + x + VT]} 

h(x) = d<l>/dx = - + 
x V l + x (53) 

For x « 1 equation (53) reduces to the small scale yielding limit 

dR 

dl 2 \ A 
(54) 

For x » 1 we obtain the other extreme, i.e., the large scale yielding 
case 

dR 
— = [log (4e2fl//)]-U 
dl 

M-
1 [4eR\ 

(55) 

APPENDIX B 
(a) Traction-Free Penny-Shaped Crack. Using Olesiak and 
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Wnuk [26] solution for the displacements normal to the crack surface 
at a distance r% from the crack front 

uAri,l) = cJ-)\ 
\m. 

(56) 

Symbols F and E denote the incomplete elliptic integrals of the first 
and second kind, respectively. Other notations used are 

-m' 

lm2-p2 1 m\ 
11 M2, 

P \ PI 

+ pE L2, - - m 2 V ll-p
2 

1 - m 2 

- m 2 [ ( l - p2)/(l - m2)],,-™1'2 = - m 2 

and adding (m2 - p2)p~xF with pE we get 

m2 — p2 

F + pE = m log (8/e) + me + . . . (64) 
p-*m 2 

Finally, the result just given is combined with the second of the ex­
pressions (63) to yield the desired expansion of the displacement uz (r i, 
/), see equation (56), valid in the vicinity of crack tip, i.e., 

I 
m = 

l + R 

H2 = sin 

l + rx 

l + R ' 
m(l + e), t = rjl 

1 H • ° i = 4W7r£(l - v2) (57) 

For the distance r\ approaching zero one may express the incomplete 
elliptic integrals F and E through a difference of the corresponding 
complete elliptic integrals K(m/p) and E(m/p, izl2) and certain cor­
rective terms: 

Mri,J)I 

and 

r i — 0 : ••dl 1 - m - - log (8/e) 

+ 1 + - e + . 
e=ri/i (65) 

(65a) 

E Ui2) —\ = E — , - - A E (58) 

utipW = C^( l - m) = C i / i ( l + x ) - 1 

If we agree to represent these relations by the general formula 

luz]n^i = Ci\l<j,(x) - n$(rh 0} (66) 

it remains to define the functions <j> and $ . Comparison between (66) 
and (65) gives 

The corrective terms are defined as follows: 

ir/2 df 

7 T / 2 -

4>(x) = 
1 + x 

AF- J»W2 

ir/2-< 

vM!F sin2)/' 
V f i V 2 l + i 

$ ( r 1 , 0 = - l o g ( 8 i / r 1 ) - 1 + -
*( l + z)(2 + x). 

(67) 

AE- SL>/i-(t***d* (59) 

The lower limit in each integral was obtained by expanding the am­
plitude of the elliptic integrals involved, p 2 into a power series of e, 
i.e., 

T y/2m 

x(l) = R(l)/l 

These results combined with the equation (6) generate the differential 
equation of an R -curve valid for an arbitrary R/l ratio 

dR 

dl 
= (l + x)2 

M2 = " e1'2 + . . 
IT 

2 

f(x) = l + 2x + • 

M - - log (8Z/A) 

1 + x 

+ /(*) 
(68) 

(60) 
2 V l - m 2 

Note that with e —>- 0 and p-*m second of the foregoing integrals re­
duces to zero. The behavior of the first one needs to be investigated 
further, since its integrand becomes singular at p —• m. Such inves­
tigation reveals 

AF--

AE--

l 

VR(2l+R) 

2ri 

+ 0(e1/2) 

+ 0(e3/2) 

x(2 + x) 

The limiting cases of the contained yielding and large scale plasticity 
are discussed in Section 4. 

(b) Pressurized Penny-Shaped Crack. Examination of 01-
esiak and Wnuk's [26] formulas for the opening displacement uz (r1; 

/) near the front of a pressurized penny-shaped crack reveals that the 
only difference between this solution and that for a traction-free crack, 
is the presence of a multiplicative factor 

(61) 
E = [1 + (1 - m2)l'2\m~2 (69) 

s/R(2l+R) 

This result does not contain a logarithmic term expected in this type 
of a problem. To extract the logarithmically singular terms inherent 
in the expressions (58) we apply formulas given by Gradstein and 
Rhyzik (Tables of Integrals, Moscow, 1971, Russian edition, p. 919) 
to obtain 

which appears in front of the bracketed expression in equation (56). 
When m is replaced (1 + x ) - 1 , the function B reads 

B(x) = |(1 + x)[l + x + V * ( 2 + *)]!*=*/( (70) 

K 

E a 
; log —=. + . 

= l + -log(8/e) + . . 
p—-m 2 

Thus, omitting the algebraic details, we can utilize the expression (65) 
which can be easily adapted for the considered crack and loading 
configuration, i.e., 

(62) 

These results combined with (61) and substituted into equations (58) 
yield 

/ rri 

P7 

= - log (8/e) - . 
P-m 2 ^R(2l+R) 

e, , , 2/e 
= 1 + - log (8/e) - . 

o-m 2 VWWTR) 

+ 0(e!/2) 

[uzW(r1,l)]n-,0 = C1lB(x) 1 - m - - log (8/e) 

1 (l 1 m 3 \ 1 

' f ' l - J ' ' -
utip(l) = C1lB(x)x(l + x)-1 

These formulas imply 

t - r i / i 

(71) 

+ 0(e3/2) (63) </>(*) = x[l + x + V*(2 + x)] 

Observing now that 

(-2m)e + ... 

*(* i , l) = (l + x)[l + x+ V*(2 + *)]ftlog (8J/A) - H(x)\ 

H(x) = l + [x(l + x)(2 + x)-\ x(l)=R(l)ll (72) 

Application of the final stretch criterion gives now 
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^ = * i ( * ) f j l f - ^ l o g ( M / A ) 
dl I 2 

+ *2(«) (73) 

where the auxiliary functions $ i and $2 are defined as follows: 

\/x(2 + x) 
* i ( * ) = 

(* + V*(2 + x))(l + x + Vx(2 + x)) 

$2U) = * + 
Vx(2 + x)(l + x)2 

x(2 + *)(V*(2 + x) + *) 
(73a) 

In closing it should be noted that in order to obtain the correct 
limiting expressions for the ssy case the function <j>(x) in (67) and (72) 
should be represented by a power series in which the term x2 is re­
tained, i.e., 

<t>(x)\ssy ' 

which implies 

x(l-x + . . . ) , case a 

x{l + y/2x+x + . . . ) , caseb 
(74) 

KJB(1 -x), 

JR(D\S 
\KR 

R 
1 + - + 

I v!K case b 
(75) 

Differentiation of <j> with respect to x reduces the order of the poly­
nomials (74), and thus upon completion of the necessary calculations 
we find that the highest order term which survives is on the order of 
x°, i.e., a constant. This constant is needed and should not be 
omitted. 

Expansions of functions $i(x), B(x), and $2(2) for * —>• 0 are given 
as follows: 

*iU) = l - | V 2 7 + | x - r . . . 

B(x) = l + V27+2x + . . . 

*a(a) 
1 - + - ^ + l + . . . (76) 

2x 2sf2x~ 

These relations were utilized in derivation of the top equations in (26) 
and in (29), valid in the limit of contained yielding. 
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Arrest of Mode 111 Fast Fracture by 
a Transition From Elastic to 
Viscoplastic Material Properties 
i The transient problem of arrest of a rapidly propagating Mode HI crack has been investi­
gated for a crack which initially propagates in an elastic solid, and then enters a region 
of viscoplastic material properties. The transition to the viscoplastic behavior is modeled 
by a gradual process which starts at a certain time at which the constitutive relations 
change in a timewise manner from elastic to elastic-viscoplastic] Both deceleration and 
complete arrest of the crack have been treated. The solution has"b~een obtained numerical­
ly by a finite-difference procedure. Arrest of a crack in a perfectly elastic material has 
been treated as a special case. Several field quantities such as the effective plastic strain, 
plastic work, total strain, and crack surface displacement have been computed, and their 
relation to arrest criteria have been explored. 

1 I n t r o d u c t i o n 
The ultimate goal of fast-fracture studies is to analyze the condi­

tions for prevention of rapid crack propagation. A prudent assumption 
is, however, that high rate fracture phenomena cannot always be 
prevented. Thus it is important to consider the conditions for arrest 
of a rapidly propagating crack tip. 

Rapid crack propagation usually is an essentially brittle fracture 
process. In this paper we consider the case that a crack starts to 
propagate under brittle conditions, but then approaches an interface 
beyond which the material can yield considerably before rupturing. 
We investigate crack arrest as well as reduction of crack-tip speed as 
the crack-tip enters the region of plastic deformation. 

In earlier work, which was concerned with rapid crack propagation 
in an elastic-viscoplastic material [1,2] the authors have used a con­
stitutive model which was proposed by Bodner and Partom [3]. This 
model does not require the statement of a separate yield criterion, nor 
is it necessary to consider loading and unloading separately. Plastic 
deformation always exists, but it is negligibly small when the material , 
behavior should be essentially elastic. ./-"'• 

\ In this paper we-use the Bodner-Partom model for themaieriaL--
behavior in the region of elastic-viscoplastic behavior^ Since the 
crack-tip speeds are high, and since considerable transient effects may 
occur when the region of plastic deformation is approached, the effect 
of inertia has been included in the analysis. 

The constitutive equations for the elastic-viscoplastic region have 

been summarized in Section 2. The modeling of crack arrest as the 
plastic region is entered, and of penetration of the region of plastic 
deformation, is discussed in Section 3. The numerical method of 
analysis is discussed in some detail in Section 4. The last section is 
concerned with the discussion of the results, principally the plastic 
strains just ahead of the crack tip. 

2 Cons t i tu t ive E q u a t i o n s 
In this section the governing equations for the Bodner-Partom 

model are briefly summarized. 
In the usual manner the total rate of strain is expressed as the su­

perposition of elastic (reversible) and plastic (irreversible) compo­
nents 

iij = iij{e) + hj(p) i,j = 1,2,3 (1) 

The elastic strain rates are related to the stress-rates by Hooke's 
law / / 

v>=- • (Tkk&ij (2) 
2M \ l~v 

where \i is the shear modulus, v is Poisson's ratio, and <5y is the Kro-
necker delta. It is assumed that the plastic deformations are incom­
pressible, 6fc£(p) = 0, and that the Prandtl-Reuss flow law holds. 
Thus 

(3) iy <P> = e^P) - As;, 
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where sij and eij ' p ' denote the deviators of the stress tensor and the 
plastic strain-rate tensor, respectively. Equation (3) can be squared 
to yield A in the form 

Here 

A^ = Di^/Ji 

D2
(p) = \ hj {p)eij(p) and J2 = isi 2 Sijaij 

(4) 

(5a, b) 
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are the second invariants of the plastic strain-rate deviator and the 
stress deviator, respectively. 

Following reference [3] we take the following relation between D^ 
and J2: 

Z>2(p) = Do2 exp [-(AVJ2)"], (6) 

where 

A2 = lZ2[(n+l)/n]1/n (7) 

The coefficient n is related to the steepness of the D2 (p) — J2 curve, 
Do2 is the limiting value of D 2

( p ) for very high stresses, and Z is an 
internal state variable referred to as the hardness of the material, 
which expresses its overall resistance to plastic flow. For isotropic 
work-hardening the evolution equation for Z is taken to depend on 
the amount of plastic (irreversible) work, Wp, which has been done 
on the material from a reference state. Specifically, Z is assumed to 
have the form 

Z = Zi + (Z0 - Zi) exp l-mWp/Zo] (8) 

where Zo, Z\, and m are appropriate parameters of the material, and 
the rate of plastic work can be expressed in the form 

WP = aijiij(p) = Sijiij <p> = 2 AJ2 (9) 

In equation (8), Zo is the initial hardness and Z\ is the upper limit of 
Z. The hardness must have an upper limit, because otherwise D 2

( p ) 

would approach zero for large Wp, which would imply fully elastic 
behavior at appreciable strains. 

In reference [3] the model was used to investigate tensile straining 
for a number of histories, that included straining at various rates, 
rapid changes of strain rate, unloading and reloading, and stress re­
laxation. The calculations were based on material constants chosen 
to represent commercially pure titanium. Theoretical and experi­
mental results showed good agreement. 

The system of governing equations is completed with the stress 
equations of motion 

aUj = P"> (10) 

where p is the mass density. 
The Bodner-Partom theory is applied in this paper to a dynamic 

problem. It should be noted that its validity under dynamic conditions 
was examined in [4] where the response of elastic-viscoplastic beams 
subjected to dynamic loads was computed. Comparisons between 
theoretical and experimental dynamic deflections showed good 
agreement for relatively short response times. 

The particular example of this paper is concerned with deformation 
in antiplane strain. Thus the only nonvanishing displacement com­
ponent is ua(xi, %% t), and the corresponding total strains are 

«3i = 2 « 3 , i ; f32 = 2 "3,2 (11a, 6) 

The nonzero stress components follow from (1) and (2) as 

<T31 = 2Mf31 - f31 ( p )), (T32 = 2^(632 ~ 632<p)) (12a, b) 

and the second invariant of the stress deviator reduces to 

J2 = (r3i2 + a32
2 (13) 

Substitution of (11a, fa) into (12a, b), and subsequent substitution 
of the results into (10) yields 

(US.11 + "3,22) - 2(e3 l , l ( p > + 632,2(P)) = — U 3 (14) 
CT 

where CT = (n/p)1/2 is the speed of elastic shear waves. The plastic 
strains are governed by the flow rule (3). 

3 A r r e s t of a R a p i d l y P r o p a g a t i n g M o d e III C r a c k 
We consider a semi-infinite Mode III crack which propagates in the 

center plane of a thick strip of height 2h. The geometry is shown in 
Fig. 1. An interface (or a transition region) separates the strip into two 

y » x 2 

U ) 
Fig. 1 Propagating crack in a strip 

semi-infinite strips in which the constitutive behavior is elastic and 
elastic-viscoplastic, respectively. The crack originally propagates with 
a constant velocity Uo in the elastic part of the strip in an essentially 
brittle fracture process. It is assumed that a steady-state situation 
relative to the moving crack tip has been established. As the region 
of viscoplastic constitutive behavior is approached, the steady-state 
process is terminated and a transient process starts. 

Conceptually, it would be possible to model the interface between 
the elastic and viscoplastic parts as a discrete plane across which 
relevant stresses and displacements must be continuous. Since the 
computations are carried out relative to a coordinate system which 
moves with the crack tip, the presence of such an interface, which 
would be located a monotonically decreasing distance from the crack 
tip, creates some awkward complications in the numerical analysis. 
Even though the complications may not be unsurmountable, the 
authors have decided to model the transition into the viscoplastic 
region in an alternative manner, which approximates a transition 
region rather than a discrete interface. In this model it is assumed that 
at a certain time t (say t = 0) the constitutive behavior starts to change 
in a timewise manner from elastic to elastic-viscoplastic. Since time 
is measured relative to a coordinate system moving with the crack tip 
the change of the constitutive behavior with time can be considered 
as a change with the coordinate in the direction of crack propagation. 
At time t = t\ the transition from elastic to viscoplastic has been 
completed. The time t = 0 corresponds to the time that the crack-tip 
region first becomes aware of plastic deformation ahead of the crack 
tip, while at the time t = t\ the crack tip is completely surrounded by 
a plastic zone. In the time interval 0 < t < t\ the crack-tip speed may 
change its magnitude. Three cases have been considered: 

1 The crack-tip speed does not change. 
2 The crack tip is arrested. 
3 The crack-tip speed changes from L>0 to Vf, where Vf < i>0. 

In the latter two cases it is assumed that the velocity changes also take 
place in the time interval 0 < t < t\. The initial conditions in the strip 
for t < 0 are given by the steady-state displacement distribution 
produced by a crack moving at a velocity uo in the x\-direction in the 
center plane of an elastic strip, which is subjected to a tearing loads 
at its boundaries. For a constant displacement, Wo, on the faces at 
X2 = ±h, the displacement distribution within the strip has a 
closed-form expression which is given in reference [5]. The displace­
ment field within the strip can also be obtained numerically by a very 
efficient method which was described in [1]. 

At time 4 = 0 the material starts to change gradually. The properties 
become elastic-viscoplastic with a constitutive behavior defined by 
equations (l)-(9). At the same time the crack-tip speed starts to de­
crease. The external loading does, however, not change, so that the 
boundary conditions on the faces of the strip remain of the form 

us(xx, ±h, t) = W0 (15) 

By virtue of antisymmetry it suffices to consider the upper half of the 
strip only. The boundary condition on the surface of the crack is 

o-32(*i.O, t) = 0 for - » < x i < 0 (16) 

while the condition of displacement antisymmetry yields 
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u3(xi, 0, t ) = 0 for X i > 0 (17) 

Let u(t) denote the time-dependent velocity of the propagating 
crack tip. A system of (xi, x2, x3) coordinates is now chosen to move 
with the crack tip. A stationary system (x,y,z) and the moving system 
(xi, X2, Xa) are related by 

x\ = x — ( v(s)ds, x2 = y, x3 = 2 
Jo 

(18) 

The time derivatives in the equation of motion and in the flow rule 
then reduce to 

0 = dt dxi 
( • • ) = : 

dt2 •2v 
d2 „ d2 

+ v2 
dv d 

dxidt dxi2 dt dxi 
(19) 

Consequently, in terms of the moving coordinates, the equation of 
motion (14) takes the form 

(1 - U7CT2)«3,11 + "3,22 - 2(631,1(p) + e32,2(p)) 

v d 
+ 2 

cT
2bt 

In the moving system the flow 

— f M <P' = 
dt 

d_ 

dt 

«31v 

£32' (P) : 

1 dv 
"3,1 + — j ~ r " 3 . i = 

CT dt 
ru le (3) is given by 

" f3 i , i ( p > + A<r31 

ue 3 2, i ( p ) + Ao-32, 

1 

CT2 

d2 

dt2 "3 (20) 

(21) 

(22) 

and equation (9) for the rate of plastic work reduces to 

— Wp = viWp),! + 2AJ2 (23) 
dt 

Equations (20)-(23) form a system of nonlinear differential equations 
for the variables U3(xi, X2, t), f3i (p)(xi, x% t), f32

(p)(xi, x2, t), and 
Wp(xi, X2, t) which govern the field induced by the motion of the 
crack in the elastic-viscoplastic medium. 

When Do = 0 in (6), Hooke's law for a perfectly elastic material is 
obtained. The transition from the elastic state to the elastic-visco­
plastic state during the time interval 0 < t < t\ is modeled by multi­
plying the parameter D0 in (6) by an appropriate temporal function 
G(t) which rises gradually from G(0) = 0 to G(h) = 1, and G(t) = 1 
for t > tx. 

4 Numerical Solution 
The system of equations (20)-(23) has been solved numerically by 

a finite-difference procedure which employs a grid of mesh sizes Axi 
and Ax2 in the x\ and X2-directions, respectively, and a time incre­
ment At. The procedure can be divided into three steps. In the first 
step equation (20) is integrated. Equations (21)-(23) are solved in the 
second step. In the third step the boundary conditions (16)—(17) are 
imposed. 

In the integration of equation (20) the derivatives are replaced by 
their central difference approximations to yield an implicit three-level 
scheme of second-order accuracy, (i.e., the error resulting from the 
replacement of the differential equation (20) by its finite-difference 
approximation is of a second order in the spatial and temporal in­
crements). The following system of equations in the unknown dis­
placements at t + At is obtained: 

e3"3(*l _ AjCi, X2, t + At) + Us{xi, X2, t + At) 

- 63U3U1 + Axj, x2, t + At) = 2[1 - (CT2 - v2)ei2 

- cT
2e22]u3(xi, X2, t) - us{xi, x2, t - At) 

+ e3[u3(xi - Axi, X2, t — At) - U3(xi + Axi, x2, t - At)] 

+ (CT2 - U2) €12[U3(*1 + AX1, X2, t ) + U3(Xl - A*! , X2, t ) ] 

+ CT2e22["3(*l, X2 + Ax2, t) + U3(xy, X2 - Ax 2 , t)] 

(24) 

+ — (iAt[u3Ui + Axi, %2, t) - U3U1 - Axi, *2 . t)]/2 
dt 

- CT 2 f lAt[e 3 l ( p ) (Xl + A*i , X2, t) - €31(P)(X1 - A x j , X2, t ) ] 

- CT^Atfe-is'PHxi, x2 + A%2, t) - f32 (p )(xi, x2 - Ax2, t)] (24) 

(Cont.) 

where ei = At/Axi, e2 = At/Ax2, £3 = «i v/2. 
This system is tridiagonal so that a direct inversion algorithm can 

be employed and no iterations are needed. According to the three-level 
scheme (24) it is possible to compute the displacement u3 at time t 
+ At if the field variables are known at time t and t — At throughout 
the region. 

In the second part of the numerical procedure the three differential 
equations (21)-(23) are solved. To this end we rewrite (21)-(23) in the 
form 

where 

• f 3 1 ( p ) ' 

€32<p) 

. W" . 

— U = AU 1 + B 

at 

, A = u(t) l , B = 

A <T31 

A 0-32 

2A J2 

(25) 

(26) 

with I being the unit matrix. The quasi-linear system (25) is solved 
by the Lax-Wendroff method which is given in [6] for a homogeneous 
system (B = O). Here we generalize this method as follows: 

d (At)2 d2 

U(xi, x2, t + At) = U + A t — U + U + 0(At3) 
dt 2 dt 2 

A , s (At) 2 / „ dA 
= U + At(AU 1 + B) + A2U n + — U! 

2 \ dt 

+ AB1 + — | + 0(At 3 ) (27) 
dt/ 

Let us define the operator Q by 
QU=(l-A 2€l 2 )U(Xi ,X2, t ) 

1 / , , IrfA A \ 
+ - A2£i2 + Aei + exAt U(xi + Axi, x2, t) 

2 \ 2 dt I 
l d A

 A \ , • Aei — - — eiAtl U(xi — Axi, x2, t) - r - l A 2 ^ 2 ' 
2 ' 2 dt 

+ -AfiAt[B(xi+ Axi, x2, t) - B ( x t - Axi, x2, t)] (28) 
4 

Equation (27) can be spatially discretized in the form 

U(xi, x2, t + At) = Q U(xi, x2, t) 

+ AtB Xi.xz, t + — + 0 ( A t 3 ) (29) 

In (29), B(xx, x2, t + At/2) can be approximated by | [B(xi, X2, t) + 
B(x!, X2, t + At)]. Hence U at time t + At can be computed tentatively 
as 

0(x i ; x2, t + At) = Q U(xi, x2, t) + AtB(xi, x2, t) (30) 

This value is subsequently corrected according to 

0(xi, x2, t + At) = Q U(xi, x2, t) 

At * 
+ — [B(xi, xa, t) + §(xi, x2) t + At)] (31) 

where the asterisk on B means that this quantity is evaluated by using 
the predicted value given by (30). 

According to (30)-(31) it is possible to compute the inelastic field 
variables by an explicit method of second-order accuracy whenever 
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Fig. 2 Normalized displacements at ( - f t /2 , 0) and normalized stresses at 
( A X L 0) versus time for arrest (vt = 0) of a propagating crack (v0/cT <= 0.8) 
in an elastic strip. The rate of change of the crack-tip speed is given by 
equation (33), with cTti/h = 0.25 ( — ) and cTU/h = 0.5 (- - - ) . Also shown 
the normalized stress-intensity factor ( — ) for sudden crack arrest. 

all the field variables are known at time t. In the special case of a 
stationary crack we have A = O, and the scheme (30)-(31) reduces to 
the improved Euler-Cauchy method for the numerical integration of 
ordinary differential equations. 

The final part of the scheme consists of the application of the 
boundary conditions (16)-(17). Equation (16) is employed to deter­
mine the displacement along the surface of crack behind the tip in the 
form 

us(xi,0,t) = u3(xi,Ax2,t)-2Ax2e32<p)(xi,0,t) xx < 0 (32) 

5 R e s u l t s 
The method of solution has been applied to compute the fields 

generated by crack arrest as the crack tip enters titanium, for which 
the material parameters are, see [3]: 

H = 0.44 X 10BN/mm2, p = 4.87 gm/cm3, Z0 = 1150 N/mm2 , 

Zi = 1400 N/mm2 , D0 = 104 sec"1, m = 100 and n = 1. 

The height of the strip is chosen as 2h where h = C7'/(5Do), which 
means that an elastic shear wave will propagate a distance of 5h during 
the time interval Do - 1 . 

The results presented in this paper have been obtained with the 
spatial increments Axjh = Axjh = 0.05 and the time increment 
crAt/h - 0.025. The latter value fulfills the stability condition dis­
cussed in reference [6] for the Lax-Wendroff scheme (30)-(31), which 
in the present case can be written in the form u At/Axi < 1. It also 
satisfies the stability condition for the scheme (25) discussed for an 
elastic problem in reference [7]. The applied displacements ± W0 on 
the two faces of the strip have been chosen as Wo/h = 0.008. 

(1) Crack Arrest in a Perfectly Elastic Strip. We consider 
the case that the propagating crack tip changes its velocity at time 
t = 0 from a steady speed vo to the final value u/ = 0 over the time 
interval 0 < t < t\. The strip is assumed to be perfectly elastic. We 
consider the elastic strip because crack arrest problems in elastic 
materials are of great importance, and because results for the 
stress-intensity factor for sudden arrest of a crack in a strip have been 
given by Nilsson [8]. These results can be compared with our nu­
merical solution for crack arrest over short time intervals [0, t{\. 

The time-dependent velocity is chosen in the form 

u( t ) = ( ( u o _ ' ; / ) [ 1 _ s i n Z ( 7 r i / 2 f l ) ] + ^ 0 < t < t i 
W t> h 

from which the acceleration dv/dt can be determined. 
In Fig. 2 we present the displacement on the faces of the crack at 

a distance x\ = —h/2 behind the tip, versus the nondimensional time 
Crt/h, for initial speed VQ/CT — 0.8 and two values oit\:cTti/h =0.25 
and 0.5, respectively. Also shown in Fig. 2 are the normalized stresses 
<T32 at the closest grid point (Axi, 0) directly ahead of the tip. The 
stresses are normalized with respect to the static value, (<r32)st, 
achieved at the same point by a stationary crack in the strip. Also 

shown are the results of Nilsson for the normalized stress-intensity 
factor generated by sudden arrest of the crack. The stress-intensity 
factor is normalized with respect to the static value (K3)st = 
fiWo(2/h)1/2, for a stationary crack in the strip. Fig. 2 shows that the 
two time durations t\ do not make a significant difference for the 
displacement, but it also shows that the maximum level of the stresses 
obtained at short times after arrest is initiated increases as the time 
duration t\ decreases. For the case of sudden arrest, the results of 
Nilsson show a jump of about 1.72 at t = 0 after which a sudden de­
crease occurs. All results show that after short times the normalized 
quantities decrease rapidly and oscillate with decreasing amplitudes 
around unity. It should be noted that since the stresses are computed 
at the nearest point to the tip of the crack, they can be regarded as the 
asymptotic value of the near-tip stresses which are directly propor­
tional to the stress-intensity factor. Accordingly the normalized stress 
near the tip can be directly compared with the normalized stress-
intensity factor. 

The displacements on the crack face at the point {—h/2, 0) shown 
in Fig. 2 are normalized with respect to (u3)3t—the static displacement 
for a stationary crack in the strip. It is readily seen that for both cases 
of crti/h = 0.25 and 0.5 the values of the normalized displacements 
equal unity when crt/h = 5. 

The aforementioned numerical results are given here for the arrest 
problem in which Uf = 0. I t should be mentioned, however, that the 
present numerical method can be applied also to the more compli­
cated case of steady propagation followed by nonsteady propagation 
of the crack tip. A short-time solution to this problem has been dis­
cussed recently by Nilsson [9]. 

In concluding this section we mention that by considering the case 
uf = t»o the steady-state solution for a propagating crack should be 
produced when the numerical scheme (24) is applied at t > 0. The 
procedure which was designed for transient phenomena then should 
provide time-independent results. This case forms a necessary test 
for the numerical method, and it was actually performed to yield ex­
cellent results. 

(2) Crack Arrest in an Elastic-Viscoplastic Strip. The results 
of Fig. 2 show that arrest of a propagating crack in an elastic material 
induces high values of the stresses immediately after the arrest ini­
tiates. Accordingly, when the loads remain unchanged crack arrest 
requires changes of the material properties. As discussed in Section 
3, we assume that the material properties change gradually from 
elastic to elastic-viscoplastic during the time interval 0 < t < ij.. The 
specific change is represented by the function G(t) (see Section 3) 
which is chosen here in the form 

|«n(*t/*x> 0±t<tl 

[1 t>ti 

The value of the t i was chosen to be equal to the time required for the 
crack tip to travel the length of the plastic zone ahead of the tip of a 
steadily moving crack tip in an elastic perfectly plastic material under 
small scale yielding conditions. The extension of the elastic-plastic 
boundary ahead of the crack tip is given by [10]: (lAr) (K3/T0)2 where 
To is the yield stress in shear and K3 is the stress intensity of the elastic 
field. For steady Mode III crack propagation in an elastic strip K3 is 
given by [11] 

K3 = fxWo [2(1 - u0
2/(JT2)1/2/h]1/2 (35) 

Consequently, the duration time £1 in (34) is approximated by 

h = (KS/TOWITTUO) (36) 

Adopting an offset rule by which the yield stress is determined at a 
permanent strain of 0.2 percent, we obtain for our material that the 
yield stress in shear is given approximately by rg/n = 0.008. From 
(35)-(36) we obtain the following expression for ti 

crh/h = - (cT/u0)(l - O 0 7 C T 2 ) 1 / 2 [ ( V M I ) / ( T O / M ) ] 2 (37) 
IT 

It is assumed that as the material changes its properties during the 
time interval [0, £1], the velocity of the crack decreases according to 
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Fig. 3 Comparisons of crack-face displacement u3 at (-M2, 0), and the 
effective plastic strain cp, the total strain e32, and the plastic work Wp, at (Ax-,, 
0) for v0/cT = 0.5 and three values of v,/cT: v, = 0 ( ), vt/cT = 0.3 (- - - ) , 
and V,/CT- = 0.5 ( - • - ) 

(33). In Fig. 3 the displacement on the crack face at distance *i = — h/2 
behind the tip is shown together with the total strain £32, the plastic 
work Wp and the effective plastic strain ep at the closest point (Axi, 
0) ahead of the crack tip. The rate of the effective plastic strain is 
defined by 

€P = [2ey(p)ef/P)/3]1/2 * (38) 

With respect to the moving coordinates ~ep reduces to 

— ? P = u(€P),i + 2A(J2 /3)1 / 2 (39) 
dt 

The plots in Fig. 3 are shown for an initial crack-tip speed UO/CT = 0.5, 
and for terminal velocities Uf/cT — 0, 0.3 and 0.5, respectively. For 
these cases the value of £1 in (33)-(34) has been computed from (37) 
as crti/h = 1.1. 

It is of interest to mention that several functions G(t) in addition 
to the one given by (34) have been used to represent the transition 
from the elastic to the viscoplastic state. The rise time £1 in all these 
functions was kept constant and given by (37). It turns out that the 
resulting field after the transition has been completed was almost 
independent of the specific form of G(t). This indicated that the 
specific representation of G(t) is not important as long as the rise time 
is kept constant. 

Several fracture criteria for continuing crack growth in ductile 
materials appear in the literature. This subject has recently been re­
viewed by Shih, et al. [12]. The crack opening displacement at a given 
distance behind the tip can be used as a growth criterion. Alternatively 
a strain-based fracture criterion can be used in Mode III crack prop­
agation according to which crack growth can initiate or continue if 
ahead of the crack tip in the plastic zone the total strain £32 achieves 
a critical value. Rice, et al. [13], proposed a criterion for continuing 
crack growth which requires that the amount of effective plastic strain, 
fp, accumulated near the tip be equal to or greater than a critical value. 
Here we investigate the stability of a crack using the foregoing criteria 
applied to the field variables shown in Fig. 3. 

Let us first consider the time-dependent effective plastic strain. 
If the critical value of the effective plastic strain for continued crack 
propagation is very high (more that 2 percent say) then we readily 
observe that stopping of the crack should occur in all cases shown in 
Fig. 3 since this value is never achieved. Suppose next that the critical 

CTt/h 

Fig. 4 Effective plastic strains ahead of the crack tip at (Ax1t 0) for crack 
arrest; v0/cT = 0.5 ( — ) and valcT = 0.4 ( — ) 

value would be achieved for crack arrest. Clearly, the crack will then 
not stop, but the crack-tip speed will presumably be reduced. The 
transient phenomena that take place during the change of crack-tip 
speed require extensive computations. It is, however, possible to ob­
tain the final value of the crack-tip speed after the crack tip has en­
tered the viscoplastic material, since at that velocity the steady-state 
plastic strain should just equal the critical value. Thus, referring to 
Fig. 3, if (?p)Cr is 0.75 percent, the terminal velocity should be U/CT = 
0.3. 

Next, let us examine the criteria based on the crack-opening dis­
placement and on the total strain measured ahead of the crack tip, 
respectively. These quantities are presented in Fig. 3, and they indi­
cate that similar conclusions can be drawn about the stability of the 
crack as for the critical plastic strain criterion. 

It is interesting to note that the dissipative plastic work Wp mea­
sured ahead of the crack tip can also be used as an equivalent criterion 
for crack growth as can be noted from Fig. 3. 

For crack arrest the effective plastic strains, ep, accumulated at the 
closest point (A*i, 0) ahead of the tip are compared in Fig. 4 for two 
initial velocities: VQ/CT - 0.4 and 0.5. In each case Si in (33)-(34) has 
been computed from (36), giving Crti/h = 1.45 and 1.1, respectively. 
The graphs show that crack arrest is more likely to occur for a crack 
propagating at a lower initial velocity, since the accumulated plastic 
strain will be lower. Similar conclusions can be drawn on the basis of 
the crack opening displacement, the total strain and the plastic 
work. 

A check on the validity of our numerical method can be performed 
by comparing the long-time solution produced by the scheme (24), 
(30)-(31) (which is designed for a time-dependent problem) after the 
material changed its properties, with the steady-state solution of a 
propagating crack in the elastic viscoplastic strip which has been 
discussed in reference [1]. It turns out that for VQ = Vf = 0.8 c r the 
stress, strain, and displacement at time crt/h — 5 coincide with the 
steady-state solution at the same locations. It should be mentioned 
that as the initial steady velocity decreases the steady-state solution 
is recovered after longer times since as can be noticed from equation 
(37) the time required to establish the plastic zone ahead of the crack 
increases as UQ decreases. 
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Approximate Description of Crack 
Kinking and Curving 

IAnapproximate description is given of the slightly out-of-plane growth of a straight crack 
under mixed-mode loading and in the presence of an in-plane stress. By using a perturba­
tion technique, conditions are derived for the deviation of the crack from straightnessA 
The allowance for the possible curvature of the quasi-statically growing crack, and the 
effect of the finite length of the main crack are included in the analysis, which retains sec­
ond-order terms. In particular, it is shown that the curvature of the crack path depends 
on the in-plane stress and the derivatives of the stress-intensity factors with respect to 

"The length of the main crack, ffhe influence of the in-plane stress on the stability of the 
crack growth is also studied and the conclusions are the same as those reported by Cotter-
ell and Rice'TJ 

Introduction 
In a recent paper Cotterell and Rice [1] used a perturbation tech­

nique, originally proposed by Banichuk [4], and Goldstein and Sal-
ganik [3], to derive, among other things, the conditions necessary for 
slightly out-of-plane quasi-static growth of a semi-infinite straight 
crack under mixed-mode loading conditions. They also studied the 
stability of the crack growth under the influence of a nonsingular 
stress acting parallel to the crack plane. It was shown that the devia­
tion of the quasi-statically growing crack that always occurred at a 
finite angle from the initial straight path resulted from the presence 
of a Mode II component in the externally applied loading. 

As regards the dependence of the stability of the crack growth on 
the nonsingular stress term, T, representing the tensile stress acting 
parallel to the crack and appearing in the Irwin-Williams [5] crack 
tip stress field, it was shown that the straight path is stable for T < 
0 and unstable for T > 0. 

In [1] a strict first-order approximation was used in the analysis and 
the considered crack was semi-infinite. In the present analysis we 
include second-order terms in the governing integral equations and 
related field quantities. In addition, the effect of the crack length upon 
its extension is also investigated. We show in particular that crack 
curving can occur without kinking when T = 0 and when the Mode 
II stress-intensity factor is zero but its derivative with respect to the 
initial crack length is not. 

1 On leave from the Department of Civil Engineering and Surveying, The 
University of Newcastle, N.S.W., 2308, Australia. 
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Mathematical Analysis 
We consider an infinite plane containing a crack such that its tips 

at x = ±o are located along the x -axis, as shown in Pig. 1, where the 
straight and the curved portions represent, respectively, the pre­
existing crack and its extension. The deviation of the crack from the 
x-axis is described by the function X(x), which is assumed to be small 
relative to the extended length. The crack is opened by surface normal 
and shear tractions, Tn,Ts, which are necessary to remove the stresses 
due to external load (shown in Fig. 1). 

Following [1], the stress field is expressed in terms of the analytic 
functions $(z) and ^(z) [2] as 

: + Cv >2[0(z) + <Mz)] 
2iaxy = 2[z0'(z) + i/'(z)] 

(1) 

where z = x + iy,i • 
is in the form 

- 1 . Then the boundary condition on the crack 

<j,(z) + 0(z) + e"2i«[z0'(z) + iA(z)] = T„ - iTs (2) 

where 6 is the angle made by the crack with the x-axis (d = X' « 1). 
Introducing the analytic function, 

fl(z) = $(z) + z4>'(z) + 4>(z), (3) 

equation (2) is written as 

<Mz) + W) + e~2ie[(z - zWiz) + m)-W)] = Tn- iTs. (4) 

Following the method described in [1] we assume that there are two 
functions F(z) and W(z) which correspond to 0(z) and fi(z), and 
whose boundary values are F ± ( t ) and W±(t) on the upper and lower 
surfaces of a straight cut located along the x -axis and in between the 
crack tips; 4>(z) and fi(z) have their cut along the actual crack. The 
functions F(z) and W(z) can be written by the following perturbation 
scheme: 
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rr 

pr 

Fig. 1 Geometry of the straight crack and its kinked-curwed extension, and 
the external loading 

(5) 
F(z) = F0(z) + Friz) + F2(z) + 0(X3) 

W(z) = W0(z) + Wriz) + W2(z) + 0(X3) 

where F0(z) and W0(z) are 0(X°), Fi(z) and Wriz) are 0(A), and F2(z) 
and W2iz) are 0 (X2). On the boundary of the crack at 2 = t + i X (t) 
the function 0(z) is given by 

0±(Z)=n(t) + a 

\)2 

* + *•?(« 

dz2 

± 
+ iX 

d*Y 

dz , 
+ Ft(t) + 0(\3). (6) 

Since 

fd2?0' 

dz 

. dFUt) 

dt ' 

dFi 

dz 

dFfjt) 

dt 
, etc., 

equation (6) can be written as 

<t>±(z) = F$(t) + i\Ft'(t)+Ft(t) 

-h\*FS"(t) + i\Fi'(t) + Fi(t), (7) 

where the prime denotes the differentiation with respect to t. We can 
also express Q±(z) in terms of W*it), Wf(t), etc., in the same form 
as in equation (7). Using this expression and noting that, for small 
A, 

g - 2 i 8 s j l _ 2 j X ' _ 2 X ' 2 + 0(X3), (8) 

equation (4) becomes 

Tn - iTs = FUt) + WZ(t) + Ff(t) + WJ(t) 

+ iX[Ft(t) + wut)}' + 2i\\[Fut) - wmm 

+ Ft(t) + Wm + 2X'\\[FUt) - WUt)}}' 

- iX^Ftit) + W^(t)\" - 2[X2F0
= '(*)]' 

+ iX[Ff(t) + Wl(t)}' + 2i\X[F$(t) - WJ(t)])' + 2XXTJ ' (9) 

where only terms of the first and second order have been retained. It 
has been found in [1] that the angle of the kinked extension is pro­
portional to the ratio of the Mode II to the Mode I stress-intensity 
factor (i.e., Kn/Ki); hence, for the case of the slightly deviated ex­
tension considered here the magnitude of Ts will be limited to within 
the first order of smallness. This limitation greatly simplifies the 
analysis to follow. Thus ordering the terms in equation (9) leads to 

X°: FUt) + WUt) = Tn 

Xh 

X2: 

Ff(t) + WT(t) = -iTs iX[Ft(t) + WUt)Y 

- 2i\X[FUt) - WUt)]}' 

-iX[Ff(t) + WJ(t)]' - 2i\XlFJ(t) 

- Wm]}' + lX*[FUt) + WUt)}" + 2[X2FJ '(*)]' 

- 2X'\X[FUt) - WUt)]}' ~ 2XV11'. 

Fm + wm 

(10) 

(11) 

(12) 

The solution to equation (10) is 

1 „ a C a 2 _ t 2 \ l / 2 

Fo(z) = W0(z)=—-2 — j Tn
K— '—dt. (13) 

2-K\zi — aiY11 J-a t—z 

From equation (11) the boundary values of [Friz) + W\(z)] and [Fi(z) 
— W\{z)] are given by 

[Ftd) + Writ)]+ + [Frit) + W^it)]- = -2iiTs + XT'n) (14) 

and 

[Frit) - Writ)]+ - [Frit) - Writ)}- = 0. (15) 

Therefore, Friz) = Wriz), which are given by 

1 ra , ( a 2 - * 2 ) 1 / 2 

Friz) = Wriz) = „ , , _ a 2 ) 1 / 2 J Q ~HT. + XTn)± —dt. 
2TT(Z2 

t - z 

(16) 

Using equations (13) and (16), equation (12) yields the boundary value 
of[F2iz) + Wiiz)] 

[F2it) + W2it)]+ + [F2it) + W2it)]-

= 2XT'S + 4X'TS + 4(X2T'„)' + X2T'n (17) 

whose solution is 

(ni _ £2)1/2 

+ 4(X2r;)' + x2r;j — dt. (is) 
t - z 

At a point z = a + r + icor, where o> = X'(a) is the slope of the crack 
tip at x = a, the functions Fiz) and Wiz) are single-valued and cr^ 
and aro> can be obtained from equation (9) as follows: 

(Tom -i<Tru> = 2F0ia + r) + 2Fi(a + r) + 2ioo[rF0ia + r)]' 

- 2iwF0ia + r) - 3a>2r2F"0ia + r) - 2a2rF0ia + r) + 2iwrF\ia + r) 

+ 2iw\r[Fria + r) - Fria + r)]]' + F2(a + r) + W2ia + r) + 0(a)3). 

(19) 

By substituting equations (13), (16), and (18) into equation (19), the 
stress-intensity factors, K\ and Ku, are obtained as 

Ki - iKu = lim (1 + o.2)1/'1(27rr)1/2((r„a, - iarJ 

= (1 + cu2)W(7ra)-i/2 £ {qi _ iqn) i^A1'2 dt, (20) 

where 

qi = (!a>2 - 1)T„ + ioXT'n - 2(X2T^)' 

+ ( Y - 2 X ' ) r s - X T ' s - i X 2 T ; (21) 

911 = - T , - I T„ - XT'n. (22) 

LetL and / be the projections on the x-axis of the pre-existing crack 
(length Lo) and its extension, respectively. Let t = a — I + r and as­
sume the equation to the curved crack path in the form (see Fig. 1) 

\hir)-hil), 0<r<l 
X(r) = 

-j8(L + r), -L < r < 0 

where 

h(r) = (a - ff)r + Tjr3'2 + Xr2, 

P = hil)IL, 

(23) 

(24) 

(25) 

and a, i) and x are constants to be determined from the ordering 
scheme^ 

After integration by parts and use of the Taylor expansion for 
(1 + co2)1/4, equation (20) can be written as 
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T, + (1 - $p* + $p\')Tn 
1 "(xa)^ X L | ( X ' ~ 

(L + ty/2 i ~< aX 

J*' 7 -
— (Z - r)i/2dr 

o 2L 
/2U/2 

2\V2 r x tIlLmi_2lr_r2)
 dr 

8L2 (J - r)1 /2 

1 

(wa)Vz X ' a- „ 
- T 

• 1 2 " (L + 

5X2 

.(L + r)!/2(/ - r)
3'2 

r)V*(l - r)3'2 

dr 

dr 

x: Tn\\\' 

Kn-
- 1 

(ira) 1/2 x: 

1 / " * ' _ [ . . /a + t\i/2 

<•) . 1 I f'L + rU/2 

/2U/2 W K"--fc XT-

x: v 3 X 

A' a) 
2 2(/ - r) 

dr 

dr 

(/ - r) i /2 

(31) 
(Cont.) 

2 ( / - r ) . 
dt (26) 

U7 J O 2L 2 2(/ - r). 

L,r- + l l - X ' | T l dr 

(I - r)U* 

(I - r)^2dr 

dr J1Y* C'TU.LZ* 
Wl J o l 2L . (I - r)i /2 (32) 

J pi 
a)1'2J-LTL + 

a\Tn dr 

(7ra)!« J - L ( L + r ) ! / 2 a - r ) 3 / 2 ( 2 ? ) 

where now and in the sequel prime is used to denote differentiation 
with respect to r. 

To simplify equations (26) and (27), we resolve the components of 
the tractions in the directions of x and y-axes, whereupon 

Tn = (1 - \'2)<Tyy + \'2<rxx - 2\'axy + 0(X3) 

Ts = \'(ayy - <ixx) + (1 - 2\'2)<jxy + 0(X3). (28) 

For the case of crack extension the stress components on the boundary 
of the pre-existing crack are zero, and those on the extended portion 
can be derived from the stress field that exists along the prolongation 
of the pre-existing crack tip [4]. In the r, /i-coordinates the stress 
components on the curved portion are expressed in the form 

/ u\ i ^ • •• a<r**fc°> , h2?>2<Txx(r,0) 

where terms only up to second order are retained. 
Substituting equation (30) into equation (28), and the resulting 

expression into equations (31) and (32), equations (31) and (32) with 
the definition of X in equation (23) become 

„ 1 rl\ki I 3/t2 hh\ ku Ih \ 

I h2 hh\ 
+ (2Tr)1'2Th'2 + bjMl - —n + — - bnr

1/2 

\ 8r2 r I 

/5/3 h 
X — + — + 2/i' 

12 2r 

or Wl, 

dr 

(I - r)1'2 •lsl 

IT JO 

'Ih. 
.1/2 

+ fair1/2 

dy dy2 

— + - i (-3/1/2 + 3 3 r i /2) _ wx{l _ r) 
. 4 4 

- - xHl - r)2 + ^ \l5l - 156(^)1/2 
8 32 [ 

12r(7/i/2 - l l r i / 2 ) 60r2 

Oyy(r, k) = <Jyy(r, 0) + k. 

aXy(r, h) = axy(r, 0) + h 

doyy(r, 0) h2d2<ryy(r, 0) 
ji/2 + r i / 2 

9 
+ -t 

dy dy2 

daxy(r,0) h2d2axy(r,0) 
+ -VXd-r) 3/1/2 - 12ri /2+ 

(/1/2 + ,.1/2)2 4 

18r 
;i/2 + r i / 2 

dr 

dy dy2 
(29) 

(/ - r)i /2 

Using the asymptotic expansion for the stress field together with its 
derivatives with respect to y nssx the tip of the main crack, equation 
(29) becomes 

<txx(r,h) = 
(27rr)i/2 

/ 9M 3 fen h 

IsphTrr 
-Jd-r) 

dr 

/1/2 + r i / 2 

, / r U / 2 / 3 ^ 2 \ 3 , 
-T-bi\—\ 1 + — - — f a n • 

2TT 8 r 2 2 : 

Oyy(r,h) ' 

<rXy(r,h) • 

3 ^ 2 \ 1 
1 + 8 ^ -

r \i/2 h 

d ;+0(X3) 

h 

(2irr)i/2 \ 8 r2) 2 (27rr)1/2 r 

/ r \ i / 2 / h2\ trVKh 
- f t i — 1 ; + f t n — - + 0 ( X 3 ) 

12TTJ \ 8r2) \2TVI 2r 

(I - r)i/2 2TTL 

X (/ - r)i / 2dr + -^— C'-^-W2-2lr-r2) ^ ~ 
8TTL2 J O r i / 2 (/ - r ) i / 2 

41 

(33) 

12 2r 4 /i/2 + r i /2 2 

(A + fl_. -+TP 
(2-n-r)1'2 \2r 2) (2-irr)1'2 

••tr-+ 0(X3) (30) 

(l - r)i/2 TT J o Iri/2 \2r 2/ 

(2iry'2T(h' + P) - 6 tri/2 ( — - - ) + 6nri / 2 

\2r 2/ 

fen 
.1/2 

dr 

where fei, fen are the Mode I and Mode II stress-intensity factors and 
b\, b\\ are coefficients of terms proportional to square root in the 
Irwin-Williams expansion [5] (see the Appendix). For the stress state 
under consideration as shown in Fig. 1, T = (p — l)<r°°. The details 
required for the calculation of equation (30) are given in the Ap­
pendix. 

Substituting 2a= L + l into equations (25) and (26), expanding (L 
+ r) i / 2 and (L + Z)i/2 in terms of r/L and l/L, and assuming that l/L 
is a small quantity of the same order as X/(, we obtain 

/2\i/2 r i f 3 „ 3 , 3OJX 

(l - r)i/2 

T)l-ll - (lr)1'2 + Br\ +il'&+6irl /2)h+itV+Ci/* 
5 x ( ( _ r ) ] ( , _ r ) 1 / 2 d r _ ^ r ' | A [ * . + q + *E 
2 A J 2TTL Jo Vi/2l2r 2/ r1'2 

- (2TT)I/ 2T(/I ' + /?) - &:ri/
2 — + - + 6nr1 / 2 

\2r 2 
(I - r)dr. (34) 

3 3 
| l - - c o 2 + -coX' + - , 

2 4 ( / - r ) 

Using equations (24) and (25), and noting that o> = h'(l), it follows 
that 

3 3 / 9 
K\^k\ a2fei otk\\ + l1/2\ ariki 

8 2 \ 8 

+ X'2 + XX" + ^ ^ + 
15X2 dr 

I - r 8(1- r)2\ 
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+ iT (l - r ) i /2
 \TT, 

(31) 
9 /2\i/2 „ 31 \ 

- - j ) f en + 2 - a 2 T + —a7)fei + . . . 
4 \K\ 2-K I 

(35) 
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11 /2\i/2 

, , 1 7 

32 ) 
3Xfeii 

. - . ^ bi 5 , 86 „, 
H I—I ariT + - abn H ?rfei + . . 

2 Ur) 2 4 4TT 

+ /3/2 
5 , l2Y'2 rr, 39 4 

21 , 13 653 
H cmb\ Tiftii H ?)X + . • 

16 8 24TT 
+ 0(l2) <35) 

(Cont.) 

Kii«fei i + -fei + /1« 
2 

3 /2\i/2 

fell 3vr / 2 \ I / 2 m a, 1 , 
- — ijT fei + - fan + . 
4L 4 W 4 2 

+ / 

+ /3/2 

' • £ • * 
»; 

/2\i/2 ( a 8x1 i? , 8 , 
+ H T ~ " % abi + . 

U \3L 3 ) 8 3TT 

116L 

+ 0(Z2). (36) 

If a, i), and x m equations (35) and (36) are set equal to zero the 
results become 

AL 2 

*„=feii-¥+¥+o(Z2). 

(37) 

(38) 
4L 2 

We can identify the crack extension change (as I - • 0) of K\ and K\\ 
as the following quantities: 

Ki - ki dki 
T — n m — 

4L 
— = lim -
2 i-o I dL0 

(39) 

* I I fan = . . f f i i - fen_dfei i 

4L 2 i_o / ~ d L 0 ' 
(40) 

the right-hand sides of which can be computed from the boundary 
conditions of the main crack. With these definitions equations (35) 
and (36) can be written in the form 

3 3 
Ki = k\ — a2k\ — kna 

8 2 

+ I1'2 

+ 1 

- ar)ki 
9 , /2\i/2 „ 31 , 

•-ijfeii + 2 - a2T + — arjki + . 
4 W 2ir 

afei 

aL0 

15 11 /2U/2 
ki - ax + — i)2 - 3xfen + — , 

U. 32 / 2 \TT, 

5 dkn 5akn 86 
• - a 1 Kir) + • 
2 &L0 8 L 4ir 

ai)T 

+ 0(l3'2) (41) 

2 

'3 , /2U/2 
-T7A1 - 2 — aT + .. 
4 wl 

+ 1 
dAii a dki 3 M1/2 

d i o 2 dL0 2 \2J 
+ 0(/3/2). (42) 

Following the discussion in [1] that the crack will extend in the 
direction of vanishing K\\, the ordered conditions for determining the 
constants a, r\, and x can be found as follows: 

/°: * I I + —fei = 0, (43) 

I1'2: - j j f e i - 2 - aT = 0, (44) 

Z1: X*l + — " i - ~ h i?r = 0, 45 
d i 0 2 d L 0 2 \ 2 / 

from which it follows that the terms in equation (24) are identified 

- 2knlki 

8 /2\i/2 T 
- — a — 
3 W fci 

a 
T2 1 dfei 1 dfcri 
fef 2feidL0 2fendLo 

(46) 

(47) 

(48) 

D i s c u s s i o n 
By taking into account the length of the pre-existing crack it ap­

pears that the crack growth path depends not only on the in-plane 
uniform stress T,T = (p — l)<r°, as concluded in [1] but also upon the 
derivatives with respect to the pre-existing crack length, L, of both 
Mode I and Mode II stress-intensity factors as indicated by equation 
(48). When T = 0 we obtain from equations (46)-(48) 

a = -2ku/ki, ri = 0, x = (a/2ki)dkildLa + {a/2kn)dkn/dL0, 

and it follows from equation (24) that the crack path is a curved one 
whose curvature depends upon the derivatives of k\, fen, whereas in 
the absence of these additional terms, the extended portion would 
be predicted as a straight crack with angle a. 

The initial angle of deviation from straightness a as given by 
equation (46) can be viewed as a parameter that characterizes the 
inhomogeneity in the system, which is unavoidable in an actual sit­
uation. Equation (24), together with equations (46)-(48), indicates 
that the slope of the crack extension increases with an increase in the 
value of T > 0. If, however, T < 0, the kinked crack has a tendency 
to revert to its original straight path; i.e., the crack growth is unstable 
when T > 0, but stable otherwise. This conclusion is identical to that 
obtained in [1], 

Consider now a loading condition for which T = 0 and fen = 0, but 
dfen/dLo ^ 0. Then it follows from equations (46)-(48) and equation 
(24) that, in the r, Zi-coordinate system of Fig. 1, the crack path is given 
by 

h = -
fdfe 

dL ; / * 
r2 + 0(r5'2), 

so that without an initial kink the crack can have a smooth curved 
path in a nonhomogeneous stress field in which the Mode II stress-
intensity factor, while zero at the tip of the pre-existing crack, grad­
ually changes with distance away from the crack tip. Thermally in­
duced crack curving of this kind has been observed experimentally 
by one of the authors (SN-N) in glass plates. 
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APPENDIX 

2 Equation (47) differs with the corresponding expression in Cotterell and 
Rice [1], their equation (45), by a factor of 2. 

Stress Components and Their Derivatives Near a 
Crack Tip 

Referring to Fig. 2 the stress components in the x, y -coordinates 
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fti / e 3d\ fen 
= —; 3 cos - + cos — H • 

4 V 2 T T 7 1 2 2 / 4A/27IT 

-3sm 3 sin — 
2 2J 
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bu 

56] 
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2 2 j 

r I . 0 . 56] n , N 
.5 sin 5 sin — + 0(r), 

2TT \ 2 21 

Fig. 2 Coordinate axes at the tip of a straight crack 

can be expressed in terms of the polar stress components, arr, age, and 
Oris as follows: 

axx(x, y) = arr cos2 0 + ago sin2 0 — are sin 20, 

°yy(*i y) = ffrr sin2 0 + age cos2 0 + arg sin 20, 

0>y(x, y) = h(arr ~ aes) sin 20 + crrg cos 20. (49) 

Using the chain rule of differentiation and a transformation of coor­
dinates, we obtain derivatives with respect to y in polar form as 

d . . d cos 6 d 
— = sin 6 — + 
dy Z>r r dd 

, „> ki I . 0 .36] ku I 6 36] 
arg(r, 6) = — - = = L s i n - + s in—| H - — |coS7+ 3 cos—| 

4V27rr\ 2 
2 2 J 

50\ 

4\f27r 

— T sin 6 cos d H— \l — I sin 6 - sin 
4 V 2ir I 2 . 

bn [71 6 56] „ , , 
H A / — —cos - + 5 cos — + 0(r). 

4 V 2ir I 2 2 / ( 5 4 ) 
(Corct.) 

Substituting (54) into (51)-(53) and making the approximation for 
small B (in fact B is of second order as discussed in the text), we arrive 
at 

dy2 

(50) 
Hence, the stress components, axx, ayy, axy, along line Ox in Fig. 2 
are 

axx(x,0) = arr(x,B), 

ayy(x,0) = agg(x,B), 

axy(x,0) = arg(x,B), (51) 

and their first and second derivatives with respect to y are in the form, 
using (49) and (50), 

darr 

. d0 

da eg 

. d6 

darg 

daxx . . . 1 
—— (x,0) = -
dy x 

davv , 1 
—^(x,0) = -
dy x 

daxv , , 1 - ^ ( * , o ) = -
dy x 

• 2arg 

' + 2arS 

r=x,g=p 

d2axx , , 1 

2>2"'VV , .. 1 

dyz xL 

dyz x^ 

d2. 

d0 

do>, 

•+ ar, (52) 

+ r — — - 4 — j - + 2(agg - arr) 
d62 dr d6 

d2 

a9+r^+A^-2(aeg-6rr) 
d62 dr d6 

d2arg dare , „ d , , . 
——- + r + 2 —- (an- - age) - 4arg 
d0 2 dr d6 

r=x,0=p 

(53) 

The asymptotic series representations of arr, agg, and arg are in the 
form (see [5, 6]) 

arr(r,6) 
? l 36\ 

5 cos — cos—I + 
4V2TITI 2 2 

fen / . . 0 X „ . 30' 
—• —5 sin - + 3 sin — 
4 v ^ r 7 \ 2 2 

m on bi [7 [ 6 56] 
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4 V 2TT \ 2 2) 

4 V 2irl 
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Energy-Release Rate and Crack 
Kinking Under Combined Loading 

/ Based on the maximum energy-release-rate criterion, kinking from a straight crack is in­
vestigated under the plane strain condition. Solutions are obtained by the method that 
models a kink as a continuous distribution of edge dislocations.fThe energy-release rate 
is expressed as a quadratic form of the stress-intensity factors tftdt exist prior to the onset 
of kinking, and the coefficients of this quadratic form are tabulated for various values of 

"the kink angle.YThe examination of the results shows that Irwin's formula for the energy-
release rate remains valid for any kink angle provided that the stress-intensityJaciors 
in the formula are taken equal to those existing at the tip of a vanishingly small kink\ 

Introduction 
Crack kinking is of considerable importance in fracture mechanics, 

and many attempts have been made to study this phenomenon, be­
ginning with the work of Erdogan and Sih [1], who used the maximum 
stress criterion. Sih [2] also proposed an approach known as the 
minimum strain-energy-density criterion. The predictions obtained 
from these two criteria are based on the near crack-tip field that exists 
prior to the onset of kinking. Besides these, there is the maximum 
energy-release-rate criterion which is a generalization of Griffith's 
original energy-release-rate criterion [3, 4], and which seems to stem 
from the fundamental mechanics principle of minimum potential 
energy. There are several analytical studies of the mixed mode frac­
ture, that employ the maximum energy-release-rate criterion; i.e., the 
works of Hussain, Pu, and Underwood [5], Palaniswamy and Knauss 
[6], Gupta [7], and Wu [8-10]. Detailed discussions of [5, 6] are pre­
sented in [8]. Among these, the results in [10] are rather complete. 
Recently, closed-form expressions for the energy-release rate have 
been obtained by Wu [11], and Hayashi and Nemat-Nasser [12], as­
suming small kink angles. 

The objective of this work is to investigate the kinking from a 
straight crack, on the basis of the maximum energy-release-rate cri­
terion. To calculate the energy-release rate at the onset of kinking, 
the problem of a kinked crack with an infinitesimally small kink 
length is first solved by the method that models the kink as a con­
tinuous distribution of edge dislocations. This method is similar to 
that of Lo [13], and Karihaloo, Keer, and Nemat-Nasser [14], and is 
the same as that in [12]. Once the density functions of edge disloca-

1 Oh leave from Department of Mechanical Engineering, Tohoku University, 
Sendai 980, Japan. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
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10017, and will be accepted until December 1, 1981. Readers who need more 
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Department. Manuscript received by ASME Applied Mechanics Division, June, 
1980; final revision, October, 1980. 

tions are obtained, the energy-release rate is readily determined with. 
the aid of the near-tip stress field that exists prior to the onset of 
kinking. 

Simple expressions are obtained, which relate the stress-intensity 
factors and the energy-release rate, where the expressions for the 
stress-intensity factors are linear combinations of those of the main 
crack, and therefore are identical to the expressions presented by 
Bilby.and Cardew [15]. The energy-release rate is given by a quadratic 
form in stress-intensity factors of the main crack. Coefficients of these 
expressions are tabulated as functions of the kink angle. Once the 
crack problem without a kink is solved, then the stress-intensity 
factors and the energy-release rate can readily be evaluated for an 
infinitesimally small kink with the aid of the expressions presented 
here. The examination of these results shows that Irwin's formula for 
the energy-release rate is valid even at the inception of kinking for 
any kink angle, provided that the stress-intensity factors in the for­
mula are taken to be those that exist at the tip of a vanishingly small 
kink. This fact was first suggested by Hussain, Pu, and Underwood 
in [5], but apparently had not been completely accepted [10], so that 
the validity of Irwin's formula had remained an unsettled question. 
The present work, therefore, should make it clear that Irwin's formula 
indeed holds at the inception of kinking for all kink angles; it clearly 
applies after kinking has taken place. 

Statement of Problem and Basic Equations 
Consider an elastic body with a kinked crack. The body is isotropic 

and in the state of plane strain under a set of uniform stresses applied 
far from the crack. The lengths of the main crack and the kink are 
denoted by 2a and I, respectively. The fixed rectangular Cartesian 
coordinate system xa, shown in Fig. 1, is used; throughout this work 
Greek indices take on values 1, 2, and, unless otherwise stated, the 
usual summation convention is employed. A supplementary Cartesian 
coordinate system fa is also used, as shown in Fig. 1. In what follows, 
the superscript 0 identifies functions in the supplementary coordinate 
system. The stress tensor at infinity, referred to the ^„-axes, is denoted 
by <T2B-

The boundary conditions of the problem are as follows: 
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1 The surfaces of the main crack are free from tractions. 
2 The surfaces of the kink are free from tractions. 
3 The uniform stresses are given at infinity. 

The kink is modeled as a continuous distribution of edge disloca­
tions with Burgers' vector 6a(fi) referred to the f„-axes. The elastic 
potential functions $(2) and ^(2) of z(= x\ + ixz) [16], which satisfy 
Conditions 1 and 3, and the requirement for the single-valuedness of 
the displacement (for a circuit taken around the kinked crack) are 
given by [12] 

o f i + C2 P(s)e« 
W(Z) -

4 
1 " ^ l V Z ) T M 1 — " S t - 1 W2(,2,SJ 

«/o 2 — se '" J o 

tf(z) = "w ~ °n + iolz + * t ( 2 ) - i\ 

>r /3(s)e-"° g/3(s) 

2 — se , w (2 — se"*)2 d s + f >Ir5(z,s)ds 

where 

# j ( 2 ) = ^ j i i £ » [ x f o ) ( z + „ ) _ ! ] , 

$2(z,s) = - — /3(s)e'w f 1 1 X(z) 1 

as, 

, (1) 

(2) 

2 - seia ' z - se~iw X(se'") 2 - se ' " 

— - } + B(s)e-i"s(e-i" - e'<°) 
X(se-'")z -se~""J 

X 
1 

( 2 - s e - ; " ) 2 X 

X(2) 

(se - ' " ) 

a + se-1" 1 X(z) 1 

" s e - i w ( s e - ' " + 2a) 2 - se-'" Xise-'") (2 - s e - 1 ' " ) 2 

**i(z) = -$*l(«) + #*l(z) 

$ 2 ( 2 , S) + **2(2, 

-z**i ' (z ) , 

S ) - Z # 2 ' ( 2 , S ) , 

f(z) = 1/Vz(z + 2a), 

\ - £ 

8TT(1 - z/2 

P = 61 + ifcz-

)' 

, (3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Here, E is Young's modulus, and v Poisson's ratio. The branch of X(z) 
is taken such that X(z) —- 1/z as |z | '--* <=. An overbar is used to in­
dicate the complex conjugate. 

The density function |3(fi) is related to the displacement-discon­
tinuities across the kink, 

Fig. 1 Geometry and coordinate systems 

X = \ l ' t = \ l ' *"(t) = ^ B"(r)' 
For I« a, the basic integral equations then are2 

( Qpa(x,t;w)<t>p(t)dt = Pap(a)kp + y/lxifu- t%2)Ra(ui), 

(12) 

0<x < 1 , 

where 

Pop(co) = —{Clp(o>) + C2p{w) - Ca/)(to)) 

fli(a)) • - sin 2to, R2(ui) = ~ sin2 01, 
4 2 

(13) 

(14) 

(15) 

(16) 

and ka are the stress-intensity factors existing prior to kinking. The 
quantity Cap{b>) denotes the coefficients of the singular terms in the 
asymptotic expansion of the near-tip stress field of a straight crack, 
and is identical to those in the Irwin-Williams solution [17]: 

Cu = - (3 cos to/2 + cos 3to/2), 

C12 = - - (sin 3w/2 + sin to/2), 
4 

C21 = - (sin 3o>/2 + sin to/2), 
4 

C22 = - (3 cos 3to/2 + cos co/2). 
4 

(17) 

where 

d f l 

["«] = "2|fe-~0+ ~ "Slfii-0-

(9) The kernels Q/ia are given by 

1 —I" _ «flaU, t; co), 
x - t x+t 2 

(10) where 

Here, u° denotes the displacement vector referred to the f„-axes. 

Singular Integral Equations 
The elastic potential functions given by (1) satisfy Conditions 1 and 

3, and the requirement of the single-valuedness of the displacement. 
Only Condition 2 remains to be satisfied, and this leads to a system 
of singular integral equations whose unknown functions are the 
density functions &a(fi). 

The following nondimensional notation is introduced: 

• •'-. « • 
a 

taB ~ ' 

ft 
• - f " 

B««) ; Mft) 
ac/X 

(11) 

where 0^3 is the stress tensor referred to the f„-axes and <rc is a rep­
resentative stress for the system. Furthermore, set 

, , ., dai d„2 , xelwda3 d a 4 

»«i + ««2 = 1 : 1-:—: — + • x + t xela + t {xe1" + t)2 xe ' + t 
xe ' 

-I : + • 
(xe-iw + t)2 (xe'^ + t)3' 

and 

d n = —2, di2 = —cos to — 2i sin to, di3 = i sin to, 

d u = e""""(—cos 2to + i sin to cos to), 
dis = —e~ ' sin co(4 sin co + i cos to), 

(18) 

(19) 

die = 2e ,w sin2 to, d2i = —2i, d22 = —i cos to, d23 = sin co, 

d24 = e_ I"(sin to cos to — i), d2s = —e - 1" sin to(cos to + 2( sin to), 

d26 = 2ie- i"s in 2 to . (20) 

2 For I « a, Vf i /2o X(fie '»), VsTSa X(se'") , and Vs/2a Xfse" '") in the 
kernels of the integral equations can be expanded into the power series of fi/2a 
or s/2a. Neglecting terms of the order higher than 0(fi/2a) and 0(s/2a) and 
taking into account (11) and (12), one arrives at (13). 
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It can be proved that the last term of the right-hand side of (13) 
makes no contribution to the solution as I —• 0.3 Therefore, (13) can 
be reduced to two systems of integral equations, 

J " Qpa(x, t; o>)<j>pi(t) dt = Pal(u), 0 < x < 1, 

f Qf,a(x, t; <a)^(t)dt = P „ 2 M , 0 < * < 1. 
Jo 

(21) 

(22) 

The solution of (13) is given by 

4>p(x) = Ap0/Sp(z). (23) 

The second and third terms of the kernel Qpa in (18), are un­
bounded as x and t approach zero simultaneously, and the singular 
behavior of the solution at £ = 0 may no longer be described by 1/V1-
In order to study the singular behavior, it is necessary to examine the 
behavior of the integrals in (13) (or (21) and (22)) by the method 
proposed by Erdogan [18]. However, this examination is very tedious 
in the present case, so that here the singular behavior is estimated by 
using the asymptotic results presented by Bogy [19] for the fields 
associated with the vertex of a stress-free wedge, which, according to 
[19], behave as l/dl for a wedge angle larger than ir and less than 2ir, 
where d measures distance from the vertex and e < 1/2. In view of (9), 
this implies that Ba(£) is of the form, 

Ba(o = -^j=, t<m, (24) 

with a bounded function B* (£). Prom (11), (12), (23), and (24), it is 
concluded that 

MvW 
<t>a(*) 

vr^' 
(25) 

where \pap(x) are bounded on the kink. 

S t r e s s - I n t e n s i t y F a c t o r s a n d E n e r g y - R e l e a s e R a t e 
The stresses near ft = I on the f i-axis, but not on the kink, are given 

by 

» ' 2 ( B I + ; B 2 ) 
£22 "~ ^12 ~ l A 

Jo f - r 
-dr 

2iri 
{fcplMD + ifcp\MD). (26) 

The stress-intensity factors at the tip of the kink are defined as 

Kj + iKn = lim. !V2TT(£ - /) (t§2 + it?2) f t-0), (27) 

where the stress-intensity factors are nondimensionalized with respect 
to <rcy/ Va. Then, for an infinitesimally small kink, it follows that 

Ki + iKu = -2-v/2ir(/!p^2p(l) + ikyfiy(l)}. (28) 

When a kink starts from the tip of a main crack under the plane 
strain condition, the change of the potential energy, AP, measured 
per unit thickness of the elastic body, is given by 

AP = - f a'°Au0
an°sdS, 

2 J AS 
(29) 

where AS denotes the newly created area by kinking, ofy are the 
stresses acting on AS before the onset of kinking and referred to the 
fa-axes, Au° are the displacement increments due to kinking, and n% 
is the outward unit normal vector of AS. From (29), the energy-release 
rate, G, is given by 

d(AP) 

dl f^o 1^0 [ 21 Jo dfi 
(30) 

3 Solution (13) can be expressed as the sum of two solutions. The first solution 
is determined from the first term of the right-hand side of (13) and is inde­
pendent of /. The second solution is determined from the second term of the 
right-hand side of (13) and is proportional to yT-

- 2 a 
- ^ x 

a 
c 

Fig. 2 A crack under unidirectional tension 

where 

£„»(«= J" ̂ SUiWi. (3D 

In deriving (30), the following conditions are used: 

E ^ ( 0 ) = 0, K ] f = r = 0. (32) 

Employing the Irwin-Williams expression for 0-$, and using (9), (11), 
(12), (25), and (30), we arrive at 

G 
G* 

7TO(l — V2) 
I 

E 

•• -32kakpPi}a(oo)I0p(w), (33) 

where 

J' 1 t 

Mt)-===dt. 
0 V i - t 2 

(34) 

R e s u l t s and D i s c u s s i o n 

The two sets of integral equations (21) and (22) are solved by the 
method developed by Gupta and Erdogan [20]. The discretized forms 
of (21) and (22) are 

r—— E Qfiaixj, ti; wWmdi) = P„i(o>), (35) 
An + 1 ;=i 

•K n 

E QtlaiXj, U; C0)^2(ti) = P«2(W), (36) 

where 

2n + 1i=i 

ti = COS •1,2, ...n, 
( 2 i - l ) . 

Wre + 2 / 

/ T> \ 
Xj = cos , 1 = 1 2, . . . n. 

\2n + 1/ 

(37) 

Equation (35) (or (36)) provides a system of 2n equations for the de­
termination of the 2rc-values ipp\{ti) (or ^ 2 ( t ; ) ) . 

For the numerical calculations, two cases, i.e., re = 60 and n = 90, 
have been examined. The discrepancy between the resulting two sets 
of stress-intensity factors (or the energy-release rate) becomes larger 
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Table 1 Maximum energy-release rate for unidirectional tension 

(y - f ) /n 

0.025 

0.050 

0.750 

0.100 

0.125 

0.150 

0.175 

0.200 

0.225 

0.250 

0.275 

0.300 
0.325 

0.350 

0.375 

0.400 

0.425 

0.450 

0.475 

-c/. 
-0.41169 

-0.40269 

-0.39367 

-0.38442 

-0.37453 

-0.36411 

-0.35317 

-0.34141 

-0.32835 

-0.31414 

-0.29825 

-0.28022 

»0.25970 
-0.23598 

-0.20836 

-0.17620 
-0.13894 

-0.09645 

-0.04938 

G* 

0.00989 
0.04114 

0.09482 

0.17015 

0.26444 

0.37342 

0.49142 

0.61194 

0.72824 

0.83396 

0.92357 

0.99319 

1.04062 

1.06603 

1.07165 

1.06192 

1.04301 

1.02206 

1.00598 

K I 

0.09942 
0.20279 

0.30788 

0.41242 

0.51423 

0.61106 

0.70096 

0.78220 

0.85338 

0.91318 

0.96106 

0.99659 
1.02014 

1.03248 

1.03522 

1.03051 

1.02129 
1.01098 

1.00298 

K 
II 

0.00199 
0.00361 

0.00474 

0.00539 

0.00605 

0.00625 

0.00592 

0.00529 
0.00508 

0.00414 

0.00345 

0.00256 

0.00185 
0.00101 

0,00067 

0.00037 

0.00019 
0.00013 
0.00014 

K 2 I + K I I 

0.00989 
0.04114 

0.09462 

0.17012 

0.26447 

0.37343 

0.49139 

0.61186 

0.72828 

0.83392 

0.92365 

0.99319 

1.04070 

1.06602 

1.07168 

1.06196 

1.04304 

1.02207 

1.00597 

Table 2 Maximum energy-release rate for crack-parallel shear 

-0.42080 1.51692 1.23119 0.02661 1.51655 

as oo approaches ir. However, this discrepancy is at most 1 percent for 
to £ 0.87T. The results presented next are obtained with n = 90. 

In Tables 1 and 2, the critical kink angle, coc, the stress-intensity 
factors, and the energy-release rate are presented for the case of a 
unidirectional tension defined in Pig. 2 and for the case of a simple 
shear parallel to the main crack. The results in Table 1 agree well with 
those in [10]. The critical kink angle for the case of a simple shear 
parallel to the main crack is -75.8°. This value coincides with that 
predicted in [15], but is slightly at variance with the results in [6, 
10]. 

Prom (28), the stress-intensity factors for an infinitesimally small 
kink are expressed as linear combinations of ha, i.e., the stress-in­
tensity factors existing prior to kinking, 

K\ = Klaka, Kn = Kllaka, (38) 

where 

Kia = -2y/2xfoaa), K1Ia = -2y/2TrhM- (39) 

In Table 3, Ki„ and Kn„ are presented. 
Prom (33), the energy-release rate is expressed as a quadratic form 

of ka, 

G* = CG11fef + CG12M2 + CG22kl (40) 

where 

Can = -32P^i/^i , 

CGi2 = - 3 2 ( P m / ^ 2 + Ppzlpi), CG22 = -32P /327 /j2. (41) 

Now, consider the following formula: 

G* = K\ + Kl. (42) 

This formula is formally the same as Irwin's formula in which fei and 
k2 are used instead of K\ and K\\. From (38) and (39), 

G* = CK:IIA? + CK12kxki + C W 4 . (43) 

where 

C K H = 8 i r V p i ( l ) ^ i (D . CK12 = 1 6 * - V P I U ) I M 1 ) , 

CK22 = fortyrftDlMl)- <44> 

Table 3 Coefficients of (38); Jfm(co) = - J f | M ( - « ) , ffii2(eo) = KU2{-w), 
Kn(ftj) = Kn(-co), K|2(<o) = -Ka{-u>) 

W/1T 

0.0 

-0 .04 

-0 .08 

-0 .12 

- 0 . 1 6 

- 0 . 2 0 

-0 .24 

-0 .28 

-0 .32 

- 0 . 3 6 

- 0 . 4 0 

-0 .44 

-0 .48 

-0 .52 

-0 .56 

- 0 . 6 0 

-0 .64 

-0 .68 

-0 .72 

- 0 . 7 6 

- 0 . 8 0 

" i l l 
0 .0 

-0 .06251 

-0.12320 

-0 .18029 

-0 .23219 

-0 .27751 

-0.31514 

-0 .34430 

-0.36449 

-0.37560 

-0.37782 

-0.37159 

-0.35768 

-0.33705 

-0 .31080 

-0.28024 

-0.24697 

-0 .21803 

-0.17069 

-0 .13673 

-0.10410 

K U 2 
1.0 

0.98772 

0.95131 

0.89211 

0.81224 

0.71460 

0.60262 

0.48016 

0.35137 

0.22048 

0.09165 

-0.03116 

-0.14440 

-0.24495 

-0.33023 

-0.39818 

-0.44724 

-0.47259 

-0.49145 

-0.48255 

-0.45761 

1 . 0 

0.99410 

0.97655 

0.94794 

0.90913 

0.86127 

0.80579 

0.74427 

0.67837 

0.60981 

0.54024 

0.47126 

0.40426 

0.34049 

0.28095 

0.22632 

0.17664 

0.12248 

0.10537 

0.07269 

0.04716 

KI2 
0.0 

0.18770 

0.37069 

0.54441 

0.70469 

0.84784 

0.97083 

1.07134 

1.14784 

1.19960 

1.22672 

1.22996 

1.21082 

1.17129 

1.11390 

1.04149 

0.95746 

0.87185 

0.75787 

0.65584 

0.55040 

Table 4 Coefficients of the quadratic forms (40) and (43); CKH(W) = 
CK1i(-<0), CK1J(co) = -CK12(-<o), CK22(&>) = CK22{-w), CGii(o>) = 
Coii(-a>), Cfii2(o>) = -C012(-c<>), Ca22(w) = CQ22(-(«>) 

mil 

0 . 0 

- 0 . 0 4 

- 0 . 0 8 

- 0 . 1 2 

- 0 . 1 6 

- 0 . 2 0 

- 0 . 2 4 

- 0 . 2 8 

- 0 . 3 2 

- 0 . 3 6 

- 0 . 4 0 

- 0 . 4 4 

- 0 . 4 8 

- 0 . 5 2 

- 0 . 5 6 

- 0 . 6 0 

- 0 . 6 4 

- 0 . 6 8 

- 0 . 7 2 

- 0 . 7 6 

- 0 . 8 0 

CK11 
1.0 

0 .99215 

0 .96884 

0 . 9 3 1 1 1 

0 .88043 

0 .81882 

0 .74864 

0 .67249 

0 .59304 

0 . 5 1 2 9 3 

0 . 4 3 4 6 1 

0 .36015 

0 .29135 

0 .22952 

0 .17552 

0 .12975 

0 . 0 9 2 2 1 

0 .06255 

0 .04024 

0 .02397 

0 .01307 

CK12 
0 . 0 

0 .24970 

0 .48959 

0 .71044 

0 .90409 

1.06381 

1.18476 

1.26411 

1.30118 

1 .29745 

1.25620 

1.18240 

1.08228 

0 .96274 

0 .83117 

0 .69461 

0 .55917 

0 .41965 

0 .32748 

0 .22729 

0 .14718 

°K22 
1.0 

1.01081 

1.04238 

1.09224 

1.15633 

1.22949 

1.30565 

1.37831 

1.44099 

1.48767 

1.51321 

1.51378 

1.48692 

1.43194 

1.34982 

1.24329 

1.11674 

0 .98348 

0 .81587 

0 .66297 

0 .51236 

CG11 
1.0 

0 .99215 

0 .96884 

0 .93111 

0 .88043 

0 .81882 

0 .74864 

0 .67249 

0 .59304 

0 .51293 

0 .43461 

0 .36015 

0 .29135 

0 .22952 

0 .17552 

0 .12975 

0 .09221 

0 .06227 

0 .04021 

0.02397 

0 .01307 

C012 
0 . 0 

0 .24970 

0 .48959 

0 .71044 

0 .90409 

1.06381 

1.18476 

1.26411 

1.30118 

1.29745 

1.25620 

1.18240 

1.08228 

0 .96277 

0 .83117 

0 .69461 

0 .55920 

0 .42013 

0 .32748 

0 .22729 

0 .14718 

CG22 
1.0 

1.01081 

1.04238 

1.09224 

1.15633 

1.22949 

1.30565 

1 .37831 

1.44099 

1.48767 

1.51321 

1.51378 

1.48692 

1.43194 

1.34982 

1.24329 

1.11674 

0 .98329 

0 .81587 

0 .66297 

0 .51233 

Table 5 Energy-release rate for crack-parallel shear 

oi/ir W , [10, Table 1] Present Result 

0.2 1.2294 1.2294 

0.4 1.5117 1.5132 

0.6 1.2302 1.2433 

0.8 0.4945 0.5123 

The numerical results of (41) and (44) are given in Table 4. The 
coefficients C G U , CGI2, and CQ22 are exactly the same as CKU, CKI2, 

and CK22- Therefore, these data suggest that Irwin's formula remains 
valid for a large kink angle and for any in-plane loading, provided that 
the stress-intensity factors in the formula are taken to be those at the 
tip of an infinitesimally small kink. In [5] it has been suggested that 
(42) is valid for any kink angle but this has not been completely ac-
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cepted; [10]. The results obtained in the present work, therefore, 

should remove any doubt that may have existed regarding the validity 

of Irwin's formula. 

In Table 5, the energy-release rate for various kink angles under 

a shear parallel to the main crack is given together with those reported 

in [10], showing excellent agreement. 

Based on the foregoing results, it is clear that, when ka'a are known, 

then the critical kink angle, the energy-release rate, and the stress-

intensity factors can be evaluated using the data in Tables 3 and 4 

without needing any additional information on the corresponding 

kinked crack problem. 

Finally, it must be noted that the present results are not applicable 

to a loading condition which brings the surfaces of the main crack into 

contact. Under such a loading, the length of the contact zone changes 

due to kinking, and the formulation in the section, "Statement of 

Problem and Basic Equations," no longer holds. One possible ap­

proach to such a problem is to model the main crack together with the 

kink as a continuous distribution of edge dislocations. Then the 

problem is reduced to determining the density functions of edge 

dislocations and the length of the contact zone. 
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(D 

On Energy-Release Rates for a 
Plane Crack 

\j, p_ 

vonsideredis a plane crack in a homogeneous, static stress field* The component of the 
Ji integral normal to the plane of the crack (J2) is shown not to be path-independent in 
the sense of the well-known J integral (= J i ) parallel to the plane of the crack. The rela­
tion between the energy-release rate for rotation L and the integral J2 is established. It 
is finally suggested that the integrals L and M may provide a more natural description 
of energy-release rates (or forces) for plane cracks, rather than the integrals J i and J2TI 

I n t r o d u c t i o n 
The by-now well-known J-integral of elastic fracture mechanics 

[1-3] has been related to potential energy-release rates associated with 
crack extension and has proved to be of great value in fracture testing. 
For a plane crack subjected to both far-field extension and in-plane 
shear, i.e., combined opening (Mode I) and sliding (Mode II), the J-
integral, around the right crack tip, in terms of the stress-intensity 
factors K\ for Mode I and K\\ for Mode II, is 

J = (K\ + K\i)lE (1) 

for plane stress. For plane strain, Young's modulus E has to be divided 
by (1 — v2), where v is Poisson's ratio. 

Actually the aforementioned expression for J is the component of 
a vector J; (i = 1, 2) in the plane of the crack (say J = Ji) . 

One can also quite easily calculate J2, the component of Jt- normal 
to the crack plane, which was found to be (cf. e.g., [4,5]) for the same 
crack tip 

J2 = -2KiKn/E (2) 

for plane stress, with a corresponding modification for plane strain 
as for J i . 

The J-integral (i.e., Ji) has been given a precise and clear physical 
significance as the rate of total potential energy-release per unit 
crack-tip advance. It is thus identical to Irwin's crack extension force. 
Attempts have been made to supply analogous physical interpreta­
tions for J2 [4, 6] by postulating that the crack will skew and the tip 
advance either in the direction of the vector J, or by claiming that if 
the crack has advanced under an angle <j> with respect to its plane, the 
energy release will be 

G(0) = J i cos 0 + J2 sin 0 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Washington, D. C, November 15-20, 1981, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1, 1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
September, 1980; final revision, January, 1981. Paper No. 81-WA/APM-3. 

It is the purpose of this paper to examine energy-release rates Of 
a single, plane, finite crack with traction-free surfaces in an infinite 
linearly elastic, uniformly stressed medium and to establish the role 
which J2, as just given, plays in this connection. It will be shown, in 
particular, that J2, as given by (2), is not path-independent and, in 
fact, is a function of the length of the crack enclosed by the line inte­
gral. 

Only for some special applied stress fields, to be discussed in the 
sequel, does J2 retain its value given by (2) and is path-independent 
in the sense of J i . In that case, J2 is connected to the L-integral in the 
same manner as J i is related to the M-integral, this latter result having 
been discussed recently by Freund [7]. (Here L and M-integrals refer 
to conservation laws found independently by Gunther [8] and 
Knowles and Sternberg [9], which were interpreted as energy-release 
rates for a cavity by Budiansky and Rice [10].) The special results 
previously mentioned will follow from more general considerations 
in which a general homogeneous stress field is applied and a contour 
enclosing the crack completely is introduced. 

C o n s e r v a t i o n L a w s 
Consider a two-dimensional deformation field referred to Cartesian 

coordinates x\, X2 described by the displacement it; = Ui(x\, £2). The 
J-integral has been defined as [1, 3] 

J= <f (Wdx2-Tiuiildl) (3) 

where C is a closed curve in the x\, X2 plane surrounding a crack tip, 
W is the strain-energy density and T; is the traction (stress vector) 
acting on the outer side of C. As already mentioned, J is the xi-com-
ponent of the vector 

3k = <f (Wnk - TiUi,k) dl k = 1,2 (4) 

where m is the unit outward normal vector to C in the x\, xi plane. 
Other path-independent integrals established in [8, 9] in two di­

mensions are 

L3 = L= (£ e3ij(Wxjni - TtUj - Tkuk,iXj) dl (5) 

and 
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Further 
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Fig. 1 Paths around crack tip 
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Fig. 2 Path enclosing the crack completely 

M = ^ * (WX;TI; • TfeUfe,;*;) dJ (6) 

where etjk is the alternating tensor.1 

The foregoing expressions, as taken from Budiansky and Rice [10], 
actually imply different definitions of the contour C. The path C of 
the J (Ji) integral has been introduced originally as one surrounding 
a crack tip and is path-independent as long as it does not enclose any 
other singularity, such as for instance the other tip of the same plane 
crack, while the contours in L and M are considered in the same paper 
[10] as surrounding the whole defect, i.e., crack, and not just a crack 
tip. As regards J2, its value around a crack tip is to be calculated by 
expression (4), but its path-independence for cracks has, to authors' 
knowledge, never been established. 

As mentioned, our aim here is to investigate the properties of J2 and 
L in the presence of a plane crack by considering different contours. 
To avoid confusion, we will retain the notation J* for contours around 
a crack tip, while if the integral (4) is taken around the complete crack, 
we shall call the corresponding value of the integral F*. 

We proceed to evaluate these integrals in the presence of a crack 
of length 2o placed as in Pig. 1 with respect to a system of coordinates 
0, xi, x2 and subjected to far-field applied stresses aft, an, of2- We 
choose the paths indicated in Figs. 1 and 2. To carry out the integra­
tion along circular paths of small radius r around crack tips, we can 
make use of the singular fields near crack tips (see, e.g., [11]). 

The singular stress field and the singular displacement field near 
the right crack tip are of the form 

a* = Km(2Tr)-V*f*}m i, j = 1, 2 

I, II 
(V). 

771 

The specific dependence on 6 is not relevant here, except the feature 
that all functions are either even or odd in 0, namely,/22, fit,/", f\, and 
f\l are even in 0, while fly /ft, PL f\, and / ? are odd in 6. We recall that 
for plane stress 

W = — (crfi + <rl2 - 2v<rncr22) + 
(l + v) 2 

1T^ (8) 

1 It is unfortunate that the foregoing definition, taken by Budiansky and Rice 
[10] from [9], implies the definition of a moment M of a force P as P X r, rather 
than the more customary r X P, which has been introduced in [8]. 

and 

Xi = a + r cos 6 dxx = —r sin 6 dd 

xi = r sin 6 dx2 = r cos 8 dd 

TT-i = c o s 6 dl = r dd 

m = sin 6 

Ui,l = Ui,r COS V Uifi Sin ( 
r 

Ui2 = Uti,r s in 9 + - Uifi COS ( 
r 

(9) 

(10) 

In constructing the integrand, we have to be mindful of the fact that 
the total stress has contributions from Mode I and Mode II, while the 
regular stress field crfi is negligible. Thus 

an = a], + ff« d l " ) 

(116) 

Similarly 

ui = u} + u}1 

In noting the odd-even property of all functions involved, the integral 
(in d) over a small circle with radius r, can now be easily evaluated 
from — ir to IT. 

The results for J; of the crack tip x 1 = a are, as already noted in the 
Introduction 

(12) 
J i = (K\ + Kl)IE; KI = 0 

J 2 = -2KiKu/E; Ku = ofa 

For the crack tip xi = - a the sign of J i and J 2 is reversed. 
We next consider possible contributions to Fi and F 2 from the part 

of the contour along crack faces. We note that the term with Ti will 
not contribute to either integral, since the crack faces are traction-free. 
Thus the only possible contribution will be due to the term with W. 
From equation (4) we see that for k = 1 along crack faces ni = 0 and 
thus there will be no contribution to Fi. As regards F2, the integral 
along the upper crack face in the —x\ direction and along the lower 
crack face in the x\ direction, to avoid misunderstandings, shall be 
denoted by F 2 a . Thus 

F 2 o = f Wn2dl+ C Wn2dl 
Jc+ Jc-

= C" (W+ - W-) dxi = C [W]dxx. 
*)—a «y— a 

where W+ — W - = [W] is found to be, by means of complex repre­
sentation, and (8), 

[W] = -4o-?2(«rft - ff&jdCtz* - x^'VE 

It is observed that [W] is an odd function of xi, such that 

F2a = C [W]d. 
U ~ a 

'*i = 0 

(13) 

(14) 

We note, thus, that the integral (4), taken along the closed path 
enclosing the crack completely, as in Fig. 2, leads to 

Fi = 0; F 2 = 0 (15) 

We postpone the discussion of the results obtained and proceed to 
evaluate the L-integral (as given by equation (5)) along the closed path 
of Fig. 2. Let us note that along circular paths the product T{Uj is in­
dependent of the radius; but dl is proportional to r and as r —• 0, the 
integral vanishes. Thus the only terms which contribute to L along 
circular paths are the same as those we had to consider in evaluating 
F2 , except that each is multiplied by xj. We denote by LR , Li the 
contributions to L along the right and the left circular paths, re­
spectively. We thus have, with J 2 given by equation (12) 

LR + LL -2aJ2 
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Fig. 3 Path to show path-dependence of J2 
Fig. 4 Crack at angle a 

Along crack faces the terms with Ti vanish and ni = 0, such that the 
only contribution to L, denoted by L2a, is 

L20 = - P [W]XldXl = iaUon - ofoiraVE (16) 

or 

L2„ = J2a + 2ai2(rnTra2/E 

The total L is 

L = Lfi + LL + L2a = 2(yf2(<74 + a^a2/E (17) 

or 

L = -•0J2 + 2<7f2ffnira2/E = 2Kn(Ki + afiV^)a/E (18) 

-2aJ2 + 2<7?2(of1 - o%2)ira2/E (19) 

We are now ready to discuss the results obtained for the integrals 
J2, F2, and L. From expression (13) it is obvious that J 2 is not path-
independent in the sense of Ji; namely, if we consider a path enclosing 
the crack tip, but not infinitesimal, the result will depend on the path 
selected. Thus J2 as given by equation (12) holds only for infinitesimal 
paths surrounding the crack tip. Only if there would be no contribu­
tions to J 2 along crack faces, i.e., if [W] = 0, will J2 become path-in­
dependent in the sense of J i . From expression (13) we observe that 
this will be the case if an = <r22 or if <rf2 = 0. The latter case, however, 
is of no interest to us in this study because J2 and L vanish identically 
for <ii2 = 0 (as can be seen from (12) and (17)). 

As is known, J i is insensitive to the presence of ofi. By contrast, 
from the foregoing discussion we see that J2 is strongly affected by 
ffn. It is noteworthy that a n = 0 does not correspond to the case of 
J2 being path-independent. From expression (19) we observe t h a t L 
cannot be expressed through J2 completely, again because of the 
contribution to L along the crack faces. Thus, as J2, L is not path-
independent if a path is chosen as in Fig. 3. 

We note, however, that for special applied stress fields just men­
tioned, namely, 

4i = oil (20) 

L2a will vanish and thus in this special case 

L = - 2 o J 2 (21) 

This result is analogous to the relation 

M = 2aJi (22) 

which holds for all homogeneous stress fields and which has been 
discussed in [7]. Let us emphasize that equation (22) formally ex­
presses the equivalence of J i and M, i.e., the physical interpretation 
of one can be given in terms of the other. The translation of both crack 
tips in opposite directions described by J i for each crack tip is 
equivalent to self-similar expansion of the whole crack described by 
M. By contrast, the validity of equation (21) is restricted by condition 
(20) and in general L and J 2 are not equivalent. Thus their physical 
meaning must be different. 

Crack E n e r g i e s a n d E n e r g y - R e l e a s e R a t e s 
Consider again a plane homogeneous stress field in an infinite body 

specified by components of stress <rn, <ri2,
 a n ( i <*i2 with respect to a 

Cartesian system of coordinates 0, x\, x2. A plane crack of length 2a 
with traction-free surfaces is placed into the field along the xi-axis 
with its center at the origin 0. The insertion of the crack into the field 
induces a change U of total energy in the body which, as is known, is 
given by 

1 (*a 

U = - I oijAu.j(xi) dxi 
2 *s —a 

(23) 

where Au.j(x{) is the discontinuity in displacement across the crack 
and summation over j is implied. The evaluation of this integral yields, 
for plane stress 

U=Ui+Un; Ui = wHa^)VE, Uu = TmH<rWE (24) 

For short, U may be referred to as the crack energy. 
Let us assume next that, instead of being placed along the xi-axis, 

the crack, with its center still at 0, is inserted at a small angle a with 
respect to * 1. The relevant system of coordinates is now 0, x\ x2 (see 
Fig. 4) and the stress field referred to this system is 

o'n = ° i i c o s 2 a + 2<7i2 sin a cos a + 022 sin2 a 

</12 = —ffn sin a cos a + <TI2(COS2 a - sin2 a) + <r22 sin a cos a 

c'22 = c i i sin2 a — 2oi2 sin a cos a + ayi cos2 a (25) 

To evaluate U' we need to know only <r22an^ a'n> which, for small a 

c'22 = <r22 — 2acri2 (26) 

"•'12 = ffi2 + a(o22 — ^u) 

U' = iraHal + ofo/E (27) 

U' = iro2[<7l2 + <r22 - 2a<x12(<rii + a22)]/E (28) 

Thus, since 

we obtain 

Now let us consider the difference U' - [ /and divide it by a, which 
is to be interpreted as the energy release of a crack of length 2o per 
unit crack rotation. Thus ( [ / ' - U)/a = GR is the rotational energy-
release rate, given by 

GR = -2oU°ii + o%2)ira2IE (29) 

We recall that for a single plane crack in an infinite body the applied 
components of stress <r22 and on are related to the stress-intensity 
factors Ki and Kn of the singular stress field near the crack tips as 

a22 -
fira V ira 

We may thus write GR also as 

GR = -2Kn(Ki + a^yfm)a/E 

(30) 

(3D 
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This result can be readily generalized for an arbitrary angle <j> with 
respect to the x i-axis. The energy of a crack of length 2a in this con­
figuration is 

U = ( c l + <ri22) = — [<ri! s i n 2 4 + <r|2 c o s 2 <l> 
E E 

+ 0-i2Oi2 - 2 sin 0 cos (j>(an + C22))] (32) 

and its derivative with respect to <j> is 
dU ira2 

£ G0 = [sin 2<Mo-2
1 - oh) - 2 cos 20o-i2(cr11 + o-22)] (33) 

dtt> E 
The aforementioned expression for the rotational energy-release rate 
indeed reduces for </> = 0 to GR given by equation (29), which, up to 
the sign, is identical to L given by equation (17). This shows that L 
represents the rotational energy-release rate. This equivalence of L 
and GR holds for any uniform stress field into which a crack is placed. 
Thus the relations between L and J 2 discussed in the previous section 
apply now to GR and J2. 

Finally, we would like to express our results with respect to principal 
axes. If both the applied stress field and the crack (at angle 7), see Fig. 
5, are referred to the principal axes x?, xf, then 

U = ^ - [(cr?j)2 sin2 7 + (o-f2)
2 cos2 7] (34) 

E 

and 

- ^ s G 1 - = ^sin27[(o-f l)
2-(<Tf 2) 2] (35) 

aay E 

We hence recognize the rotational energy-release rate GR to be the 
sum of 2 additive contributions, namely, 

GR = (J2 - 2 K n o f 1 y W . E ) a (36) 

Thus the rotational energy-release rate GR is identical to the value 
of the integral L, except for a change in sign, the latter having to do 
with the definition of L. Examining the rotational energy-release rate 
GR (or L) in the form of equation (19), we remark again that J2 con­
tributes to this rate. 

C o n c l u d i n g R e m a r k s 
On the basis of the foregoing analysis, it may be concluded that the 

integrals L and M provide a more natural description of energy-re­
lease rates (or forces) associated with plane cracks than the integrals 
J l (=J) and J2. If one considers a contour enclosing the whole crack 
completely, then in the case studied here (uniform applied stress field 
in the absence of the crack) both J i and J2 vanish. If one considers a 
contour enclosing only one crack tip, then J2 is not path-independent. 
Only for special applied fields for which <rj\ = a^z, does J 2 become 
path-independent in the same sense as Ji. 

It is noted further that the energy release rate for rotation GR may 
be used experimentally in a capacity analogous to J. Instead of fol­
lowing the standard procedure of changing the crack length in com­
pliance tests, experiments could be performed by rotating the applied 
stress field with respect to the crack plane, keeping the crack length 
constant. Thus the procedure would be clearly nondestructive and 
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would supply valuable information. This novel testing method will 
be discussed in a separate paper. 
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On Branched, Interface Cracks 
i The problem of branched, external cracks in the interface between two elastic materials 

is considered under the plane strain condition. A small interface contact region is intro­
duced in the vicinity of each crack tip in order to remove oscillatory singularities. The 
branches are replaced by continuous distribution of edge dislocations, and, with the aid 
of Muskhelishvili's potential method, the problem is reduced to a system of singular inte­
gral equations which are defined on the branches and the perfectly bonded region of the 
interface.\The unknown functions of these integral equations are the shear stress acting 
on tnebonded region, and the density functions of the edge dislocations. Stress-intensity 
factors of the interface cracks and branches are obtained numerically for several branch 
angles and branch lengths. Finally, the question of kinking from a tip of an interface crack 
is discussed with the aid of the results. 

Introduction 
The problem of a branched crack in a homogeneous material has 

received considerable attention in recent years; see, for example, Lo 
[1] who obtains the stress-intensity factor at the tip of a branched 
crack and also gives some account of other related work. The problem 
of a branched crack at the interface of two dissimilar materials, on 
the other hand, does not seem to have been addressed. 

It is well known that the conventional formulation of interface 
cracks generally leads to oscillatory singularities that imply material 
overlap in the vicinity of the crack tips, as has been pointed out by 
England [2], and by Malyshev and Salganik [3]. This essential diffi­
culty was first resolved by Comninou [4] who observed that the in­
troduction of a very small region of frictionless contact at the neigh­
borhood of each crack tip, removes the oscillatory singularity. Com-
ninou's solution has since been successfully applied to a variety of 
interface problems; see, e.g., [5-10]. It has been shown by Achenbach, 
Keer, Khetan, and Chen [11], that the introduction of a small cohesive 
zone of a certain characteristic in the vicinity of the crack tip also 
serves to remove the corresponding oscillatory singularity; this is a 
generalization of the Dugdale-Barrenblatt model for application to 
interface crack problems. 

The present paper deals with the problem of branched, external, 
interface cracks between two dissimilar half planes which are 
subjected to tensile loads applied perpendicularly to the interface far 
from the crack. The oscillatory singularities are removed by the in-
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troduction of frictionless contact regions near the tips of the interface 
crack. Bach branch is replaced by a continuous distribution of edge 
dislocations, and the solution for an elastic half plane subjected to a 
point force is used in order to arrive at a system of singular integral 
equations whose unknown functions are the shear stress acting on the 
bonded region in the interface, and the density of edge dislocations 
on the branches. Numerical results for stress-intensity factors are 
obtained by the method of Erdogan, et al. [12], and Gupta and Er-
dogan [13], and the results are tabulated for several branch angles and 
branch lengths. Kinking of an interface crack is also discussed with 
the aid of these numerical results. 

Statement of Problem 
Let the elastic upper half plane S + , with moduli /xi and v\, be 

bonded over a part, L\, to the elastic lower half plane S~, with moduli 
ju2 and v% where fip and vp, p = 1, 2, denote the shear modulus and the 
Poisson ratio, respectively. In addition, let L4 and L4 be two edge 
cracks extending into the lower half plane from certain points on the 
unbonded parts of the interface; see Fig. 1. Tensile loads of total 
magnitude N are applied at infinity, perpendicular to the interface, 
and, since N is assumed finite, the corresponding stresses vanish far 
away from the bonded part of the interface. Upon the load application, 
the external interface cracks open, except for small intervals, Li and 
Z/2, near the ends where frictionless contacts are assumed in order to 
avoid oscillatory singularities. A fixed rectangular Cartesian coordi­
nate system, with coordinate axes xa, is used; Fig. 1. Throughout this 
work, Greek indices take on values 1, 2, and, unless otherwise stated, 
the usual summation convention on repeated indices is employed. A 
supplementary rectangular Cartesian coordinate system, fm is also 
used, as shown in Fig. 1. In what follows, the superscript 0 identifies 
functions in the f„-coordinate system. 

The boundary conditions of the problem are expressed in terms of 
the stress tensor, tap, and the displacement vector, ua, referred to the 
^-coordinate system, as follows: 

(a) Tractions and displacements are continuous across Li( 
<l): 

Xi\ 
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¥(z ) = Pi 1 P2-IPI (10) 

{Cont.) TT z — £ l-WX (2 — £)2 

On the surface of the half plane, the xi-displacement gradient is 

ui,i + iu2A = P2" '<Pi 

in 
K+l 

. + (K - l)6(xi - £) (11) 
iri x\ — £ 

where p. is the shear modulus, K = 3 — 4v, v is Poisson's ratio, and 
&(x\ — £) denotes the Dirac delta function. 

Consider next, an interior edge dislocation line running perpen­
dicular to the 2-plane through a point, z = a, in an elastic lower half 
plane. The Burgers vector of this edge dislocation makes an angle 8 
with the positive direction of the xi-axis, and its magnitude is b. The 
corresponding elastic potential functions are 

*(*) = 

¥ ( z ) = 

ifib 

•K(K+ 1) 

i/ib 
2 — a 

Fig. 1 Geometry and coordinate systems 
T(K+ 1) 

a — a 

' (2 - a)2 ' 

a (2 • 

ae i 8 

a)2 

e - i t 

- a (2 — a)2 2 

2 a ( a - 5 ) 
H e~ 

(z - a ) 3 

(2 - a)2 

(12) 

(1) 

(2) 

(b) Two half planes are in frictionless contact over L% and L'2(l 
< | * i | < 3 ) : 

t$ = t@ = 0, tg = 4f, (3) 

t& < 0, 4 ! < 0, (4) 

"18 = 42{- (6) 

(c) Tractions vanish along L3(|xi | > a): 

tS = t@ = o, 4V = «i = o. (6) 

(d) Tractions vanish on the surfaces of the branches LA{Q < fi 
< ?o) and L'i. 

4 2 ) = 0, 42
2) = 0. (7) 

(e) The resultant of the tractions along L\ + L 2 + L2 is given: 

The branched, interface crack system of Pig. 1 will now be formu­
lated in terms of solutions (10)-(12). To this end, assume that the 
bimaterial is cut along the xi-axis over Li, and apply the necessary 
tractions as follows: For S+, apply normal tractions — p2(£) on L\ + 
L2 + L'2 and shear tractions — Pi(£) on L\, and for S~, apply the same 
tractions but with opposite signs. Furthermore, on L4 and L4, dis­
tribute edge dislocations in such a manner as to preserve the sym­
metry with respect to the x2-axis, and let £>a(fi) denote the Burgers 
vector of the edge dislocations on L4 referred to the fa-coordinate 
system. 

The unknown functions, pa(0 and b„(fi), a = 1, 2, must be such 
that the displacement continuity conditions (2) and (5), and the 
stress-free conditions (7) are satisfied. These requirements lead to 
the following integral equations: 

Ppa(xi) + - I " d£ 
TV J-I f — Xl 

+ j ba(p)fia(xlt p)dp = 0, 
Airy Jo 

l * i | < ' (13) 

C" t®dXl = C tffldX! = iV, 
mj—a *J—a 

§l t{\)dx1 = J^ ' tSf&i = 0. 

(8) 

(9) 

PPI(XI)H(. 
P2(f) , 1 r a P2( 

* i ) — I T~ 
W J -a t — 

£-Xi 
d£ 

Here, superscripts 1 and 2 in parentheses denote functions defined 
in S + and S~, respectively. The comma followed by an index denotes 
partial differentiation with respect to the corresponding coordi­
nate. 

S i n g u l a r I n t e g r a l E q u a t i o n s 
The method of Green's function and two basic solutions for an 

elastic half plane, are employed; these are: the stress and displacement 
fields induced by a force which acts at a point on the free surface; and 
the fields induced by an interior edge dislocation. 

When an elastic lower half plane is subjected to a force,2 p„, which 
is parallel to the x„-axis and passes through point (xi = £, x2 = 0), the 
corresponding elastic potential functions, <I>(z) and SHz), of z = x\ 
+ ix%, [14], are given by [15], 

1 + X r1" 
ba(p)fi«(xu p)dxi = 0, x i | < a , (14) 

47T7 Jo 

J'^o blt(p) fh 
-dp- I bff(p)h„ff(^,p)dp 

0 p - fi Jo 

+ 7 f'a P2«)«„2(fl, f)df + 7 f^PliOg.Ml, f)df 

= 0, 0 < f i < ? 0 , 

where 

I + K2 

4fi2 
H(x1) 

1 for 

.0 for 

|x i | <l 

\xA>l\ 

X and p1 are Dundurs' parameters, 

X = 
Hl(K2 + 1) ~ M2(fl + 1) 

P 
JU 1 (K 2 - 1) -M2U1 - 1) 

*(*) = 
P 2 - J P 1 1 

27TI Z — 

Ji2(Kl + 1) + Ml(«2 + 1) ' M2(tl + 1) + Ml(«2 + 1)' 

(15) 

(16) 

(17) 

(10) 

2 Since plane strain is assumed, pa measures force per unit thickness normal 
to the plane. 

functions f„p(xi, p), g„fs(ti, £), and h„p($i, p) are given in Appendix 
A. 

Equation (14) can be viewed as a Cauchy singular equation for the 
unknown function p2(xi). It can be solved formally by treatingpi(x 1) 
and fe„(fi) as known functions, wi thpi ( i i ) assumed singular a t x i = 
±1 so that p2(x 1) is also singular at these points. Since it is assumed 
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that the two bodies are in the frictionless contact along L2 and L2, 
P2U1) must be bounded at x\ = ±a , and the solution of (14) is Q(x) iW 

P2U1) 
1 + A 

47T27 
-w(xi). I 
' Jo 

b„(p)F„(xy,p)dp 
where \pW (\x\ < 1) is bounded. Near the left end, 3 
stress Q(x) is 

(28) 

-1 , the shear 

— w(xi) I 
ir J-l 

Pitt) 
«>(£)($ - xi) 

d£, (18) <?(*) = • 
* ( - l ) 

-1-* 

where w(x{) is the characteristic function of this singular integral 
equation, i.e., 

V2( l + x) 

and the stress-intensity factor, K\\ s, of the interface crack is 

N 

(29) 

w{xi) = V a 2 - x'i. (19) 

The functions F„(.xi, p), a = 1, 2, are given in Appendix B. 
The solution (18) must comply with the following consistency 

condition [16]: 

K I I S = lim |V2(/ + x,) pi(*i) | = - y/1 2 ^ - 1 ) . (30) 
*i-—/+ 2Z 

The singularity of the normal stress, P(x), near the ends of the bonded 
region results from the singular behavior of the second integral in (22) 
(or (18)), and, in view of (28), near the left end, 

J-l W{£) 47 Jo [ J-a W(£) 
dp = 0 

(20) 

P(x) = -0- W-D 
• - 1 - (31) 

V 2 ( - l - x ) 

Hence, near x = — 1 the normal stress is related to the shear stress in 
such a manner that 

which is satisfied automatically, because, in view of symmetry, A„(£, 
p) and pi(£) are odd with respect to £. 

Now, consider the following nondimensional notation: 

* .. _ 1 fi 

lim VtPi-i -() : - /8 lim i V e Q ( - l + «)!• (32) 

d To xi 
- , /o = — . x = — , t 
1 1 I I' y lo~ 

P(x)= , , „ , Q(x) <-
N/l N/l 

and from (18) obtain 

P(x) = i ^ W(z)/„ f 1 B«(s)^«(*. 'os)ds 

|8 

B„(y) = (21) 

_^w r_m_dt, (22) 
7T J - l l V ( [ ) ( l - l ) 

This feature was first predicted by Comninou [4], in connection with 
an interior, interface crack. 

As is shown in Appendix B, the kernels, S„p(loy, IQS), in (25) are 
unbounded as y and t approach zero simultaneously, and, hence, the 
singular behavior of B„(y) at y = 0 can not be described by l/\fy • 
Here, this singular behavior is estimated with the aid of the results 
obtained by the asymptotic expansion approach near the vertex of 
a stress-free wedge; Bogy [17]. For a stress-free wedge with a wedge 
angle less than •K, the stresses are regular at the vertex. Therefore, 
taking into account that the density functions of the edge dislocations 
are the derivatives of the crack-opening displacements with respect 
to fi, set 

where 

W(x) = V a 2 - * 2 
BAy) • 

<l><y(y) 

(23) VT= , j2 ' 
(33) 

Substituting from (18) into (13) and (15), and using (21), one arrives 
at 

where the functions 0„(y) (0 < y < 1) are bounded. The stresses near 
• f 1 = 1 on the fi — axis, but not on the branch, are given by 

J - i t - x 1 - I 8 2 J - I 

Q(t)_ 

• x 

1 + A 

4 ( l - / 3 2 ) 

'lB„(s) 

s -y 

WW 

W(t) 

QU) 

t - x 
dt h2 Uu %2/Jo 

IN c1 B2(s) + iBi(s) 
ds 

•y 

0 f B„(s)fl„Oc>Zos)ds=0, -Kx<l, (24) 
Jo 

J *iB„(s) r1 

—-—ds - lo I Bp(s)S„p(l0y,los)ds 
0 s — v Jo 

+ f Q(t)T„Uoy, t)dt = 0, 0 < y < l . (25) 

N —<MP + i0i( l ) 

' 11 ° V2(fi - lo) 
(34) 

The stress-intensity factors at the tip of the branch are defined as 

/ f i - O f n = lim |V2(f 1 -Zo)( t£ 1 -»t?2) | f t .o l , (35) 

and are given by 

The complementary condition (8) becomes 

1 + A, 

451 
— Jo j BeisWedosWs-p J - ^ f f d t = l. (26) 
4fl-2 ^ 0 J - l VV(£) 

T h e condition (9) is satisfied automatically because of the symmetry 
of Pi(x{) with respect to X\. Funct ions R„(x\, p), S„(j(fi,p), T„(f i , £), 
and G„(p) are given in Appendix B. 

Therefore , t he problem has been reduced to solving the system of 
singular integral equa t ions (24) and (25), compat ible with condi t ion 
(26). 

Singular Behavior of Solutions 
The integral equation (24) for the shear stress, Q(x), is of the first 

kind. With the shear stress assumed unbounded at the end points, 
x = ±1 , the characteristic function, ft(jc), is chosen as 

1 

Ki - iKn •• V%|0 2 ( l ) + i0i(l) | . (36) 

Numerical Solution and Discussion 
The set of integral equations (24) and (25), subject to the condition 

(26), is solved by the method of Erdogan, et al. [12], and Gupta and 
Erdogan [13]. Since QW is an odd function, the discretized forms of 
(24)-(26) are 

1 % u, s 2 i* 
— E Mtk)-2 
2llk=n+l tfc-xj 

1 + 
/?2 

l - , 3 2 

1 + A l0 

x W(xr)\ 

4(1 - p2) 2m + 1 ,=1 

RW (27) 
~ Y. Wk)\Ta(loyj,tk)-T„(lw,-tk)\ 

0<»(s,) ;0 
Set 2 m + l i=is; — yy 2m + 1 ,=i 

T, <h(si)s«tidoyj, losi) = 0, (38) 
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Fig. 2 Pressure distribution on the left contact region 

1 + X Ip m 7T ^ tki(tk) _ 
—— ~ — L <pa(si)0„(LoSi)- p- X, - — — - - 1 , (39) 

4ir 2m + l,:=i n k^n-n W(tk) 

where 

2k — 1 
tk = cos TT, (A = n + 1, ra + 2,. . . , 2TI), 

4n 
r 

xr = cos — 7r, (/' = n, n + 1 , . . . , 2n — 1), 
2n 

2i — 1 
S; = COS 7T, (1 = 1 . 2 , . . . , m), 

4 m + 2 

v.- = cos ir, (/ = 1, 2, . . . , m). (40) 
; 2m + 1 

Equations (37)-(39) provide a system of n + 2m + 1 equations for the 
determination of the n-values of \p(tk), the 2m-values of $„(s,), and 
a. These equations are highly nonlinear in a and, here, have been 
solved by the usual inversion technique for a system of linear equa­
tions together with the Newton-Raphson method with n = 90 and 
m = 50, where condition (4) has been used as a guide in-order to de­
termine the solution. 

According to the results of an asymptotic expansion approach 
presented in [4], the hoop stress around the tip of a two-dimensional 
crack in a flat interface of two materials is negative in the material 
with larger H/(K — 1). Only in the material with smaller /X/(K - 1), can 
the hoop stress be positive, reaching a maximum value at the direction 
which makes an angle between 64° and 71° with the interface. Hence, 
in performing the numerical calculation, oj is set equal to 60°, 70°, and 
80°. As to the material properties, fairly extreme values of Dundurs' 
parameters are used; i.e., A = 0.98 and /? = 0.48, which include the case 
vi = vi s 0, n\lii.i s 100. 

In Table 1, the length of the contact region, (d — 1)11, and the 
stress-intensity factors are presented for various lengths of the branch. 
In Fig. 2, the pressure distribution on the contact region is shown for 
oo = 60° and loll = (d — l)/l = 0.04. It is seen that the stress-intensity 
factor for the opening mode at the branch tip increases as the length 
of the branch becomes smaller. In the range of oi for which the cal­
culation has been performed, the stress-intensity factor for the shear 
mode is always very small compared with that for the opening mode. 
It is also revealed that the stress-intensity factor of the interface crack, 
Ku s, decreases drastically, once a branch is formed near its tip. 

Finally, let us discuss the phenomenon of kinking from an interface 
crack. If kinking from the tip of an interface crack is assumed, an os­
cillatory singularity occurs at the point of intersection of the kink and 
the interface [17]. Although the oscillatory singularity may have no 
influence on the overall stress field, since kinking is a local phenom­
enon, such a singularity must be eliminated somehow in order to be 
able to study the kinking process. Here, as a tentative measure, a small 
region of frictionless contact at the tip of the interface crack is in­
troduced, where the length of this region is assumed to be of the order 

Table 1 Stress-intensity tactors, K J s = K„ s/{\TlN/{2l)}; K,* = 
K,/{y/T0 W/(2/)); Kjj = K„/\T/T0N/(2I)} 

V* 
— 
0.10 

0.10 

0.05 

0.04 

0.10 

0.10 

0.05 

0.04 

0.10 

0.10 

0.05 

0.04 

( d - t ) / i 

. 
0.10 

0.07 

0.05 

0.04 

0.10 

0.07 

0.05 

0.04 

0.10 

0.07 

0.05 

0.04 

(i-« 

0.639 

0.138 

1.405 

0.381 

0.663 

0.146 

0.165 

0.254 

0.336 

0.170 

0.132 

0.233 

0.274 

>/* 
X 

X 

X 

X 

X 

X 

x 

X 

X 

x 

X 

X 

X 

ID"3 

10" J 

10" J 

10" J 

io-J 

10- 3 

io-J 

io-J 

10" J 

io-3 

10" J 

10" J 

IO"3 

K ? I S 

0.723 

0.299 

0.094 

0.235 

0.220 

0.373 

0.189 

0.311 

0.293 

0.440 

0.287 

0.383 

0.366 

KI 

— 
1.646 

1.681 

2.517 

2.873 

1.531 

1.586 

2.390 

2.745 

1.385 

1.447 

2.204 

2.547 

K?I 

— 
-0.175 

-0.233 

-0.131 

-0.112 

-0.297 

-0.393 

-0.361 

-0.380 

-0.403 

-0.507 

-0.547 

-0.600 

of the kink length during the initial growth stage. By setting (d — I)/I 
equal to l0/l and applying the Lagrange interpolation formula to the 
data in Table 1, one can estimate the limiting values of Kfr as lu/l ~-
0 for each branch angle, a = 60°, 70°, 80°. From these limiting values 
one can calculate the kink angle, OJC, for which K{\ at To/7 = 0 vanishes, 
and hence obtain the corresponding stress-intensity factor for the 
opening mode, K\ c- The results are coc s 60° and K\ c = 4.9. If the 
criterion of local symmetry is postulated to apply to an interface crack, 
then U)c and K{ Q are the critical kink angle and the stress-intensity 
factor at the onset of kinking. 
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APPENDIX A 
Expressions for the functions f„p(x\, p), g„p(fo, £) and /i«/s(fi, p), 

a, [i = 1, 2, are given here, where an overbar is used to indicate the 
complex conjugate, and 

a = -d + pe'", 7) = -d + f i e - ' " . 

Expressions for f„p(xi, p): 

/22U1, p) + 1/12U1, p) = e-iuf[{xi, p) + e^fUxi, p), 

/21U1,p) + ifnixi,p) = ie~iuf\(xup) - ie'l"f\(x\,p), 

. , 1 1 2ip sin co 
/ ! U i , p ) = r + + 

a pa 
Ra(Xl,p)=f2a(xi,p)+-U>(x1) I 

•K J-a 

s A « ( | , P ) 

wima-xi) 
di 

' faaixi, p) + — w(*){F* (xi, p) - F'a(*i, p)\. 
2i 

ftixi.p) 

x\— a x\ — a {x + a)2 

lip sin co 

Expressions for Sa$(X\, p): 

Saptil, P) = fc„fl(fl, P) - V T f «-2(fl.-f)«'(€) 
4lT2 J - a 

J-aw(x\) 

'• haff(t;i, p) • 

1 +A 

4TT 2 

> a fip(xi,p) 

1 + x(t1. 

x I , ' " " " " ' " d* id* 
i ) (* i - £) 

|S*a(.(fl.p)+S^(fx.p)l, 

1 1 

Xi + at xi + a (xy — a)2 

Expressions for#„p(fi, £): 

Sa/jtfi. p) = -Aafix\Bapixrxix(a, ij) 

•B<.j/X(.(«,l)L (<*>|3 not summed), 

g22(fl,£) + lgl2(fl, £) = 1 

g2l(fl,€) + »5ll(fl, €) = -

Expressions for h„p{%\, p): 

1 1 2ifisincoe2 ' ' 
+ - + r; — € »/ - £ (v - f ) 2 

\ 1 — 9o2ia> 9,'/-. o in ,.«>2i" 

1 Y(a, 7)) 7; + a 
m ( a , 7)) = ; __. . + -

j) - £ TJ - ij (J? - £)2 

e"" 

r2i(a, v) = (« + d) 

7) + a X(a) X(a)Y(a ,7)) ' 

1 y ( a , i ? ) 1 

(77 + a ) 2 X(a ) 7) + a X ( a ) 2 

a2(rj + a) 

^22(fl, P) + tf»12(fl, P) = ~ Z + ̂ Kfl , P) + >*2(fl, P), 
7/ — a 

/»2i(fi, P) + ihutfi, p) = ih\tfi, p) - ihl($i, p), 

, e~iw 2ip sin co cos co 2j(fi - p)psin co 
/ii(si.p) = - — r — z r r — + — —„ 

2(7/ - a) (7/ — a ) 2 (ri - a ) d 

e-ia./ 1 1 \ ips incoe - ' " 
2 l i j + a ?7 + aj (7; + a ) 2 

X(a)2Y(a, 7,)Z(a, T,)J 

r i 2 (a , J?) = (J? + d ) 
1 Y(a , i?) 1 V 

1(77 + a ) 2 X ( a ) 77 + a X(O)X(TI) 

a2(i) + a) 

/•22(«, 7;) = ( a + d)(77 + d ) 

X{a)X(n)Y(a, n)Z(a, 7,)J' 

2 Y(a , 77) 

(77 + a ) 3 X ( a ) 

+ — (71 + a ) 
(TJ + a ) 2 (7; + a ) 2 

+ • 
1 Z ( a , 77) a2(7) + a ) 

, ip sin we'" (fi - p)e2'"' ip sin 2toe2"J 

Msi.p) =—: T7~ + _ ^ F — ^ i ~ + / - . x2 

(TJ — a)2 2(T) — a)2 (T; + a r 

+ 
2ip(7) + a) sin toe3"" 

2 \TJ + a -q + al (rj + a ) 3 

+ - 2 \ 7) + a ?) + a. 

APPENDIX B 
Expressions for functions Fa(xi, p), i?a(xi, p), Sa/3(fi, p), Ta(fi, J), 

and GK(p) are presented here, where the same notation as in Appendix 
A is employed. 

Expressions for Fa(x\, p): 

(7, + a)2X(a)*X(v) X(a)2X(r))Y(a, v)2Z(a, 7)) 

Y(a, v) = X(a) + X(V), 

Z(a, n) = aX(n) + r)X(a), 

A2a/3 = Alap, 

•Sin = B121 = 0, 5 n 2 = -S122 = -e~iw sin w, 

B211 = B221 = 1, £212 = ^222 = ie~'™ sin co. 

Expressions for T„(fi, f): 

T , «(f i ,? )=g a i ( f i , ? ) + - — — I dxi 
irw(^) J-a x\ — I 

=*ai(fi, 0 + J -7-r mcfi. 0 - ntfi,*)). 

Fa(^l,p)= f 
«y —a 

2 / 1 
Fa{xi,p) =T~—Alal 

w(m-xi) 1i 
{F'a(xi,s)-F'a(xl,s)}1 

Am = sin co + 

X(a) 

+ 2Ala2(a + d) 

a(ot + d) 

[Xi — a x\ + a, 

1 

7"i(fi1f) = 2e- i Msina) 

1 

f 1 7,(7) + d) (7) + d)X(7))l 

T2(fi, 0 : 

i J - f 

. r)-? X(T)) 

2X(?)) + 2ie-'"sinw 

(1? " ?)2 

?)(T) + d) 

xtn) 

: + • + 2[e_ 'a ' sin co 
( x i - a ) 2 (xi + o:)2J 

sin co, A112 = — sin co, 
Expressions for Ga(p): 

X(T))(T) + d) 

(v-02 

, a{a + d) . 
A121 = cos co + ( — — sin co, A122 = ~i sin co, 

Ga(p)= Cu,® C la(JhP\dXld^ 
• ' - a J-sw{xi)(xi — t) 

X(ct) = Va2-a2. 

Here, the branch of X (a) is taken such that X(a)-* aas\a\ - * » . 
Expression for Ra(x\, p): 

2i 

G"M = 4 

IG'Jp) - G'a(p)), 

x(a) 
• A\a2 

+ d] 

X(a) 
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Transient Response of a Finite 
Crack in a Half Plane Under 
Impact Load 

IAnalytical investigation of a half plane weakened by a finite crack is considered. The 
"Track is placed perpendicularly to the stress-free boundary of the half plane. The surfaces 
of the crack are loaded by a uniform pressure with Heaviside-function time dependence. 
In the Laplace transform domain, Fourier transformations are utilized to reduce the 
problem to the solution of a pair of dual integral equations which are solved by using the 
series expansion method. The Laplace inversion of the dynamic stress-intensity factors 
is carried out numericaMyTi 

1 Introduction 
Recently, dynamic crack problems have received much attention. 

This is due to the fact that dynamic stress-intensity factors are of 
considerable importance not only in designing the various parts of 
a machine but also in the field of the development of terrestrial heat 
which closely concerns to the destruction of the earth's crust. Many 
investigations have been done for the dynamic crack problems. A 
recent book by Sih contains good reviews of a number of subjects [1]. 
However, most of the studies have been concerned mainly with a 
single crack in an infinite elastic medium. 

In contrast to the foregoing works, analytical approaches to the 
transient crack problems including the effects of the boundaries were 
performed by Chen for an infinite strip with a centrally located crack 
[2,3]. The dynamic response of a layered composite under normal and 
shear impact is also analyzed by assuming that the composite contains 
an initial flow in the matrix material [4]. Later, the same problem 
which was treated by Chen [3] is reworked by using a somewhat dif­
ferent approach [5], The dynamic solutions of these problems are 
complicated by the presence of the other surface of the medium in 
addition to the crack surfaces. For this reason, such researches have 
generally been limited to the case that a crack is situated so as to 
achieve a geometrical symmetry with respect to the center line which 
intersects at a right angle to the crack surfaces. When a crack has not 
such a symmetry, the dynamic crack problem involves more dif­
ficulties in an analytical treatment. 

In the present paper, the transient dynamic stress field in the vi­
cinity of a Griffith crack in a half plane is determined. The crack is 
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placed perpendicularly to the free surface of the half plane and is 
opened by internal pressure with the Heaviside-function time de­
pendence. Fourier and Laplace transforms are applied and the 
problem is reduced to that of solving dual integral equations in the 
Laplace transform domain. To solve the equations, the crack surface 
displacement is expanded in a series of Jacobi polynomials. The un­
known coefficients accompanied in that series are solved with the aid 
of the Schmidt method. The dynamic stress-intensity factors are 
defined in the transformed domain and are inverted numerically in 
the physical space with the method which is developed in reference 
[6] and used in references [2-5]. Numerical results are compared with 
those of the corresponding static values given by Isida [7]. 

2 Fundamental Equation 
Consider an elastic half plane bounded in the x, y -plane by the line 

x = h and a finite crack located along the x-axis from —o to +o as 
shown in Fig. 1. 

When there are no body forces, we introduce two potentials <f> and 
\p for the Lame solution of the equation of motion so that the com­
ponents of displacement are given by 

1>,x ~ t,y, 

Ky + t.x, (1) 

where u and u are defined as the x and y -components of the dis­
placement, respectively, and the indices following a comma indicate 
the partial differentiation with respect to the variable, e.g., 4>,% — 
d0/dx. 

The equations of motion in the plane state of strain are reduced to 
the forms 

4>,xx + >P,yy = "T f,tt, 
CT 

(2) 
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Fig. 1 Geometry and coordinate system 

where the medium is assumed to be homogeneous and isotropic and 
CL = l(A + 2p,)/p}1/2, CT = (yu/p)1/2 are the dilatational and shear wave 
velocities with A and p. being the Lame constants, p being the density 
of the material. The dynamic stress components are written in terms 
of 0 and ip as 

Tyyl(2p) = -(pyXX + h.«-2{<l>,xx + <l>,yy) + 4>#y, 

Txxl{2)X) = ~(t),yy + \K2 ( 0 ? I I + 0,-yy) ~ l/^y , 

Tyx/(2p) = 4>tXy + >P,xx - \ if.xx + ^ y ) , (3) 

K2 = (CZ./CT)2, ( 4 ) 

with 

where elastic constant K2 takes the value 2(1 — c)/(l - 2v) with v de­
noting Poisson's ratio. 

Equation (2) is to be solved subjected to zero initial conditions and 
the following boundary conditions: 

Tyy = — P H(£)> for y = 0, — a < x < a, 

v = 0, for y - 0, - < = ° < x < - a , a<x^h, 

TyX = 0, for y = 0, -«> < x s h, (5) 

Txx = i > = 0, for x = h, | y | < » , (6) 

where P is a constant and H(t) is the Heaviside unit step function. 
Because of the symmetry conditions in equations (5) and (6), it is 
possible to consider only the problem for the half plane, y a 0. 

3 A n a l y s i s 
The Laplace transform of f(t) is defined by the integral 

/*(s) = f exp (st)f(t)dt. 

The inverse Laplace transform is 

f(t) = f exp (st)f*(s)ds, 
2iri JBI 

where the integral is over the Bromwich path. Applying equation (7) 
to equation (2) results in 

(7) 

(8) 

Kxx+ <l>'yy = ~ J < 

CT 

v* = 0, for y = 0, -co < x < -a, a < x £ h, (106) 

Tyx=Q, for y = 0, -<*><x^h, (10c) 

1-^ = ^ = 0, for x=h, | y | < » . (lOd) 

The solutions of equation (9) which are suitable for the present pur­
pose have the forms 

4>* = 2 j"° \Al(s,0 cos (£*) + A\(s,0 sin (£x)| exp ( - 7 i y ) d £ 

+ 2 f" Bi(s,f) exp (/Six) cos (fy)df, 

f * = 2 f " |A£(s,£) sin (£t) + Ac
2(s£) cos (£x)) exp( - 7 2 y)d£ 

Jo 

+ 2 f " B 2 ( s , f ) e x p ( f t t ) s i n ( f y ) d f , (11) 

with 

7 i = (£2 + s2/C | )i/2 , 

72 = (£2 + K V / C D 1 / 2 , 

ft = (f2 + s2/c?,)1/2, 

ft = (f2 + KV/C?,)!/2, (12) 

where Af(s^), A|(s,£), As
2(s,£), A2(s,^), Bi(s,f), and B2(s,f) are the 

unknown coefficients and to be determined from the boundary con­
ditions. 

The boundary conditions equation (10c) is satisfied by setting 

M(s,0 = h i A\ («,$)/({* + I K V / C ! ) , 

Ai(«,£) = - f y i Ai(s,£)/(£2 + i K2S2/CD, (13) 

and equation (lOd) can be satisfied if we choose fli(s,f) and B2(s,f) 
to be such that 

Bi(s,n = - - f " [Ai(s,£) ja^iOO cos (£/i) -a2fe2(s) sin (#))/!> 
•K JO 

+A{(s£)\aik1(s) sin tfh) + a2fe2(s) cos (£h)]/D]d£, 

B2(s,f) = - - f " [A5(s,?){aiA2(s) sin (£/*) - a3fei(s) cos (f/i))/£ 
7T »/0 

-A|(s ,£) |a1A2(s) cos (f/i) + a3fei(s) sin (#i))/D]d£, (14) 

with 

oi = (f2 + k V / d ) exp (ft/i), 

02 = - f t f e x p ( f t h ) , 

a3 = - f t f e x p ( f t / i ) , 

a 4 M f t 2 - i K 2 s 2 / c | ) e x p ( f t f e ) , 

D = axa4 — a203, (15) 

fei(s) = | ^ 7 i 7 l ( 7 ? + n + 7 i (7 l + H ( £ 2 + i K2«2/cl)(-7f 

+ i/cV/ci)!/((72 + r2)(7l + f2)(?2 + i K2s2/cl)\, 

k*(s) = £f7i(7§ - 7i)/l(7? + r2)(7l + HI - (16) 

Now, we divide the Laplace transformed surface displacement u*° 
into two parts 

u*° = v'e° + v'0°, (17) 

0) 
where u'e° and u^0 are even and odd functions of the x variable, and the 
superscript means that the values with it are those a ty = 0. Equation 
(17) can be expressed by use of the Fourier transform as 

In the Laplace transform domain, equations (5) and (6) become 

Tly = -P/s, for y = 0, —a < x < a, (10a) 
v*o = - f " i ;* ( ) cos(£ t )d£ + - f"ij ; ;0sin(fct)d£, 

W Jo TV Jo 
(18) 
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with with 

v*e° = i l>e° COS (^x)dx, 
Jo 

Vo° - I VQ0 sin (tjx)dx. 
Jo 

r(m,x) = 2 A A F ( - 1 ) « - I ^ ~ L ~ C"fi(Q/&»n-i (£a)cos (£x)d£ 
(2m - 2)! »/o 

(19) 

Then, with the help of equation (18), we can represent A5(s,£) and 
A!(s,£) by 

di 

with 

Al(s,0 = 2m(s£)vf, 

A\(s£) = 2Mq(s,^)t75°, 

?(*,£) = ~(£2 + ! K V / C D / ( ! K 2 ™ 2 7 I / C ! ) . 

(20) 

(21) 

, (n,x) = 2 V ^ ( - l ) ' - i ^ i | 
(2n - 1)! 

Finally, it can be easily shown that the mixed boundary values 
equation (10) yields to the following integral equations: 

rfy = 4M £ ° v? A(£) cos (£x) + cos (£/i) J ° ° q(s,0gi(U)d^ 

+ sin(£fc) f \ ( s , £ )g 2 (£ , f )d f )d£ 

+4M J o ° i>50 j/i(£) sin (£*) + sin ( £ « j ^ c?(S,£tei(£,f)df 

- cos (#») J o ° <z(s,£)g2(£,f)dfjd£ = - Pis, 

for - a < x < a , (22a) 

l ) *o= 2 - P~u*°cos (£x )d£- l - - f " u o ° s i n ( ^ ) d ? = 0, 
7T • - '0 7T JO 

for - < » < 3 c < - a , a < x s f e , (226) 
with 

/l(£) = H(£2 + i KV/ci)2 - ^7l72!AI K ^ S ^ i / c l ) , 

+ r " - l / £ « / s m - i t t a ) c « i ( £ / i ) f " / u ( £ , f ) d f < 
«/o I J o 

+ f~ l / £ ^ 2 m - i ( £ a ) s i n ( £ / 0 f~fe2(£,f)dtt< 
»/o 1 Jo 

f "/!(£)/£</2„(£a) sin (£x)d£ 
J o 

+ f " l/£</2„(£a) sin (ffc) f " f t i ( U w W 
«/o I Jo J 

- f " l /£J 2 n (£a)cos(£/ i ) f " f t 2 (£ , f )df 
•/0 I JO 

M U ) = ?(s,e«i«,n/2, 

h2«,J) = ?(8,f)*2(£,i)/2. (28) 

The semi-infinite integrals in equation (27) with respect to variable 
f can be easily evaluated numerically because the integrands almost 
all decrease exponentially. The integrands put into braces {j decay 
with order of £~3-5 because the function /»i(£,f) and /i2(£,f) behave as 
for a large value of £ 

d£ (27) 

and 

M£,f) - 0(£~2). (29) 

gi(U) = -~ l(-(3? + fr2«2/ci) exp (ftx)<u 
TV 

-P2texp(P2x)a3}ki(s)/D, 

§2(U) = ~ !(-/?? + JK2« Vci) exp ( f e ) a 2 

IT 

- /3 2 fexp( fe )o i | f e2 ( s ) / f l . (23) 

To solve equation (22), we expand the even and odd components 
of the surface displacement by the following series, respectively, 

.(1/2,1/2) 
2,w? = £ CmPgfctf0 (*/o)U - *7a 2 ) 1 / 2 , 

2M U0° = £ d n P ^ P ' (*/o)(l - * z / a 2 ) 1 / 2 , for - a < x < a, 

Ue° = VQ° = 0, for —°> < x < - a , a <x sh, (24) 

where cm and dn are the unknown coefficients to be determined and 
pU/2,1/2)^) j g a j a c 0 ^ j polynomial. Substituting equation (24) into 
equation (19), we obtain 

2jtuTc°= £ c m V ¥ ( - l ) m - 1 r ( 2 m - i ) J 2 m _ 1 ( £ a ) / | ( 2 m - 2 ) ! £ i , 
m = \ 

2 ^ 5 ° = £ dn v^F ( - I ) " " 1 T(2« + i)«/2„ (£a)/|(2n - 1)!£}, (25) 
n=l 

where r (x ) and </n(x) are Gamma and Bessel functions, respectively. 
Therefore, we arrive at the system of equation by which the coeffi­
cients cm and dn can be obtained 

(26) 

Thereby, the double semi-infinite integrals in equation (27) can be 
evaluated numerically. The other integrals in equation (27) are re­
written as 

f"7i(£)/£</2m- i (£a)cos(£x)d£ 
Jo 

= f " l / i ( M - / i ( < 5 ) / 6 | J 2 , n - i ( £ a ) c o s ( £ x ) d £ 
Jo 

+/i(5)/|<5(a2 - * 2 ) 1 / 2 | cos {(2m - 1) sin""1 (x/a)}, 

f"7i(£)/£=/2n(£a)sin(£*)d£ 
Jo 

= f" !/!(£)/£-7i(S)/«R2„ (£a) sin (£x)d£ 
Jo 

+/i(<5)/l<5(a2 - x2)1/2j sin |2n sin"1 (x/a)}, (30) 

with 

h(d)/8 = lira /i(£)/£ = - ( K 2 - l ) / ( « 2 ) . (31) 

The function |/i(£)/£ - fi(d)/5] behaves as £ - 2 for a large £, so that the 
integrands in equation (30) decay with the order of £~2-6 as £ is in­
creased and the integrals can be also evaluated numerically. 

Thus equation (26) can be solved for coefficients cm and dn by the 
Schmidt method [8]. For brevity, we rewrite equation (26) as 

with 

Y. akEk(x) = —v(x), for —a<x<a, 
k=i 

a* - C(fc-u/2-i, 

Ek(x) = r\(k - l)/2 - 1, x], for k = 1, 3, 5, 7, 

ik = dk/2, 

Ek(x)=s(k/2,x), for fe = 2 , 4 , 6 , . . . , 

(32) 

and 

v(x) =P/s. 

(33) 

(34) 
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0.0 5.0 10.0 cLt/a 

Fig. 2 Dynamic stress-intensity factor K,+ versus cLIJa 

0.0 5.0 10.0 cLt/a 

Fig. 3 Dynamic stress-intensity factor K,- versus cLtla 

A set of functions Qu(x) which satisfy the orthogonality condi­
tion 

("XQk(x)Q,(x)dx=Nk5kl, Nk= CaQl(x)dx, (35) 
U — a. *J — a 

can be constructed from the function, Ek(x)t such that 

Q*(*)= T,~Ei(.x), 

where M^ is the cofactor of the element dik of Dk, defined as 

d n di2. . . -dik 

(36) 

Dk 

dki 

Fig. 4 Comparison of the dynamic stress-intensity factors with the corre­
sponding static ones 

stress-intensity factors for crack tip points (a,0) and (—a,0) by the 
formulas 

Kj+ = -y/27r(x - a) rfy \x~a+ 

9(K2 _ l) I „ 
= „ , - E cm T (2m - |)/(2m - 2)! 

r y a lm=i 

+ E rfn r (2n + J)/(2n - 1)! 
n = l 

KJ_ = V2ir(-x - al TJ° | r 

2(K2 - 1) 
E cm r (2m - J)/(2m - 2)! 

• E dn r (2n + i)/(2rc - 1)! . (40) 

The Laplace inverse transformations in equation (40) are carried 
out by the numerical method given by Miller and Guy [6]. When the 
Laplace transform /*(s) can be evaluated at discrete points given 
by 

s = (0 + 1 + /), / = 0 ,1 , 2 , . . . (41) 

we determine coefficients Cm from the following set of equations: 

8'f*W + 1 + W = E Cnll/{(l + P+l)(l + P + 2) 
ro=0 

. . . ( / + /5 + 1 + m)(l - m)!), (42) 

where 8' > 0 and /3 > —1.0. If coefficients are calculated up to CJV-I, 
an approximate value of f(t) can be found as 

fit) = E CmP^ (2 exp ( - ft) - 1), (43) 

X *2 

Ei (x )Ek (x)dx. (37) where P ^ (x) is a Jacobi polynomial and iV is the number of terms 
"" employed. The parameters 5', /3, and 2V are selected such tha t / ( t ) can 

be best described within a particular range of time t. 

Using equations (32) and (36), we obtain 

" Mkj 
ak=T. Qj TT-, 

i=k Mjj 

with 

— 1 pa. 
Qj=— I u(x)Qj{x)dx 

(38) 

(39) 

4 S t r e s s - I n t e n s i t y F a c t o r 
The coefficients cm , dn are obtainable, so that the dynamic stress 

field is given. However, in fracture mechanics, it is of importance to 
determine stress ryy in the vicinity of the crack's tip. The stress along 
the line of the crack is given by the first equality in equation (26). The 
stress singularities at the tip of the crack come from the behavior of 
the integrands as the integration variable £ has an infinite value. 
Therefore, in the Laplace transform domain, we can easily define the 

5 N u m e r i c a l E x a m p l e a n d R e s u l t s 
Numerical calculations are done for Poisson's ratio v = 0.25. The 

semi-infinite numerical integrations in equation (27) with respect to 
the variable f and those with respect to the variable £ are evaluated 
easily by using Simpson's method and Filon's method [9], respectively. 
To perform the Schmidt procedure, we adopt the first seven terms 
of the infinite series in equation (32). For a check of the accuracy, the 
values of SJ= 1 ahEk(x)/(Pa/cL) and -V(X)I(O./CL) are given in Table 
1 for the case oisa/cL = 0.6 and alh = 0.7. From this it is clear that 
the Schmidt method is carried out satisfactorily. Using the values of 
0 = 0.0, h' = 0.2, N = 7, we inverte the Laplace transforms numeri­
cally. 

In Figs. 2 and 3, the results of Kj+ and Ki- are plotted versus crf/a, 
in which the broken lines are the corresponding static values given 
by Isida [7]. The curve for alh - 0.0 is omitted because, for the scale 
shown, the results for alh = 0.0 and alh = 0.2 are indistinguishable. 
In Fig. 4, the ratios of the peak values of K\+ and Ki_ to the corre-
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Table 1 Values of 2 *= ! akEk(x)l (Pal cL) and - v(x)/(a/cL) for salcL 

0.6 and a/h = 0.7 

x/a 

-1.00000 

-0.92857 

0.00000 

0.92857 

1.00000 

7 

z 
akEk(x)/(Pa/cL) 

-1.6664 

-1.6666 

-1.6668 

-1.6662 

-1.6668 

-v(x)/(a/cL) 

-1.6667 

sponding static values, namely, Kg./Kf+ and Kg_/Kf_ are shown 
graphically, where the slender broken line shows the result for a 
centrally located crack in an infinite strip [5]. 

The maximum values of K\+ and Ki- are quite different, and Kft 
is considerably larger than Kf_. However the value K™+/Kf+ is well 
coincident with that ofKiL/Kf.. for the whole range of a/h - 0.0 ~ 0.8. 
Both of the ratios have the maximum for a/h = 0.0 and decrease ac­
cording as the a/h ratio is increased. This means that the effect of 
inertia is predominant in the region of a small value of a/h, while the 
stress-intensity factors are more affected by the presence of the 

stress-free surface in the region of a larger value of a/h. Another useful 
result is that the values of K?JKs

l+ and K?JK\- fall within the limits 
from 1.1 to 1.3 for a/h = 0.0 ~ 0.8. 
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Elastodynamic Stress-Intensity 
Factors for a Crack Near a 
Free Surface 

I Elastodynamic Mode I and Mode II stress-intensity factors are presented for a subsurface 
Track in an elastic half space. The plane of the crack is normal to the surface of the half 

space. The half space is subjected to normal and tangential time-harmonic surface trac­
tions. Numerical results show the variation of Kj and Ku at both crack tips, with the di-
mensionless frequency and the ratio a lb, where a and b are the distances to the surface 
from the near and the far crack tips, respectively. The results are compared with corre­
sponding results for a crack in an unbounded soKdT 

I n t r o d u c t i o n 
An homogeneous, isotropic, linearly elastic half space contains a 

subsurface crack perpendicular to the surface, as shown in Fig. 1. In 
this paper we examine the elastodynamic response of the cracked half 
space to the application at the surface of a uniform traction that varies 
harmonically with time. Attention will be directed toward the quan­
tities that are of interest in fracture mechanics contexts, namely, the 
stress-intensity factors at the crack tips. We also compare the results 
with those for a Griffith crack in an unbounded medium subjected 
to the same incident wave motion. 

In an earlier paper [1] the authors have considered the two-di­
mensional scattering of Rayleigh waves by a subsurface crack. There, 
the boundary-value problem for the scattered field was stated in 
mathematical terms and an integral representation for its solution 
derived. The problem was then reduced by standard methods to the 
solution of an uncoupled system of strongly singular integral equations 
which were solved numerically using a method due to Erdogan and 
Gupta [2], Formulas were given for the far-field amplitudes of the 
waves in the scattered field and for the near-field quantities that we 
are concerned with here. The data in the integral equations were the 
values taken at the location of the crack by the stress components of 
the incident field, that is the elastodynamic solution in the absence 
of the crack. Thus the method described in [1] can be applied to the 
problem of this paper as well: the only modification required is to use 
the appropriate incident field. So in what follows only brief details 
of the equations which need to be solved will be given. 
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Fig. 1 Subsurface crack in prestressed half space 

It is assumed that the faces of the crack do not interact with each 
other. This is a realistic assumption if the crack is actually a thin slit 
of finite width, or if a sufficiently large static prestress is applied which 
holds the crack in an open position as shown in Fig. 1. 

G o v e r n i n g E q u a t i o n s 
If the boundary conditions on the surface of the half space are 

Oxy = ~T0e ffyy o"oe (la,b) 

then the stress components of the incident field are calculated to 
be 

where 

a{H = <r0(2kl - k\)kT
2 exp (ikLy) 

ofy = - r 0 exp (ikTy), 

kf! = w/cf, for j8 = L, T 

(2) 

(3) 

(4) 
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cl = (\ + 2n)/p, c\ = p./p, (5a, b) 

and X, n are the Lame constants, and p is the mass density. Now, it 
can be shown that, if the density functions, dx(y) and dy(y) satisfy 
the integral equations 

- < r S ( / ) = 4 -f dydx(y)TxV;xx(0,y;0,y') (6) 

-o%(y') = £ -f " dydy(y)Txy:xy(0, y; 0, y') (7) 

together with the side conditions 

C dydt(y) = 0 for i = x,y (8) 

Di(y) = di(y)(b — y)1/,2(y — a) 1 / 2 is continuous in [a, b], (9) 

then the elastodynamic field generated by the usual integral repre­
sentation, equations (3.4a, b) of reference [1], satisfies all the required 
conditions and is the solution to the boundary-value problem we are 
seeking. Existence and uniqueness of the functions dx(y) and dy(y) 
can be proved, but these questions are not discussed here. The func­
tions can be shown to have the physical interpretation of dislocation 
densities. The kernels of the integral equations are given by 

r * y w = - C dZeW-*>E(Z,y) 
Je 

i^aLaTe-aLy' - (2£2 - k2
T)2 e-"™' 

2rR(0 

+ C d£(ei«y-y'> + ei«y+*'>) 
Je 

X T5-5 (10) 
iiri$;a.T 

- C d£e''«*'-*>F(£,y) 
Je 

(2aj + k2
T){2? - h\)e-^y' - ^aLaTe-^y' 

2irR(£) 

- C d^e^y-y'l + e«(y+y')) 
Je 

(2g2 - k\)2e-°"-\x-x'\ - 4PaLaTe-<*T\x-x'\ 

4-Ki^aL 

E(ty) = 4f 2 e-°w - (2£2 - ft2,)2 a r 2 r « » (12) 

F(£, y) = (2al + k%)(2? - k\)cCL
2 e"""- - 4£2

e-<*™ (13) 

R(& = (2£2 - ft2,)2 - 4 £ 2 a L a T (14) 

otf = (£2 - ft?)1/2 for ( S - L . T . (15) 

The integrands have poles at £ = ifcjj, where fefl = U/CR and c^ is the 
velocity of Rayleigh waves, and the branches are chosen so that Re 
(ctp) > 0 for fi = L, T, and £ £ (?. The contour 6 in the complex plane 
is along the real axis and is indented above the pole and branch points 
in the left half plane and below those in the right, in order to satisfy 
the radiation condition. 

The integral equations (6) and (7) together with the side conditions 
can be solved by standard methods, but the numerical evaluation of 
the kernels presents some difficulty. The expressions for the kernels 
involve terms which must be computed using a quadrature scheme 
on a deformed contour in the complex plane. For details we refer to 
[3, 2, and 1]. The displacement discontinuity [u;](y'), i = x,y, and the 
stress-intensity factors can be calculated from the solutions to the 
discretized integral equations thus 

and 

where 

M ( y ' ) = J dydi(y), i = x,y, (16) 

.5 f 
o/b=.i 

12 O 4 

Fig. 2 Mode I and Mode II stress-intensity factors; - - - upper crack tip; — 
lower crack tip; v = % quasi-static approximation from [4]: ©, *; corresponding 
Griffith crack results: X, • 

and 

Kl 

K" = 
H(H 

\Dx(e)\, e = a,b, 

kl) 

(b- W>"W| e = a,b. 

(17) 

(18) 

In the numerical computations Poisson's ratio was taken as v = J, and 
the two independent parameters were chosen to be kpb = cob/cp and 
alb. 

D i s c u s s i o n of the R e s u l t s 
Deformations that are symmetric about the plane of the crack and 

those that are antisymmetric are independent of each other. In the 
present problem symmetric and antisymmetric deformations are 
induced by applied tractions that are normal and tangential, re­
spectively, to the surface. Thus Mode II stress-intensity factors are 
generated by the shear tractions defined by equation (la), and Mode 
I stress-intensity factors by the normal tractions defined by equation 
(16). 

Fig. 2 shows the variation of the Mode I and Mode II stress-inten­
sity factors with the normalized frequencies wb/cL and cofc/cr, re­
spectively, for three different crack configurations. The curves all 
show an increase to a peak and then an oscillatory decay as the fre­
quency increases. In the limit oob/cp -+ 0 the near field can be ap­
proximated by the quasi-static field, and the incident field becomes 
uniform, i.e., a['l and ox

l)
y are constant on the crack. Cook and Erdogan 

[4] have presented results for the static problem of a subsurface crack 
opened by a constant pressure. They obtained these results from the 
solution of an integral equation which is actually the limit of equation 
(6) as O)6/CL -*• 0. If the kernels of each of our equations (6) and (7) 
are examined, it can be shown that the limits are identical, 

lim c (0 ,y ;0 ,y ' ) 

1 4 y y ' + y' 

(y-y') (y + y ' ) 3 I 2ir(l - v) 

lim kT2Txy:xy(0,y;0,y'). (19) 

For static problems the results for the subsurface crack, opened by 
equal and opposite constant shear tractions acting on the two faces 
of the crack, can therefore be derived from the results for constant 
pressure. This is not true for dynamic problems. The stress-intensity 
factors presented in [4] are defined differently and are normalized 
with respect to different quantities, but they were multiplied by the 
appropriate factors and plotted as the symbols on the vertical axes 
in Fig. 2. The excellent agreement between the low frequency ap-
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Fig. 3 Mode I stress-intensity factors versus alb for three values of 0)blcL; 
- - - upper crack tip; — lower crack tip; v = |; corresponding Griffith crack 
results: X, D 
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Fig. 4 Mode II stress-intensity factors versus alb for three values of 0)blcT; 
— upper crack tip; — lower crack tip; v = & corresponding Griffith crack 
results: X, • 

proximations and the results computed for small 0)6/0,3, provides a 
check on the solution of the integral equations and on the reliability 
of the evaluation of the kernels at low frequencies. 

Figs. 3 and 4 show the variation of the stress-intensity factors with 
the nondimensional parameter a/b, for three fixed values of o)6/cx, 
in the Mode I case and of wb/cr in the Mode II case. The graphs show 
that the stress-intensity factors at the upper tip of a crack, that is 
gradually propagating towards a surface under the influence of vi­
brations excited at the free surface, suffer a sharp increase when the 
crack has almost broken the surface. 

An example of the variation of the components of displacement 
discontinuity along the crack is given in Fig. 5. The profile is distorted 

,6 .8 1.0 O .Z .4 .6 .8 1.0 O .2 .4 .6 .8 1.0 

10,1 

-| 1—, , . . ,—, , — ^ 04 . *—. . . 1 . , —A OJ • . • — * - ^ . • 1 - H 
O .2 .4 .6 .6 1.0 0 .2 .4 .6 .8 tO O .2 .4 .6 .8 1.0 

y/b y/b y/b 

Fig. 5 Crack-opening displacements; tangential surface traction: \ux\ = 
0, and \u,\ for u>blcr = 2 ( — ) , u>blcT = 6 ( ), and wb/cT = 10 
( ); \uy\ = n\[uy\\/T0b; normal surface traction: \uy\ = 0 and |u„| 
for wblcL = 1 ( — ) , oiblcL - 3 ( ), and aiblcL = 5 ( - - - ) ; |u„| = 
li\[ux]\l(r<,b 

K1 

o-„(b-a)" 

T 0 ( b - a ) ' ' 

k T ( b - a ) M b - a ) 

Fig. 6 Stress-intensity factors versus the dlmensionless crack length for three 
values of a/b: — alb = 0.1, alb = 0.2, and alb = 1 (crack in 
unbounded solid); uct = upper crack tip, let = lower crack tip 

from a symmetrical elliptic one, by the proximity of the free surface 
and the wave character of the incident field. At low frequency (long 
waves), i.e., at k^b = 1 and krb = 2, the crack-opening displacement 
is almost elliptical for all three values of a/b. 

It may be expected that the effect of the free surface diminishes as 
the crack moves away from it, i.e., as kpa = 2ira/Ap (where Ap = 
wavelength) becomes larger and/or a/b approaches unity. The 
stress-intensity factors should then approach the values for grazing 
incidence of L and T waves on a crack in an unbounded medium. 
Results for this problem can be obtained by noting that the kernels 
can be viewed as the sum of a source term and a term, which corre­
sponds to its reflection in the free surface on which a condition of zero 
traction holds. If only the former term is retained and the integral 
equations are solved as before, then points which are indicated by 
symbols in Figs. 2-4, are obtained. The new integral equation is es­
sentially that derived by Tan [5] for the treatment of normal incidence 
of elastic waves on a Griffith crack, but the numerical method of so­
lution we use is different in that it preserves the correct form of the 
singularities of the solution at the crack tips. 

To determine more precisely in what circumstances the effect of 
the free surface is negligible, the graphs of the stress-intensity factors 
of a Griffith crack in an unbounded medium were compared to those 
for subsurface cracks with various values of a/b. The Griffith crack 
is the limit of a subsurface crack as kpa —»• <» but kp(b — a) remains 
constant, or equivalently a/b -> 1 with kp(b — a) fixed. The results 
shown in Fig. 6 have therefore been plotted against and normalized 
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with respect to the crack length (b — a). We expect that the subsurface 
crack curves will lie close to each other and to the Griffith crack curve, 
when the distance from the upper tip to the surface is large compared 
to either the crack length or the wavelength of the incident field. It 
appears that the condition, either that a/b > 0.5, or kifl > 0.25 in the 
case of symmetric deformations and kra > 0.5 in the case of an­
tisymmetric deformations, is sufficient to insure that the results do 
not depend greatly on the distance from the free surface to the nearest 
crack tip. 

It is. evident from Fig. 6 that the oscillations of the subsurface crack 
results about the curve for the Griffith crack are greater and persist 
for longer in the Mode II cases than the Mode I cases. It may be as­
sumed that the oscillations about the infinite body curve are due 
primarily to the reflection of a diffracted body wave from the free 
surface. This body wave is primarily a longitudinal wave in the Mode 
I case and a transverse wave in the Mode II case, and so it seems that 
the latter is more significant. 
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Contact Pressures on Closely 
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' A numerical method is developed for the determination of the contact pressure that arises 
when two elastic bodies with closely conforming non-Hertzian frictionless surfaces are 
pressed together. The method is a generalization of that recently developed by the au­
thors for the case of antiformal contact, and includes a technique for automatically gener­
ating meshes that overlay the changing (load-dependent) contact patches. The method 
has been implemented in a computer program called CONFORM, and has been applied 
to problems of wheel and rail contact. The results have been verified by comparison with 
those generated by an independent program for the special case of relatively light wheel 
loading, where the contact is known a priori to be essentially counterformatXThe results 
given herein for a relatively heavy (but realistic) wheel loading on the throat of the flange 
represent the first known solution for conformal contact between a railroad wheel and 
rail. 

1 Introduction 
Elastic contact stress problems are classified as Hertzian if they 

satisfy the following five conditions: 

1 The bodies are homogeneous, isotropic, obey Hooke's law, and 
experience small strains and rotations (i.e., the linear theory of elas­
ticity applies). 

2 The contacting surfaces are frictionless. 
3 The dimensions of the deformed contact patch remain small 

compared to the principal radii of the undeformed surfaces. 
4 The deformations are related to the stresses in the contact zones 

as predicted by the linear theory of elasticity for half spaces 
(Boussinesq's influence functions are valid). 

5 The contacting surfaces are continuous, and may be represented 
by second-degree polynomials (quadratic surfaces) prior to defor­
mation. 

Contact stress problems are also classified as follows: 

(a) Antiformal (or counterformal), if Condition 3 is satisfied, 
or 

(b) Conformal, if Condition 3 is violated. 

Excellent surveys of recent research in the field of contact stresses 
have been provided by Kalker [1, 2]. From these surveys it will be seen 
that the vast bulk of such work starts from the assumption that the 
contact region is the ellipse predicted by Hertzian analysis. Even in 

1 Now Assistant Professor at Abadan Institute of Technology, Abadan, 
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Kalker's studies of the effects of friction on rolling creepage, both the 
contact pressure and the contact region are elliptical; i.e., the "contact 
pressure" problem is treated as Hertzian. 

Until recently, there existed no general way of handling any non-
Hertzian contact pressure problems. However, Singh and Paul [3] 
showed how to solve antiformal non-Hertzian problems using the 
so-called Simply Discretized (S.D.) method. This method was applied 
by them to relatively simple geometries. Later, Woodward and Paul 
[4] extended the S.D. method to the case of conformal problems, but 
Paul and Hashemi [5] developed a modification of the S.D. method 
by means of which they were able to solve antiformal contact problems 
for virtually arbitrary geometries. By means of a computer program 
COUNTACT [6] they found the first known solutions for realistic rail 
and wheel profiles in antiformal contact. 

The present work represents an extension of the modified S.D. 
method to conformal problems with quite general geometries—in­
cluding that of wheels and rails in closely conforming regions of the 
flange throat. Based upon this analysis, a computer program (called 
CONFORM) has been developed [7] and made available to the general 
public. 

Additional references on related literature will be found in [3-5, 
8]. 

In the next section, we formulate the integral equation governing 
conformal contact stress problems, and in Section 3, we show how the 
Modified Simply Discretized Method can be used to solve the integral 
equation. In Section 4 the determination of the initial candidate 
contact boundary is discussed. This is a necessary preliminary for the 
numerical method being used. In Section 5, methods are developed 
for mesh generation and true contact boundary determination which 
are more general and efficient than those used in the previously cited 
references. Section 6 discusses the influence functions used, and 
Section 7 briefly explains the organization of computer programs 
developed for this work. Examples are given in Section 8 and Con­
clusions are stated in Section 9. 
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Fig. 1 The two bodies in contact under rigid body translation 8. (a) Curved 
lines are intersections of given surfaces with a plane through the z-axis. The 
line Af|Af2 is parallel to the z-axis, prior to deformation; (ft) Enlargement 
of region near M, and M2, showing the process of deformation. 

2 Formulation of the Governing Integral Equation 
Let two bodies of general, but closely conforming, shape be denoted 

as body 1 and body 2. Cartesian coordinate axes are set up with the 
initial contact point as common origin. Axes (x, y) lie in the tangent 
plane of the two surfaces at the initial contact point with the z-axis 
pointing into body 2. 

The initial separation of points on the two bodies with common 
(x, y) coordinates is given by the known surface functions, z\ and z% 
as (see Fig. 1): 

f(x,y) =zz(x,y) -zi(x,y) (1) 

After the bodies are pressed together, the total displacement can 
be represented by a rigid-body motion plus a superposed deformation 
which decays rapidly with distance from the region of contact. In 
general, the rigid-body motion of body 2 relative to body 1 is defined 
by six parameters. For simplicity, we assume, at this point, that the 
rigid-body motion of body 2 relative to body 1 consists of a translation 
through distance o in the negative direction of axis z. The quantity 
5 is called the rigid-body approach. 

Let us consider two points Mi and M 2 on the surfaces of bodies 1 
and 2 with common coordinates (x, y) as in Fig. 1. The initial sepa­
ration vector between the two points will be 

si = / U , y ) z (2) 

where s; is the initial separation between point Mi and M-i- z is the 
unit normal vector in the z-direction, and f(x, y) is given by (1). 
After deformation occurs, points M\ and Mi move to M\ and M'2. 

If wn and W2 represent the elastic displacement vectors of the points 
M\ and M2, then the separation vector after deformation becomes 
(see Fig. 1(6)) 

s/ = s; + W2 — wi - <5z (3) 

For closely conforming surfaces, the normals to the two surfaces 
(at Mi and M-j) differ very slightly in direction, and either of the two 
initial surfaces represents a good approximation to the deformed 

Fig. 2 Forces applied to body 1 

surface on which contact occurs. We will therefore assume that the 
contact patch lies on surface 1, and its unit normal vector n will be 
approximated by m, the unit outward normal to surface 1. 

Within the contact patch (by definition of contact), the component 
of separation s/ in the normal direction vanishes, i.e., 

s/ • n = (/ z + w2 — wi — 8z) • ni ~ 0 (4) 

or 

wi + w'{ = (5 — f) nz (withing contact patch) (5) 

where 

w" = ~wi • ni 

wi = ~«2 • n2 = w2 • ni 

are the components of wi and W2 along the inward normals to surfaces 
1 and 2; note that n2 ~ iti, and nz is the z-component of ni. 

We consider the case of frictionless surfaces which develop a purely 
normal surface pressure p over the contact region a. The displacement 
w'l for body i is related to the pressure on body i by the expression 

«;?(••)= J ] G;(r;r')p(r')dV (6) 

where the influence function G; (r; r') is the normal displacement of 
point r due to a unit normal force on body i at r'.2 Denoting the pro­
jection of area element da' on the x — y plane by 

dA' = n'z da' (7) 

where n'z is the z-component of ni, we may write (6) in the form 

r dA' 
w?(>)= G , ( r ; r ' ) p ( r ' ) -7 - (8) 

•Ja nz 

where fi, the projection of a on the x — y plane, will henceforth be 
called the contact region. 

Therefore, equation (5) becomes 

J. W 4 ' 

(G! + G 2 )p ( r ' ) — = ( 5 - / ) " 2 0 ) 
a nz 

For indentors of finite curvature, a physically meaningful solution 
requires that 

p(x,y) 2: 0 within U 
(10) 

p(x,y) = 0 on C 

where C is the boundary of the contact region £2. 
Equation (9) and condition (10) govern the conformal contact 

problem; they can be solved for p(x,y) and C, if a value of 5 is speci­
fied. 

2 The vector r(r') locates a field {source) point. Quantities evaluated at a 
source point will be marked by primes: e.g., p ' = p(r'), butp = p(r). 
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. \ k\ V X ^ 

b) 

interpenetration 
curve 

space interpenetration 
curve 

Fig. 3 Two bodies In conformal contact; (a) prior to deformation; (b) 
fictitious interpenetration; (c) initial candidate contact region 

The resultant force F(p> and moment M(p) (due to the pressure on 
body 1), may be found (see Fig. 2) from the expressions 

F<P> = - C pndo 
Jsi 

M<P) = - f rXpndo-

(ID 

(12) 

where r = (x,y,z), and da = dA/nz. Thus the applied external force 
F = —F(p> and moment M = —M(p> are given by 

dA J dA 
p\nx,ny,nz}— 

si nz 

J di 
(yriz - zny) p — 

n n 

(13) 

Mx 

My 

Mz 

J . di 
{-xnz +znx)p — 

si n, 

Ci \ dA 

1 (xny-ynx)p — 

dA 

Z 

dA 

nz 

dA 
(14) 

3 D i s c r e t i z a t i o n of the I n t e g r a l E q u a t i o n 
For a given rigid-body approach b, equation (9) could be solved for 

the pressure field p(x, y) if the region of integration A were known. 
We will begin by assuming a candidate contact region 12. The pro­
jection, on the x — y plane, of the intersection curve which would arise 
if surface 1 were displaced relative to surface 2, along the z-axis by 
distance 8, is called the interpenetration curve and is given (see Fig. 
3) by 

f(,x,y) = z2(x,y)-z1(x,y) = 5 (15) 

If the region bounded by the interpenetration curve is chosen as the 

initial candidate region, equation (9) becomes an integral equation 
of the first kind, which we shall solve by the modified simply discre-
tized method [5]. Let us discretize the region fi of the integral equation 
into n subregions fii, fi2 fin, where the subregion fij is called "cell 
j . " Then, equation (9) reduces to 

r ( G l + G 2 )^+ c (Gl + G2)^... 
•Ju\ nz »/si2 nz 

J* WdA' 

(Gi + G 2 )* L - r - = [ « - / ( * , y ) ] n , ( * , y ) <16) Un nz 

If cell j is small enough so that p(x', y') and nz(x\ y') over that cell 
can be considered as constants pj and n{, then equation (16) reduces 
to 

f (Gi + G2) 
nz i-in\ *Jnj 

*>[o-f(x,y)]nz(x,y) (17) 

The term (Gi + G2) will he singular within certain cells and must 
therefore be kept under the integral sign, at least for such cells. 

To find the unknown values of pj we select n field points (x;, y,-) 
and write equation (17), for each of these points, in the form 

E bijPj (»< .») 

where 

bij = ~ f (Gi + G 2 )dA' 
n{ Jtij 

di = [8 - f(,xi,yi)](nz)i 

(18) 

(19) 

(20) 

If matrix [by] is nonsingular, equations (18) may be solved for the 
candidate pressures py. If these values of pj do not satisfy conditions 
(10) we must modify the assumed contact region boundary C. The 
method used to choose and modify the boundary of fi will be described 
in Section 5. 

The influence functions used for the specific examples of rail and 
wheel considered in this paper are described in Section 6; for further 
discussion see [8]. 

The applied force and moment are obtained from equations (13) 
and (14) as 

i-\ \nz)j 

•ZPjl-Aj 
j=i \nzj) 

F*=Y.PjAj 
7 = 1 

(21) 

(x 

fy 

n 

= £ PJ 
j=i 

n 
= ZPj 

;'-i 

ny 
y-z^-

nz 

n 
—x + z-

r 

j 

x_ 

z. 
Ai 

Mz = £ pj [{xny - ynx)/nz]j Aj 
/= i 

(22) 

where Aj is the area of cell j (in thex.y-plane). 

4 In i t ia l C a n d i d a t e C o n t a c t B o u n d a r y 
The initial candidate contact region will be chosen as the region 

insde the "interpenetration curve" defined in Section 3. General 
procedures for finding this curve are given in [9]. 

It was shown in [5] that for antiformal (but not necessarily Hertz­
ian) contact, the actual contact region lies inside the interpenetration 
curve associated with a fixed approach. Similar reasoning shows [8] 
that, in the case of conformal contact problems, the true contact patch 
lies inside the interpenetration curve, provided that the influence 
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Band 3 

Fig. 4 Mesh arrangement for sample interpenetratlon curve. Bands are shown separated by heavy vertical lines. Band 1 is subdivided 
into 5 strips, band 2 into 4 strips, band 3 into 5 strips. Note that the x-axis is a line of symmetry, and only half of the contact patch is 
shown. 

functions used for both bodies are unidirectional3 over the initial 
candidate contact patch. Experience to date suggests that the inter-
penetration curve is a good candidate for the initial contact patch, for 
both conformal and antiformal contact. 

5 M e s h G e n e r a t i o n and Contac t B o u n d a r y 
D e t e r m i n a t i o n 

The method described in [5] for the mesh generation and boundary 
determination of antiformal problems has been improved and ex­
tended to the conformal problem. In the following, rectangular cells, 
with sides parallel to the x and y-axis are utilized, and the contact 
region is assumed to be symmetric about the x -axis (as it would be for 
a wheel axis parallel to the x -axis, and a rail axis parallel to the y -axis); 
consequently, only half of the contact region (see Fig. 4) needs to be 
discussed. Both the field points and source points will be chosen to 
lie at the centroids of the rectangular cells. The scheme of subdivision 
for a candidate contact region is as follows: 

The x-diameter, which has known length a, may be divided into 
any number (nt) of segments called Bands. A typical band (i) will be 
further divided into nsi segments called strips. Then the "horizontal" 
length hxi of cells in band i will be given by 

where 

hxi - ailnsi 

a; = ria 

(23) 

(24) 

and r; is a fixed positive ratio (less than 1) associated with band i, such 
that 

E n = 1. 
i 

If we divide each half-strip; into a number of cells my, the "vertical" 
length hy of each cell in that strip will be determined as 

I j/fij (25) 

where ymaxj is the y-coordinate of the point on the boundary curve 
corresponding to the center line of half-strip; (see Fig. 4). 

If it is desired to have a field point on the x-axis, then we let 

hyj = ymaxj/(mj - \) (26) 

The a:-coordinate of the field points of all cells in the first strip will 
be obtained as 

3 An influence function will be described as unidirectional over a surface if 
a normal force applied to a point on the surface produces displacements at all 
points of the surface whose components in the direction of the applied force 
have the same sign everywhere. 

X\ = a t + • 
h •x\ 

(27) 

where OL is the left-x -intercept of the boundary curve. Then the x-
coordinate of the cell centroid in strip j becomes (for band 1): 

XJ - xj-! + hxj (28) 

A similar procedure is followed for all subsequent bands. 
Having unambiguously defined the cell arrangement, we may use 

equations (19) and (20) to evaluate 6y and d,-. Then the unknowns pj 
may be found by solving the linear equations (18). 

If the current pressures p ; do not satisfy conditions (10), the di­
ameter a and the ordinates ymaxj are redefined by quadratic inter­
polation as described in [5], thereby determining a new candidate 
contact boundary C. The whole process is repeated until the condi­
tions (10) are fully satisfied. This procedure has been tested on nu­
merous cases (e.g., railroad wheels and rails, crowned rollers, cams, 
etc.)'and has always terminated satisfactorily within approximately 
five iterations. As will be seen next, the geometry of a wheel-rail in­
terface is about as complicated a case as one might find in any prac­
tical situation. 

6 I n f l u e n c e F u n c t i o n s for Ra i l and W h e e l S u r f a c e ~ 
One of the major difficulties in the solution of any contact problem 

is the determination of suitable Green's functions for the surfaces in 
contact. These "influence functions" relate the elastic displacements 
at a given point to a unit applied force at some other point. In contact 
problems, we are concerned with the elastic displacements of surface 
points due to a unit load applied anywhere on the surface .of a 
body. 

In antiformal contact of rail and wheel, the contact area is ap­
proximated by a plane, making it appropriate to use Boussinesq's 
influence function [10] for all surfaces. However, in conformal contact 
(where the contact surface is not approximately plane), it is generally 
necessary to find more individualized influence functions for each of 
the two surfaces in contact. For many realistic surfaces, the exact 
influence functions annot be found analytically; therefore, they must 
be generated numerically as in [4], or else be approximated by some 
convenient mathematical expressions. 

A study of various exact and approximate influence functions has 
been described in [8]. Although, in principle, one may generate ac­
curate influence functions for arbitrary surface geometries with the 
aid of three-dimensional finite-element programs, these studies in­
dicate that the costs of such an approach for rail and wheel geometries 
are prohibitive at this time. The only exact solution (known to the 
authors) for the effects of a point load on a curved surface is that of 
Sternberg and Rosenthal [11]. This solution together with some fi­
nite-element solutions using the well-known program ANSYS pro­
vided benchmarks for the testing of various approximate influence 
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functions. The results of this testing program are too copious to dis­
cuss here, but the overall conclusions are summarized next. It was 
found in [8] that for surfaces of negative Gaussian curvature (saddle 
surfaces) such as at point C in the rail-vehicle wheel of Fig. 5, the 
following expression gives a reasonable approximation to the normal 
displacement wn at a surface point (x,y,z) due to a unit normal force 
at the surface point (x', y', z'): 

= (1 ~ v)/irE 
Wn [(x - x')2 + (y - y')2 + (z - z')2]1 / 2 

where E and v are Young's modulus and Poisson's ratio. 
For surfaces of positive Gaussian curvature (e.g., the sphere), it was 

found in [8] that some improvements could be made on the foregoing 
expression, but on balance equation (29) represents a reasonable 
compromise between accuracy and simplicity. 

7 Computer Program "CONFORM" 
The procedures just described have been incorporated into a 

FORTRAN computer program called CONFORM which stands for 
"CONFORMal contact." The program can treat all contact problems 
with one axis of symmetry in its contact patch. In rail-wheel problems 
there will always be at least one axis of symmetry (parallel to the wheel 
axis) for wheelsets at zero yaw angle. Complete information on the 
program is given in the User's Manual [7]. Additional background on 
the computational procedures used will be found in [8, 9]. 

8 Examples 
To illustrate the method, we consider a problem of great practical 

interest; namely, the contact of the wheel of a metroliner railroad 
coach with a standard (140 lb per yard) rail. Both wheel and rail are 
made of steel with an elastic modulus of E = 30 X 106 psi (2.068 X 1 0 u 

Pa) and Poisson's ratio of v = 0.3. 
It is assumed that initial contact occurs at the point C in Fig. 5 

where both the wheel and the rail profiles undergo jumps in curvature. 
The rail profile is described initially (from manufacturer's drawings) 
by a set of mutually tangent circular arc segments referred to Carte­
sian axes (xr, zr) fixed in the rail. Similarly, the segments of the wheel 
profile are referred to axes (xw, zw) fixed in the wheel. Complete di­
mensional data for the system are given in [7], but the circular arc 
segments on either side of point C (for both the rail and the wheel) 
which are needed for the present examples are specified as follows 
(dimensions in in.): 

Coordinates of arc center 
xr = 0.1612, zr = -1.2715 
xr = 1.0588, zr = -0.5188 
xw = 1.0495, zw = -1.3299 
xw = 1.5213, zw = -0.5611 

The foregoing information is sufficient to uniquely define the wheel 
and rail profile referred to the local (£, f) coordinate system shown 
in Fig. 5, where the f axis is aligned with the common normal to wheel 
and rail at the initial contact point C. Details are given in [9] of geo­
metric analysis needed to express the initial separation (fwheei ~ frail) 
as a function of the orthogonal coordinates (£, rf) in the common 
tangent plane at C. 

For the contact point illustrated in Fig. 5, the problem could be 
either antiformal or conformal depending upon the magnitude of the 
applied load. In the first example, the applied load is relatively small 
so that the contact patch is antiformal and the accuracy and reliability 
of the program CONFORM can be verified versus program COUN-
TACT (see Fig. 6). In the second example, the load is so high that the 
problem is highly conformal and the deviation between the two pro­
grams is significant (see Fig. 7). The force component F and the 
normal approach 8 mentioned later are measured in the direction of 
the f-axis. Complete input and output data are given in [7], but the 
major results are summarized as follows. 

Example 1. Antiformal Case of Rail and Wheel Contact 
Stresses. Let the initial point of contact of rail and wheel be point 
C shown in Fig. 5. For <5 = 0.0005 in. the numerical solution was found 

Body 
rail 
rail 
wheel 
wheel 

Radius 
1.250 
0.375 
1.280 
0.378 

^ 

Fig. 5 Example of rail and wheel in conformal contact (unloaded case 
shown) Numerical data is for 140RE rail (AREA designation) and for SIG 
Metroliner wheel (SIG = Schweitzerische Industrie-Gesellschaft); dimensions 
in inches. 

-0.2 -0.1 

a COUNTACT 

CONFORM 

0-2 « (INCH) 

0.2 £ (INCH) 

Fig. 6 Comparison of programs CONFORM and COUNTACT for 5 = 0.0005 
in. (1.27 X 10_5m). The corresponding forces are: F = 1413 lb (6.285 N) 
[CONFORM] F = 1434 lb (6.378 N) [COUNTACT] (a) Pressure distribution, 
(b) Contact patch. 

by using the computer program "COUNTACT-1" [counterformal 
contact; see (5)] and also by program "CONFORM" (conformal 
contact). The contact region of Fig. 6(6) was divided into 42 cells. 

The program CONFORM requires, as part of the input, the rigid-
body approach o, an initial candidate contact region, and the desired 
initial mesh arrangement. The output includes: pressure distribution, 
load (force and moment), and boundary of contact region. 

A plot of pressure distribution along the £-axis is given in Fig. 6(a), 
and the upper half of the contact region is shown in Fig. 6(6) for both 
programs. Note that for the very light load applied (1413 lb), the 
contact patch is small and the problem is antiformal (but non-
Hertzian). The excellent agreement between the predictions of pro­
grams COUNTACT and CONFORM, represents a validation of the 
latter program. 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 547 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



• — m ' •»••••.• . f t * - , 

OTT^ITTNCH) 

• CONFORM 

Q COUNTACT 

cYlfTflT) 

Fig. 7 Comparison of programs CONFORM and COUNTACT for 8 = 0.003 
in. (7.62 X 10-5m); F = 20550 lb (91400 N) [COUNTACT]; F = 19000 lb 
(84510 N) [CONFORM], (a) Pressure distribution, (6) Contact patch 

Example 2. Conformal Case of Rail and Wheel Contact 
Stresses. For the same initial point of contact as in example 1, but 
for a higher load, the problems becomes conformal, and again the 
numerical solution of the problem was obtained by both CONFORM 
and COUNTACT, for 5 = 0.003 in. The plot of pressure distribution 
along the £-axis is shown in Fig. 7(a). The contact patch, shown in Fig. 
1(b), was divided into 80 cells. 

9 C o n c l u s i o n s 
The modified simply discretized method of Paul and Hashemi [5] 

has been extended to conformal problems. Methods for automatic 
mesh generation and contact patch boundary determination have also 
been extended to conformal contact problems. 

Computer program CONFORM, based on these ideas, has been 
described and numerical results were presented for selected exam­
ples. 

The first numerical example demonstrates the accuracy of program 
CONFORM for the special case of non-Hertzian antiformal contact 
problems. The accuracy of program CONFORM for this class of 
problems was checked against the more specialized program 
COUNTACT, which is limited to strictly antiformal problems. Fig. 
6 illustrates the validity of program CONFORM for this verifiable 
case. 

The second example presents the first known solution to the con­
formal contact stress problem for geometry as complex as that of a 
realistic railhead and wheel making contact on the throat of the 
flange. 

Fig. 7(a) illustrates how important it is to use program CONFORM 
for truly conformal cases, and that practical cases of conformal 
problems occur which cannot be adequately approximated by a pro­
cedure designed for antiformal cases. 
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Planar Hertz Contact With Heat 
Conduction 
The paper discusses the planar Hertz contact problem when the bodies are not only 
pressed together but also exchange heat by conductionXThe nature of the problem and 
the results depend strongly on the direction of heat flow'. If heat flows into the material 
with the larger distortivity, the common boundary conditions are sufficient to achieve a 
solution which satisfies the inequalities associated with a contact problem. For heat flow­
ing in the opposite direction, the common boundary conditions by themselves lead to con­
tradictions, but the difficulties can be overcome by introducing a zone of imperfect con-

\ taci^The formulation is based on a suitable Green's function, and the problem is reduced 
I to a singular integral equation which must be solved numerically.] 

Introduction 
The common boundary conditions for thermoelastic contact are 

based on the ideas of perfect contact and perfect insulation. The first 
idea implies that the interface offers no resistance to heat flow in the 
regions with solid to solid contact. It is equivalent to an assumption 
that temperature is continuous across the contact interface. The 
second idea presumes that no heat is exchanged between the bodies 
in the separation zones where the solids are out of contact, or that the 
normal derivative of temperature vanishes in these zones. It is now 
known, however, that these boundary conditions may lead to math­
ematical dilemmas for steady-state heat conduction involving contact 
between bodies with geometrically smooth surfaces. The nature of 
the difficulties depends on the direction of heat flow: lack of existence 
for heat flowing into the material with the smaller distortivity (see 
the list of symbols for definition), and possible lack of uniqueness if 
heat flows into the material with the larger distortivity. 

The difficulty with heat flowing into the material with the smaller 
distortivity was first noted by Barber [1] in treating the indentation 
of an elastic half space by a rigid sphere. If the sphere is cold, the 
contact tractions become tensile near the periphery of the contact 
region. It was subsequently proven by Barber [2] that the situation 
cannot be rectified by assuming a concentric array of contact and 
separation zones. Tensile contact tractions were also encountered by 
Panek and Dundurs [3] in analyzing the thermoelastic contact be-
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tween bodies with wavy surfaces. It should be noted that the difficulty 
is not merely due to an insufficiency of the solution method, but that 
it is inherent to the problem. Thus Comninou and Dundurs [4] have 
shown by an asymptotic analysis that a direct transition from perfect 
contact to separation unavoidably leads to tensile contact tractions, 
as well as interpenetration of material. 

It was conjectured by Dundurs and Comninou [5] on basis of a 
one-dimensional model that the lack of existence of solutions could 
be remedied by introducing a pressure-dependent resistance to heat 
flow in the contact zones. Indeed, it has recently been shown by Du-
vaut [6] that solutions satisfying the appropriate inequalities (negative 
normal tractions in the contact zones, and positive gaps in the sepa­
ration zones) exist for physically realistic laws of the interface resis­
tance. All contact problems are nonlinear because of the inequalities, 
but a pressure-dependent resistance makes the nonlinearities much 
stronger. 

A modification of the idealized boundary conditions for heat flowing 
into the material with the smaller distortivity has been proposed by 
Barber [7]. It pays a penalty in that a new zone (imperfect contact) 
is needed, but avoids the strong nonlinearities that arise from a 
pressure-dependent resistance. Accordingly, the contact zone consists 
of two parts: a zone of perfect contact in which the common as­
sumption of no thermal resistance holds, and a zone of imperfect 

. contact in which the contact pressure vanishes and the contact in­
terface offers some resistance to heat flow. One is led to these 
boundary conditions by considering a certain limit in the interface 
resistance, which must be a monotonically decreasing function of 
pressure [7]. An asymptotic analysis has revealed [4] that the ine­
qualities are not violated at the transition from perfect to imperfect 
contact if heat flows into the material with the smaller distortivity. 

The mathematical difficulties appear to be of the opposite nature 
when heat flows into the material with the larger distortivity. There 
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is evidence that, in such a case, the solutions are not necessarily 
unique. Thus, if two solids with flat surfaces are pressed together and 
prevented from bending away from each other globally, one possible 
steady state of heat conduction corresponds to the solids remaining 
in contact along the entire interface. It has recently been shown by 
Comninou and Dundurs [8] that it is also possible to construct solu­
tions involving localized separation zones. A similar conclusion is also 
implicit in some of the previous results by Dundurs and Panek [9]. 
Moreover, a particularly simple demonstration of nonuniqueness has 
been given by Comninou and Dundurs [10] using the Aldo model [11]. 
Recent work by the authors [12] indicates, however, that it may not 
generally be possible to achieve uniqueness by introducing a resistance 
that depends on the pressure in the contact zones and on the gap size 
in the separation zones. 

The situation when one of the contacting bodies has a sharp corner 
also has been studied [13], but the results are of no immediate interest 
for the Hertz contact considered, and the subject is mentioned merely 
for the sake of reference. 

The indentation of an elastic half space by a rigid sphere has been 
treated by Barber for both cases when the sphere is hot and a direct 
transition from perfect contact to separation is possible [1], and when 
the sphere is cold and an intermediate zone of imperfect contact is 
necessary [7]. The same methods could be used to extend this work 
to two elastic spheres. The present article investigates the planar case 
of two elastic cylinders. This problem is of interest in its own right, 
but the main motivation is to provide more detailed results than is 
feasible in the three-dimensional case. 

M a t h e m a t i c a l P r e l i m i n a r i e s 
As it is customary in contact problems of the Hertz type, the geo­

metric profiles of the bodies are approximated in the vicinity of the 
initial contact as surfaces of second degree, and the boundary con­
ditions are written on their common tangent plane. In other words, 
the contacting solids are viewed as two elastic half spaces, except that 
their approximated shapes are incorporated in the boundary condi­
tions to be imposed in the contact region and its immediate vicinity. 
In two dimensions, the bodies are parabolic cylinders that touch in 
the undeformed state along the line x = z = 0. The initial gap between 
the bodies, measured along the normal to the tangent plane y = 0, 

g0(x) = h(Ki+K2)x
2 (1) 

where Ki and K2 are the curvatures of the cylinders reckoned positive 
for convexity to the outside. Therefore, 

with 

dgo(x)/dx = Kx 

K = K1 + K2 

(2) 

(3) 

being the mismatch in curvatures. 
The formulation that enforces the required conformity between 

the bodies in their deformed states is based on a Green's function for 
interior thermoelastic contact [14]. It consists of a thermoelastic field 
(heat source and sink) and a purely elastic field (pair of concentrated 

forces). The advantage of this approach is that most of the boundary 
conditions pertaining to the problem are satisfied automatically, and 
that there only remains to find the source-sink and force-pair distri­
butions which enforce a few remaining requirements in the contact 
zones. The boundary conditions that are automatically embedded in 
the formulation are continuity of heat flux, continuity of normal 
tractions, and vanishing shearing tractions at the interface. The full 
expressions for the field quantities associated with the Green's 
function are given in reference [14], and we repeat only the relations 
of immediate interest. 

An isolated heat source-sink combination of strength X acting at 
the point (£, 0) leads to the following quantities at the interface: 
Rate of Change of the Temperature Jump: 

dr(x) d 
— [ r 8 ( * , 0 ) - T i ( * , 0 ) ] < 
ax 

\k1 + k2 1 

dx dx ' * IT k\k2 x — £, 

Heat Flux Through the Interface: 

q(x) = q/lHx, 0) = qy<-2Kx, 0) = \S(x - £) 

Derivative of the Gap: 

(4) 

(5) 

* ^ 1 = ± [Uya){x> o) - uyV\x, 0)] 
dx dx 

Normal Tractions: 

X(«i - d2)H(x - B (6) 

N(x) = ayy^(x, 0) = <ryy
(2)(x, 0) = 0 (7) 

where 8( ) and H( ) denote the Dirac and Heaviside functions. If a 
source-sink combination with the density A(x) is distributed over a 
part of the contact interface, the corresponding relations follow from 
integration with respect to £, and 

dr(x) _ 1 ki + k2 

dx •K k\k2 

q(x) = A(x) 

dg(x) 

dx 

N(x) = 0 

J-~ x 
M&d£ 

= (Si - S2) J * A(£)d£ 

(8) 

(9) 

(10) 

(11) 

A pair of concentrated normal forces of magnitude fy applied to 
each of the solids in a tensile direction gives [14] 

dr(x) 

dx 

dg(x) 

q(x) = 0 

. fy 1 

(12) 

(13) 
dx 2TTM x - £ 

N(x) = fy5(x - £) (14) 

Integration with respect to £ generates a distribution of interface 
normal tractions of intensity Fy(^), and 

dr(x) 

dx 
•• q(x) = 0 (15) 

. N o m e n c l a t u r e -

a = half length of perfect contact 

b = half length of total contact 
Fy(x) = density of a force-pair distribution 
fy = magnitude of a discrete force pair 

g(x) = gap between the bodies 

go(x) = initial gap between the bodies 

H( ) = Heaviside step function 
K = mismatch in curvatures 
K\, K2 = curvatures of the bodies 
k = conductivity 

M = 2^1;u2/[Ml(/c2 + 1) + juaUi + 1)] 
N(x) = normal tractions 
O = order symbol 
P = force transmitted between the bodies 

(per unit thickness) 
Q = rate of heat flow between the bodies (per 

unit thickness) 
q(x) = heat flux through the interface 
qy = component of heat flux 
T = temperature 
uy = component of displacement 

x,y = coordinates 
5 = a(l + v)/k = distortivity 
5( ) = Dirac delta function 
K = 3 - 4c 
A(x) = density of heat source-sink distribu­

tion 
X = strength of a discrete source-sink 
v = Poisson's ratio 
| = integration variable 
T = temperature jump across the interface 
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Fig. 1 Geometry of the contacting bodies 

dg(x) 

dx 

N(x) 

1 

2TTM 

•• Fy(X) 

I FyWH (16) 

(17) 

H e a t F l o w i n g Into t h e M a t e r i a l With t h e L a r g e r 
D i s t o r t i v i t y 

If heat flows into the material with the larger distortivity (5i > 82), 
the central zone of perfect contact can be bordered directly by zones 
of separation. The corresponding situation is indicated in Fig. 1(a), 
where the zone of perfect contact extends over the interval (—a, a). 
The total force pressing the bodies together is denoted by P and the 
rate at which heat flows through the contact interval by Q (Q > 0). 
Both quantities are reckoned per unit thickness normal to the rep­
resentative lamina. 

As mentioned before, the boundary conditions of continuous heat 
flux, continuous normal tractions, and vanishing shearing tractions 
on — <» < x < <» are automatically incorporated in the formulation by 
use of the Green's function [14]. If the source-sink and force-pair 
distributions are restricted to the interval —a<x<a, the separation 
zones I x \ < a are also insulated and free of normal tractions. Conse­
quently, the remaining boundary conditions must only enforce that 
there be no temperature jump across the interface and the bodies must 
conform geometrically in the zone of perfect contact, or that 

dr(x) 

dx 

dg(x) 

dx 

• 0, —a<x<a 

0, —a<x<a 

(18) 

(19) 

The last condition must only be enforced within an arbitrary con­
stant. 

In view of (8), the first boundary condition (18) yields the Cauchy 
singular integral equation 

r A ( M _ Q 
J-a £ — X 

-a <x <a 

with the auxiliary condition 

f 
•J—I 

A(£)d£ = Q, Q>0 

in which the total heat flux Q is considered as specified. The second 
boundary condition (19) leads on basis of (2), (10), and (16) to the 
integral equation 

J_a
 y _ = 2TTM A + Kx + (5X - S2) J A(£)d£ 

- o < x < a (22) 

where A is an arbitrary constant. The integral equation (22) must be 
supplemented with the condition 

%J — a 
-P, P > 0 (23) 

specifying the total force P transmitted between the bodies. Moreover, 
the inequalities 

N(x) < 0 , \x\ <a (24) 

g(x)>0, a<\x\ (25) 

must be obeyed by the solution to be constructed. 
The solution of the first integral equation (20) together with the 

auxiliary condition (21) is well known [15]. Thus 

Q. Mx) = - (a2 - x2)-1'2 (26) 

and the heat flux is square-root singular as predicted by the asymp­
totic analysis of the transition from perfect contact to separation 
[4]-

Substituting (26) into (22) 

£ «Fy(H)di; 

£• 
; 2 T T M A + Kx + - (8X - 82) (sin"1 - + - I 

= f(x), -a<x<a (27) 

Since Fy(x) must be bounded, the consistency condition [15] 

mdk 
J-a I 

= 0 
>.(a2-P)m 

must be satisfied. This yields 

A + &i ~ <52)Q = 0 

The solution of (27) is 

(28) 

(29) 

Fy{x)- '-M(a2-x2)V2 

X " sin 

-a (a2 -

Kx+- (5i - 82) 
it 

sin"1 (?/a)df 

£2)1/2(£~*)J 
-a <x <a (30) 

Applying the auxiliary condition (23) on (30), we obtain after some 
elementary integrations 

P , 4Q(81-82) 
= 7T + " 

MKa2 Ka 
(3D 

The singular integral in (30) can be evaluated by the Lobatto-
Chebyshev quadrature, as extended to Cauchy integrals by Theocaris 
and loakimidis [16]. Equation (30) is first put in a dimensionless form 
by the change of variables 

J = ar, x = as 

The aforementioned quadrature then yields 

FJsi) 
- ^ ^ = - - ( l - S ; 2)1/2 
MKa •* 

ir + 
Q(Si - S2) 1 \k sin L rk 

Ka re — 1 k=i rk ~ Si 

(32) 

(20) where 

(21) 

x* = 2, k = 1, n 

1, k = 2, . . . , n - 1 

( 2 t - l ) x . , 
= cos , j = 1 n — 1 

2 ( n - 1) 
( 

rk = cos -
k - l),r 

, « = ! , . . . , « 

(33) 

(34) 

(35) 
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The results obtained on this basis are discussed in a later section. 

H e a t F l o w i n g Into t h e M a t e r i a l W i t h the S m a l l e r 
D i s t o r t i v i t y 

If heat flows into the material with the smaller distortivity (Si < 
<>2), the central zone of perfect contact must be bordered by zones of 
imperfect contact [4,7] as indicated in Fig. 1(6). The zone of perfect 
contact is the interval \x\ <a, the zones of imperfect contact occupy 
the intervals a <\x\ <b. The boundary conditions that must be im­
posed beyond those satisfied automatically because of the Green's 
function approach are the same as for heat flow into the material with 
the larger distortivity, except that they apply to different intervals. 
Thus 

r" F '(P)dP 
V g = 2TTM \K + (5i - 52)A(x)|, -b < x < b (48) 

J-a £ — X 

which then replaces (40). 
From (48) 

A(x) = 
Si - <52 

1 _ r°Fy'(P)dP. K 

TM J-a i—X [2TTM J-a £ 
-b<x<b (49) 

and putting (49) into (38) 

2-KM J-b£-X J-a n-% 

•>> d£ 

dr(x) 

dx 

dg(x) 

dx 

X " dE 
— — = 0, -a<x<a (50) 

-hi- X 
0, 

: 0 , 

-a < x < a 

-b <x <b 

(36) 

(37) 

Using the Poincare-Bertrand formula [15], the double integral in (50) 
becomes 

' Fy'iv) 

As before, the boundary conditions must be supplemented with 
auxiliary conditions pertaining to the total rate of heat flow between 
the bodies and to the force pressing the bodies together. It should also 
be noted that now the source-sink distribution extends over the in­
terval —b <x <b, while the force-pair distribution is restricted to the 
interval —a < x <a. 

The boundary condition (36) yields 

"> A(g)d£ 

J-b k — X J-a 7] — t 

<J —a 

( f - * ) (u-£) 
'Fy'(& \(b-x)(b + Q\ 

— log dt - •w'FJix) 

k - x Bl(& + x)(&-£) l y 
(51) 

X -b f. 
= 0, -a < x < a 

and the associated auxiliary condition is 

.6 x: A(£)df = Q, Q > 0 

(38) 

(39) 

Thus (50) reduces to 

•°Fy'(0, \(b-x)(b + £) 

J-a P — X \(b + X (b + x)(b - £) 
d£ - Tc2Fy'{x) 

•• 2-KMK log 
lb — x\ 

\b + x\ 
-a <x <a (52) 

The other boundary condition (37) gives 

which is a Fredholm integral equation of the second kind. 
Once Fy'(x) is determined, A is obtained from (49), and on basis 

of (8), 

X -a P 
2TTM 

while 

x; 

A + Kx+(Si- 52) 

X J*_* A(0dP 

Fy{&dP, = -P, P>0 

dr(x) _ lki + kz rh M&dt, 

dx ir k\k2 X -b %-x ' 
a < \x\ (53) 

-b<x<b (40) We need dr(x)ldx in the interval a < \x\ < b to check the inequality. 
In terms of Fy'(x) 

The solution must also satisfy the inequalities [4, 7] 

N(x) < 0 , |* | <a 

A(X)T(X) > 0 , a < \x\ <b 

g(x)>0, b<\x\ 

(41) 

(42) 

(43) 

(44) 

dr(x) lkt + k2 1 

dx w kik2 Si - Si 
Klog 

\b — x\ 

b + x\ 

, ! CFy'iZ), \(b-P,)(b + x)\ ] 

and 

T ( * ) = 
ir kik2 Si — S2 

K (b + x)log 1 + 

The essential task is to put the system of integral relations (38)-(41) 
into a form that is suitable for numerical evaluation. Consider first 
the Cauchy integral in (40). Integrating by parts 

(b - x) log l l - -1 + (6 - a) log 1 - - + (b + a) log 1 + -

X 
" Fy(P)dP, 

Fy(P.)\o%\p-x\ 
!«=<• 

27rM 
• T O , |(t + g)(6-i>) 

I (6-£)(& +??) Ja J—a rf — t 
d£dij 

a <x <b (55) 

r. a I " the interval -b < x < - a , T(X) follows from symmetry, while Fy(x) 
~ j Fy'({,) log \P,-x\dP. (45) is verified (numerically) to be even in x. 

Finally 
It is known from the asymptotic analysis of the transition from perfect 
to imperfect contact that [4] 

Fy(0 = 0(a - \P.\), H I - a - (46) 

and consequently 

CaF-f^ = - fVtt)Iog|*-*W (47) 
J-a p — X J-a 

Substituting (47) into (40) and differentiating the resulting expression 
with respect to x, yields the integral equation 

P = - J*_" (a - S)Fy'(&dZ 

and 

Q = 
Si - S2 

1 

2tvM X " \b + P I 

F / ( | ) l o g — - i df-
-a 10 — £ i 

2Kb 

(56) 

(57) 

In order to avoid iterations, we take a and b as given and compute the 
required values of P and Q. 

Observing for the kernel in (52) that 
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Fig. 2 Comparison of the normalized pressure distributions F, 
for heat flow in different directions with 6 = 0{52 — 5-,)/Ka 

lim 
1 

log 
(b-x)(b + 0) 

b - i b+% 

FYIMKa 

(58) 

we use the same collocation (x) and integration points (£) to solve (52) 
numerically. The Lobatto quadrature [17] is convenient for the 
discretization. The discretized form of (52) according to this quad­
rature becomes 

n+2 11 - Xr; 
£ W(ri,rj)Y(rj) = 2irlog\——L 

y=i 11 + Ar; 
, n + 2 (59) 

where Y(£) = Fy'(£)/MK, r = £/a, X = a/b and 

W(r;, 0 ) = JHl_, I d - A r J d + Ary) I for • ^ ;-

r j - o B l ( l + Xr,-)(1-Xiv)l 

Wi = W„+ 2 = 

Vft-

Wj - w2 

4A 

( 1 - \2)(n + l)(n + 2)' 

Wi* = Wn+2* •• 

for i = j 

(n + l)(n + 2) 

(60) 

(61) 

2 A A; Ai 
-, Wi+1*= —--, » = ! , . . . , « (1 - Z i

2 ) ( l - X V ) l - « i 2 

(62) 

Furthermore, 2; are the roots of the Jacobi polynomial Pn^Hzi) 
= 0, At the corresponding coefficients and 

n+i = zit (i = 1 , . . . , n), r i = l, r n + 2 = - l (63) 

The roots Zi and the coefficients A; are readily obtained by the For­
tran program given in reference [18]. It may be noted that the Lobatto 
quadrature has the advantage of including the end points of the in­
terval in the collocation points. The numerical calculations were 
performed with double precision, and n = 40 was used to obtain 
enough points for a graphical representation of the results. 

The numerical evaluation of A(x) requires the computation of an 
integral which is of the Cauchy type (singular) in the interval \x \ < 
a. Although the Lobatto quadrature can still be applied in this interval 
as shown by Theocaris [19], we can no longer choose coinciding col­
location and integration points. For best accuracy, the collocation 
points must be chosed as the roots of appropriate Legendre (or Jacobi) 
functions of the second kind. Since n is large in our case, the numerical 
scheme converges also well if we choose for collocation points the 
midpoints between the integration points. This avoids the need to 
calculate the zeroes of the aforementioned functions for which no 
program is available. Convergence was checked in the calculations 
by doubling n, and no difference was observed in the first eight digits 
that were printed out. The density A(x) of the source-sink distribution 
has logarithmic singularities at x = ±a. Extracting these singularities 
analytically before discretization did not affect the numerical results 
significantly. 

Fig. 3 Relation between a/b, the normalized applied force P •• 
normalized total heat flow 6 = 0(S2 - S^/Ka 

P/MKa2ana 

n 

0 4 

0 6 

,/c 
0 

\v\~-̂ ~—^ °' ^--^^-x/v 

\ \ . ^~^ o3 ^-^ y1 / 
\ ^̂ ^ °'5 ^^ / 

\ . 07 / 

^ N . ^ / 

a/b -0-9 

Fig. 4 Normalized pressure distributions F, = Fy/MKa for heat flowing into 
the material with the smaller distortivity 

The Lobbatto quadrature was also used for the evaluation of P, Q 
and the inner integral in T(X). The ordinary trapezoidal rule was used 
to calculate Fy (x) from Fy' (x). The inequalities and symmetries were 
also verified numerically. 

R e s u l t s 
Typical pressure distributions for heat flowing in either direction 

are shown in Fig. 2 where Q denotes Q(52 - 5i)/Ka and P = P/MKa2. 
The pressure distribution for no heat flow is also included for com­
parison. It is seen from this figure that, in order to achieve the same 
extent a of perfect contact, a larger force P must be applied when heat 
flows into the material with the larger distortivity. It should be noted 
that the contact pressure distribution has a vertical slope for heat 
flowing into the material with the larger distortivity, but not for heat 
flow in the opposite direction. This is in conformity with the results 
from the asymptotic analysis [4]. 

Additional results for heat flowing into the material with the smaller 
distortivity are shown in Figs. 3-6. The relation between a/b, the 
applied force and total heat flow is shown in Fig. 3. The distribution 
of the contact pressure is shown in Fig. 4 for different values of a/b. 
The distribution of heat flux through the interface and the temper­
ature discontinuity in the zone of imperfect contact are given in Figs. 
5 and 6 for a/b = 0.5. In these figures A = A(§2 — 50/K and T = 
7rfeife2(52 - Si)T/(ki + k2)Ka. It should be recalled from the asymp­
totic analysis [4] that the heat flux has a logarithmic singularity at the 
transition from perfect to imperfect contact. 

R e f e r e n c e s 
1 Barber, J. R., "Indentation of the Semi-infinite Solid by a Hot Sphere," 

International Journal of Mechanical Sciences, Vol. 15,1973, pp. 813-819. 
2 Barber, J. R., "The Effect of Heat Flow on the Contact Area Between 

a Continuous Rigid Punch and a Frictionless Elastic Half Space," Zeitschrift 
fur angewandte Mathematik und Physik, Vol. 27,1976, pp. 439-445. 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / S53 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1-5 

A 

1-0 

0 1 2 

x/a 

Fig. 5 Distribution of normalized heat flux A = A(S2 — bt)IK through the 
interface for alb = 0.5 

3 Panek, C , and Dundurs, J., "Thermoelastic Contact Between Bodies 
With Wavy Surfaces," ASME JOURNAL OP A P P L I E D MECHANICS, Vol. 46, 
1979, pp. 854-860. 

4 Comninou, M., and Dundurs, J., "On the Barber Boundary Conditions 
for Thermoelastic Contact," ASME JOURNAL OP APPLIED MECHANICS, Vol. 
46,1979, pp. 849-853. 

5 Dundurs, J., and Comninou, M., "On the Boundary Conditions in 
Contact Problems With Heat Conduction," Developments in Theoretical and 
Applied Mechanics, McNitt, R. P., ed., Virginia Polytechnic Institute and State 
University, 1976, pp. 3-11. 

6 Duvaut, G., "Free Boundary Problem Connected With Thermoelasticity 
and Unilateral Contact," Siminaire sur les problemes a fronti&re libre, Pavie, 
Sept.-Oct., 1979. 

7 Barber, J. R., "Contact Problems Involving a Cooled Punch," Journal 
of Elasticity, Vol. 8,1978, pp. 409-423. 

8 Comninou, M., and Dundurs, J., "On Lack of Uniqueness in Heat Con­
duction Through a Solid to Solid Contact," ASME Journal of Heat Transfer, 
Vol. 102,1980, pp. 319-323. 

9 Dundurs, J., and Panek, C , "Heat Conduction Between Bodies With 
Wavy Surfaces," International Journal of Heat and Mass Transfer, Vol. 19, 
1976, pp. 731-736. 

10 Comninou, M., and Dundurs, J., "On the Possibility of History Depen­
dence and Instabilities in Thermoelastic Contact," Journal of Thermal 
Stresses, Vol. 3,1980, pp. 427-433. 

11 Aldo, K. A. T., Private Communication. 
12 Barber, J. R., Dundurs, J., and Comninou, M., "Stability Considerations 

.Readers Of 
The Journal Of Applied Mechanics 
Will Be Interested In: 
HTD-Vol. 14 
Scaling In Two-Phase Flows 
Eds. P. Saha, N.M. Farukhi 

Contents: Modeling of a Dilute Solid-Gas Suspension in Pipe Flow with Rotation; Rational Simplification of the 
Equations Governing the Liquid Film Flow Over a Plane with Heat Flux at the Wall and Interfacial Phase Change; 
Scaling Laws for Small-Scale Modeling of Steam Relief into Water Pools; Rules of Modeling the Steady-State Carry-
under Performance of Boiler Drums Using Freon-12; Verification of AHMAD's Fluid-to-Fluid Scaling Law by 
Bundle Experiments; Toward the Use of Similarity Theory in Two-Phase Choked Flow. 

1980 Bk. No. G00187 53 pp. $12.00 Members $6.00 

Descriptions of other ASME volumes of interest appear on pages 492, 499, 508, 514, 538, 542, 569, 605, 618, and 633. 

Address Orders To: 
ASME Order Department • P.O. Box 3199, Grand Central Station • New York, N.Y. 10163 

AM 92 

f 

1 

O l ^ l 1 1 1 1 

1-0 15 2 0 

x / a 

Fig. 6 Normalized temperature discontinuity f = irk-,k2(82 - 8i)T/(k, 

+ k2)Ka in the zone of imperfect contact for alb = 0.5 

in Thermoelastic Contact," ASME J O U R N A L O F A P P L I E D M E C H A N I C S , Vol. 
47,1980, pp. 871-874. 

13 Comninou, M., and Dundurs, J., "Thermoelastic Contact Involving a 
Sharp Corner," Wear, Vol. 59,1980, pp. 53-60. 

14 Dundurs, J., and Comninou, M., "Green's Functions for Planar Ther­
moelastic Contact Problems—Interior Contact," Mechanics Research Com­
munications, Vol. 6,1979, pp. 317-321. 

15 Muskelishvili, N. I., Singular Integral Equations, P. Noordhoff, Gro-
ningen, 1953. 

16 Theocaris, P . S., and Ioakimidis, N. I., "On the Numerical Solution of 
Singular Integral Equations," Quarterly of Applied Mathematics, Vol. 29,1972, 
pp. 525-534. 

17 Kopal, Z., Numerical Analysis, Chapman and Hall, London, 1961. 
18 Stroud, A. H., and Secrest, D., Gaussian Quadrature Formulas, Pren­

tice-Hall, Englewood Cliffs, N.J., 1966. 
19 Theocaris, P. S., "On the Numerical Integration of Cauchy-Type Sin­

gular Integral Equations," Serdica Bulgaricae Mathematicae Publicationes, 
Vol. 2,1976, pp. 252-257. 

554 / VOL 48, SEPTEMBER 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. R. Barber 

Department of Mechanical Engineering, 
University of Newcastle-upon-Tyne, 

Newcastle-upon-Tyne NE1 7RU, England 

Stability of Thermoeiastic Contact 
for the Aldo Model 

"fA perturbation method is used to investigate the stability of a simple one-dimensional 
rod model of thermoeiastic contact which exhibits multiple steady-state solutions. A ther­
mal contact resistance is postulated which is a continuous function of the contact pres­
sure or separation. It is found that solutions involving substantial separation and/or con­
tact pressures are always stable, but these are separated by unstable "imperfect contact" 
solutions in which one of the rods is very lightly loaded or has a very small separation. The 
results can be expressed in terms of the minimization of a certain energy function."] 

Introduction 
A number of recent treatments of thermoeiastic contact problems 

[1-3] have demonstrated that steady-state solutions are not neces­
sarily unique if the hotter body has the lower thermal distortivity 5, 
defined by 

S = a(l + v)IK (1) 

where a, v, K are, respectively, the coefficient of linear thermal ex­
pansion, Poisson's ratio, and thermal conductivity. 

In such cases, it is possible that some of the competing solutions 
are unstable, but if more than one are stable, the situation realized 
in practice will depend upon the history of heating and loading. 

In an attempt to probe this question, Comninou and Dundurs [3] 
have considered a simplified thermoeiastic contact system which they 
call the "Aldo Model." The three-dimensional contacting bodies are 
replaced by a large number of thin rods arranged normally to the in­
terface and with frictionless and thermally insulated sides. This es­
sentially constrains heat flow and load transfer to the normal direc­
tion. 

Although this system is very much simpler than a real contact sit­
uation, it is sufficiently realistic to permit multiple solutions for the 
appropriate heat flow direction. Comninou and Dundurs have com­
puted the total mechanical energies for these solutions, but these 
cannot be used to draw rigorous conclusions about stability, since the 
system is inherently nonconservative. 

In this paper, the stability of steady-state solutions for the Aldo 
model will be investigated by an analysis of small transient pertur­
bations. This method has already been successfully applied to the 
simpler problem of the one-dimensional rod confined between rigid 
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ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
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walls at different temperatures [1] and leads to rigorous conclusions 
about stability which can be formulated in terms of an energy func­
tion. 

Description of the Model 
Comninou and Dundurs show that the cross section of the Aldo rods 

and the distribution of contacting and noncontacting rods over the 
interface do not influence the permissible steady-state solutions. In 
effect, a group of rods all in a similar state behaves as a single rod of 
proportionately greater cross-sectional area. 

The essence of the Aldo model is therefore preserved if we consider 
the stability of a system of two rods of different cross-sectional areas 
A i, A2 as shown in Fig. 1. 

The rods, both of length I, are rigidly joined at the top, where the 
temperature is maintained at zero. The other ends make contact with 
a rigid, perfectly conducting half space1 at temperature T0 (>0). The 
system is constrained so that only vertical displacements are per­
mitted and a compressive contact force F is applied as shown. 

As in the previous paper [1], we postulate the existance of a thermal 
contact reistance Ri (pi, gi) (i = 1,2 for rods 1, 2, respectively) which 
depends on the pressure p; between the rod and the half space, or on 
the gap gi if the rod is not in contact. The stability of the system is not 
affected by the precise nature of this resistance function. 

Steady-State Solution 
Writing Q; for the steady-state heat flux along rod i, and T; for the 

temperature at the hot end, we have 

(To - Ti) AtK Tt 
Qi=-

Ri I 

and hence, 

(1 + Ai KRi/l) 

(2) 

(3) 

1 Comninou and Dundurs treat the contact of two systems of rods of different 
materials, but it is not anticipated that this more general case will introduce 
any qualitatively new features. 
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Rigid perfect conductor 

Fig. 1 The Aldo model 

The unconstrained thermal expansion of the rod is therefore 

ui=\alTi= u0fi (4) 

where uo ~ 2 ot I To is the thermal expansion which would be devel­
oped if there were perfect thermal contact between the rod and the 
plane and 

Fig. 2 Dependence of the function /, on pressure (p,) and gap (g,) 

function is continuous at the transitions between the foregoing contact 
regimes. Furthermore, if equations (9i)-(9iii) are substituted into 
equations (6)-(8), respectively, the latter are all reduced to the 
form 

(/1 - fi) - x/u0 (10) 

Stab i l i ty A n a l y s i s 
In order to investigate the stability of the various solutions of 

equation (10), we examine the conditions under which a small per­
turbation from the steady state can grow exponentially with time. 

The perturbation in temperature in the rods, AT;, must satisfy the 
transient heat-conduction equation and the boundary condition 

fi 
I 

ATi(y) = 0 at y = 0 (11) 
(5) 

(1 + AiKRi) 

This function tends to zero when the gap gi is large (Ri -*• <») and to 
unity when the contact pressure p ; is large (Rt -* 0) as shown in Fig. 
2. In general, ,the transition between these limits would be expected 
to occur over a relatively small range of gi, p ; . 

Three possible contact states for the system can be distinguished 
as follows: 

(i) Bod 1 in Contact 

P2 = 0, p t = F/Ai, 

gi = 0, g2>0, 

where y is measured from the cold end. The appropriate exponentially 
growing solution is 

A T ; ( y ) = B ; e a ( s i n h X y 

(see reference [1]), where 

X = (a/k)V> 

(12) 

(13) 

and 

<«) 

g2 = u0(fi - f2) - Fl/AiE 

Both Rods in Contact 

Pl,P2>0, 

8i=g2 = 0, 

(6) 

a, B; are constants, t is time, and k is the thermal diffusivity of the 
material. 

The corresponding perturbation in heat input to the rod is 

dT-
AQ; = -Aik — - (/) = -BiAiKX eat cosh \l (14) 

dy 

A second relationship between AT; and AQ; can be found by differ­
entiating equation (2) to obtain 

An ( n ~ Tj) dRj A ATi(l) 

Ri2 dx 

AiKT0 

Ri 

dRi A ATM 
• Ax — -

and 

"o(/i - f2) = (pi - Pi)l/E 

(Hi) Rod 2 in Contact 

p i = 0, p 2 = F/A2, 

#2 = 0, gi>0, 

and 

gi = u0{f2-fi)-Fl/A^ 

(7) 

(I + At KR<) Ri dx " Rt 

from equation (3). 

We now solve equation (5) for Rit obtaining 

Ri AtK \fi J 

(15) 

(16) 

(17) 

(18) 

(8) 

We now define a piecewise continuous function x by the rela­
tions 

x=g2 + Fl/AiE; 
= (Pi - P2WE; 
= ~g! ~ FI/A2E; 

g2>0, 
gl=g2 = 0, 
gi>0 

(90 
(9K) 

(9iii) 

In effect, x is the difference between the unconstrained thermal 
expansion of the two rods (u\ — u2). It is easily verified that this 

and substitute into equation (16), from which 

^(±- lW=f 0 ^As-A7m 
AiK\fi j fi dx 

The function x, defined by equations (9i)-(9iii) is the difference be­
tween the unconstrained thermal expansions of the two rods, (ui -
U2) and hence 

Ax = Am - Au2 = a C |Ti(y) - T2(y)\ dy 
Jo 

= a(Bi - B2) eat (cosh XI - 1)/X (19) 

from equation (12). 
Two simultaneous equations can now be obtained by substituting 
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Fig. 3 Graphical solution of equation (10) 

x 2 1/ 

Fig. 4 Variation of contact resistance throughout the load range 

for AQ;, ATi(l), Ax from equations (12), (14), (19) into equation (18), 
i.e., 

— Bi 1 2^ cosh z = 
l/l / h 

X (Si - B2) (cosh z - 1) - Bx« sinh z (20) 

2u0/2 ' 

and 

— B2 l | z2 cosh z = 
h 

X (Bx - B2) (cosh z - 1) - B 2 z sinh z (21) 

where 

z=\l (22) 

Finally, Bi,B2 can be eliminated between these equations to give 
the characteristic equation for z (and hence a) which is 

2«o/i' (cosh z - 1) 

(1 — / i )z 2 cosh z + fiz sinh z 

21(0/2' (cosh z - 1) 
- „ „ 2 . . , ' = 1 (23) 

(1 - f2)z cosh z + /22 sinh z 
The perturbation (12) is unstable if, and only if, equation (23) has 

a root for which a and hence z2 has a positive real part. This equation 
is investigated in the Appendix, where it is shown that 

(i) There are no unstable complex roots and 
(ii) Unstable real roots occur if, and only if, 

( / i ' - / y ) > l / w o 

provided f\, / 2 are monotonic functions of x. 

(24) 

Discussion 
The relationship between the stability condition (24) and the 

steady-state solution equation (10) is illustrated graphically in Fig. 
3. 

The contact resistance is assumed to be continuous at the transition 
between contact and noncontact and hence (f\ — /2) is a continuous 
function of x. This function is illustrated for the case in which the 
transition from perfect thermal contact to perfect insulation occurs 
over a small range of load or gap, in which case the curve passes nearly 
horizontally through the origin. This is probably a realistic physical 
assumption, but it is not necessary to the development of the argu­
ment. 

Solutions of equation (10) are represented by the intersections 
(ABCDE) between the curve (/1 — /2) and the straight line (x/u0). 

Furthermore, the stability criterion (24) shows that those solutions 
are stable for which the straight line crosses the curve from below 
when x is increasing. In view of the limits imposed on (/1 — / 2 ) , it fol­
lows that 

(i) There must be an odd number of solutions. 
(ii) Stable and unstable solutions alternate with increasing x. 

(Hi) The outermost solutions are both stable. 

The stable solutions ACE in Fig. 3 correspond to solutions in the 
contact regimes described as (i), (ii), (Hi), respectively, given previ­
ously in this section. However, there are also two intermediate un­
stable solutions BD at which one rod carries most of the load while 
the other is either very lightly loaded or has a very small gap. We can 
define a limit to the contact resistance function fl; such that the 
change from thermal insulation to perfect thermal contact occurs over 
an infinitesimal range of gap or load. The function (/1 — /2) will then 
correspond to states in which one rod is in perfect contact, carrying 
the total load F, while the other is in "imperfect contact" as defined 
by a similar limiting process in the treatment of problems with the 
reverse direction of heat flow [4]. The state of imperfect contact is 
defined by the conditions 

p ; = 0 ; ft = 0; 0 < / ; < l (25) 

These results support the hypothesis [5] that imperfect contact 
states are unstable when heat flows into the material of higher dis-
tortivity. 

Fig. 3 has been drawn for a case in which all five intersections occur, 
but it is clear that if the straight line had a sufficiently large slope— 
corresponding to low values of uo and hence To—the only intersection 
would be C. In other words, when the temperature difference is small, 
the only permissible steady-state solution is that involving contact 
of both rods. 

If the temperature is now increased, the slope of the straight line 
is reduced and, at some critical temperature, a pair of additional so­
lutions such as AB—one stable, one unstable—will be introduced. 
The function (f\ — f?) is not necessarily symmetrical about x = 0, since 
A\ may differ from A2. There will therefore generally be distinct-
temperature ranges with one, three and five solutions, respectively. 

If the load F is increased, the two "steps" in (f\ — /2) are displaced 
further from the origin. This has a similar effect to a reduction in 
temperature. 

Fig. 4 illustrates a more general situation in which the contact re­
sistances and hence (/1 - /2) vary significantly over the entire load 
range, giving a nonzero slope near the origin (notice that (/1 — /2) does 
not necessarily pass through the origin). 

As temperature is increased, the same behavior is observed as in 
Fig. 3, with progression from one solution (line 1) to five solutions (line 
2). However, with a further increase in temperature (line 3), the sys­
tem passes into a new regime with three solutions. One of these (B) 
has both rods in contact but is unstable, whilst the other two (AC) 
involve contact at one rod only and are stable. In effect, Fig. 3 repre­
sents the limiting situation in which the temperature difference 
needed to initiate this new regime is very large. 

Definition of an Energy Function 
Following the same procedure as in reference [1], we can define an 

energy function 
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and hence 

Z—(l+i)a> 

Fig. 5 Domain for unstable roots of equation (29) 

U(x) = ( A l + A*> E U(h ~ h) u0dx - \x2} (26) 

The equation (10) for a steady-state solution can then be written 

dU/dx = 0, (27) 

while the condition for instability (24) is 

d2U/dx2<0 (28) 

Thus U(x) is stationary at all steady-state solutions, being a maximum 
if the solution is unstable and a minimum if it is stable. 

The total mechanical energy for the system, calculated by Com-
ninou and Dundurs [3] is not related to the function U(x) and cannot 
be used to determine which solutions are stable. Indeed the afore­
mentioned analysis shows that all the solutions which they con­
sider—being those involving only perfect contact and separation—are 
stable. The only unstable solutions are those involving imperfect 
contact. These can be thought of as interposing higher energy barriers 
between the stable perfect contact/gap solutions. 
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APPENDIX 
It is required to determine the conditions under which the equa­

tion 

F(z)-
2u0 / i ' (cosh z — 1) 

(1 — fi)z2 cosh 2 + fiz sinh z 

2uo/Y (cosh z — 1) 
•1 = 0 (29) 

(1 - /*2)z2 cosh z + /2z sinh z 

has roots corresponding to values of z2 with positive real part. In the 
z-plane, the corresponding zeros of F(z) must lie in the two sectors 
shaded in Fig. 5 and bounded by the lines z = ±(1 + i) (1), the origin 
being excluded. 

We first note that for the special case fi = fi=V,fi= f2 = 0, there 
are no such roots, since the only zeros of F(z) correspond to 

z sinh z = 0 

; 0 ± inir 

(30) 

(31) 

If we now allow f\, f2, fi, f2 to change continuously, the zeros will 
move continuously about the z-plane and will only be able to enter 
the unstable domain by crossing its boundaries. 

(i) z = (1 + i)o). The first term in F(co + iu>) can be written 

2u0f1'(A + IB) 2u0h'(A + IB) (C - IP) 
Fi(co) = = (32) 

(C + iP) (C2 + P2) 

where 

A = ch • c — 1; B = sh-s; 
C = -2co2(l -f{)sh-s + ufi(sh -c-ch-s); 

P = 2w2(l -f1)ch-c + wfi(sh -c + ch-s); (33) 

and s = sin OJ, c = cos 00, sh = sinh <o, ch = cosh w 
If/1 is monotonic, uo/i' > 0 and the imaginary part of FI(OJ) has the 

same sign as 

CB-AP = 2co2(l - fj) (-sh2s2 - ch2c2 + ch-c) + ufi(sh2cs 

— s2shch — c2shch — ch2cs + sh • c + ch • s) 

= co2(l - ft)(s2 - sh2 - (c - ch)2) 

+ wfi (s - sh)(ch - c) < 0, (a) > 0); 0 < /1 < 1 (34) 

By similar argument, it can be shown that the second term in F(o> 
+ iu) also has a negative imaginary part, since the function f2(x) must 
satisfy fi < 0. 

It follows that F(o) + iw) has a negative (and hence nonzero) 
imaginary part for all u > 0 and no roots of equation (29) can therefore 
cross the line z = OJ + iw. 

(ii) z- 01 + id. We next establish that no zeros can cross the 
line z = to + iS, where S is small, and hence that all unstable roots are 
real. 

Since 5 « 1, the corresponding forms of the coefficients in equation 
(32) are 

A = ch-1; B = bsh; 

C = o)2(l - /1) ch + wfish; 

P = 8(l- fj) (2wch + w2sh) + 8fi(sh + uch) (35) 

We therefore have 

CB - AD = (1 - h){w2sh + 2wch - 2o>ch2) 

+ dft (sh - <o)(l - ch) 

< 0 (to > 0) (36) 

as can be demonstrated by expanding in powers of co. 
A similar argument applied to the second term in F(co + i) enables 

us to conclude that no zeros can cross z = a) + i if f\ > 0 and /V < 
0. 

The function F(z) is even in z and hence its zeros must be sym­
metrically disposed with respect to the real and imaginary axes. It is 
not therefore necessary to prove corresponding results for the re­
maining boundaries. 

{Hi) z = 5 + iO. The preceding arguments demonstrate that 
zeros can only enter the domain from the origin along the real axis and 
hence the stability boundary can be determined from the condition 
for a real root at z = 8 + t'0, 5 « 1. 

The function F(z) can then be expanded in the form 

F(8 + iO) = u 0 / i ' - U0/2' - 1 + 0(o2) 

and hence the stability boundary is defined by 

" o ( / i ' - / 2 ' ) = l 

(37) 

(38) 

The system is known to be stable for f{ = f2' = 0 and hence for in­
stability we must have 

uoifi' - h') > 1. (39) 
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The Stress Distribution in Orthotropic 
Rotating Disks 
The stress distribution in a rotating orthotropic disk of constant thickness with a central 
"hole is obtained iridosed form for the special case of a material satisfying a condition first 
studied by WolfjVUn 1935. A more general analytical solution, proposed in 1973, is close­
ly examined and'discussed. The solution proposed in this paper, although limited to a 
particular kind of material, is successfully used to test the accuracy of the numerical pro­
cedures which solve a more generalized form of the problem?] 

Introduct ion 
A closed-form solution for the stress distribution in cylindrically 

orthotropic rotating disks is available in the literature, at least with 
the plane-stress or plane-strain assumptions for simple disk shapes 

[1-3]. 
However no analytical solution exists for disks with a central hole 

and made from an orthotropic material, even for the case of constant 
thickness. 

The aim of this paper is to develop a particular closed-form solution 
for the constant thickness disk with a central hole. Although this so­
lution holds only for materials whose stiffness matrices are of a par­
ticular form, it can be used to demonstrate that the results obtained 
from an already existing analytical solution [4] are incorrect. It can 
also be used to check the accuracy of numerical methods. 

Analysis 
A rotating orthotropic disk can be regarded as a cylindrical body 

in which the stresses are constant in the direction of the generator. 
In the case of a disk rotating about the 2-axis, two stress functions 

F and \]/ can be defined [5,6], such that 

Ox 

°y 

Txy 

Txz 

Tyi 

= (F),yy 

= (F),xx 

= -(F), 

= W,y 

= -w. 

+ U 

+ U 

xy 

K (1) 

where the potential function of the body forces U is given by the fol­
lowing formula: 

U = I pu>2(x2 + y2) (2) 
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and p and u are, respectively, the density of the material and the an­
gular velocity. 

The stress functions defined in (1) satisfy the equilibrium condi­
tions 

(Ox),x+(Txy),y-(U),x = 0 

(Txy),x+(<Jy),y-(U),y=0 

(rXz),x + (l"y2),i •Q (3) 

In order to lead to compatible displacements, F and \p must satisfy 
a set of differential equations which, in the case of x and y-axes 
coinciding with the material's principal axes, reduce to: 

1322(F),, : + (2012 + Pw)(F),xxyy + Pll(F),yyyy 

= -03i2 + M(U),Xx - (&i + j3i2)((J),y/, 

PuW,xx + PssW,yy ; 0 

(4) 

(5) 

Equation (5) holds for the case of no external loads applied to the end 
, surfaces of the cylinder, 

In equations (4) and (5) the plane-strain elastic compliances 

Pij = Sij - (S,3 • S/3/S33) (6) 

are used to solve the problem in terms of generalized plane-strain 
state. The elastic compliances S;y must be substituted for /3,-y in the 
case of plane stress in which equation (4) only applies. 

The Airy stress function F and the stress function \p in equations 
(4) and (5) can be solved separately. 

The boundary conditions on the lateral surfaces, which are assumed 
to be free from surface forces, are [5] 

\p - C3. 

,,dx , 
U — ds + a 

ds 

dy 
U — ds + a 

ds 

(7) 

If the disk is circular, with inner and outer radii, respectively, 77 and 
rc, equations (7) reduce to 
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(F),x = lpu2re
2x + ci 

(F)zy = | pa>2re
2y + c2 (outer boundary) 

\p = c3 CM 

(F\x = h pwWx + cx' 

(F),y = I po)2ri2y + c2 ' (inner boundary) 

i> = c3'. Ob) 

The constants c, and c,' are arbitrary and can be put equal to zero at 
least on one boundary. 

The function \p can be assumed to be of the form 

t = C(x2 + y2 - re
2) (8) 

which satisfies the boundary conditions, giving eg = 0 and C3' = C(r,-2 

-r„2). 
The constant C can be evaluated from equation (5), yielding C = 

0. It follows: 

^ = 0 (9) 

and therefore also TXZ and ryz are both equal to 0. 
The following is a particular solution of equation (4) [7]: 

F' = dix2 + y2)2. (10) 

Differentiating equation (10) the constant Ci can be calculated from 
equation (4) 

Cj = pwHPu + 2/312 + 022)/[12(0n + 022) + 4(2ft2 + 066)]. UD 

The problem of finding a general solution of the homogeneous 
equation (4) is a difficult one. The authors found a solution for the 
plane-stress problem, provided the elastic compliances of the material 
satisfy the equation 

S11 + S22 — 2 S :0 (12) 

i.e., the material is of the type studied by De St. Venant [8] and Wolf 
[9]. 

Obviously in the case of plane-strain state, condition (12) be­
comes 

011 + 022 - 20,2 - 06! •0. (13) 

Under condition (12) the solution of the homogeneous equation (4) 
was found to be 

F" = C2(x
2+y2) + C-.i\n(x2 + y2). (14) 

The complete Airy function F is therefore 

F = d ( x 2 + y2)2 + C2(x
2 + y2) + C3 In (x2 + y2). (15) 

Constants C2 and Cn can be evaluated from the boundary condi­
tions (7a) and (76) in which all constants c; and c,-' can be put equal 
to zero, yielding 

Ipw2 

C s = Ci pa) (16) 

The stress state is therefore 

ax = 2 d ( 3 y 2 + x2) + 2C2 + 2C3(x2 - y 2) / (x 2 + y 2) 2 

-%pu2(x2 + y2) 

<jy = 2Ci(3x2 + y2) + 2C2 + 2Ca(y
2 - x2)/(x2 + y2)2 

-ipco2(x2 + y2) 

Txy = 4xy[-C1 + C-i/(x
2 + y2)2] 

Tyz = Txz = 0 (17) 

1 « l 
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Fig. 1 Stress distribution in rotating disks with different values of the ratio 
S22/S11; the stress distribution is independent of angle 6 since equation (12) 
is satisfied 

ff2 can be calculated through the familiar equation 

0"2 = — (S13OV + S23^y)/S33 (18) 

for the plane-strain case, while it is obviously equal to zero for the 
plane-stress case. 

Transforming equation (17) into polar coordinates, and introducing 
the ratios 0 = ri/r,, and x = rlre, the complete stress distribution for 
the plane-stress case is 

ar = p a r V t f i l l + 0 2 - 0 2 / * 2 - x2) 

<jc = pco2re
2|Ki[l + /32 + 0 2 / X

2 ] - #2X2I 

r r c = 0 (19) 

where 

Ki< 

Kn = 

2(Sn + S22) + S6I 3 ( S U + S22) - 2S1 2 

6 ( S 1 I + S 2 2 ) + 4 S I 2 + 2SIB 8(Sn + S22) 

See ~ 4Si2 S n + S2 2 — 6S12 
(20) 

6(Sn + S22) + 4 S i 2 + 2 S 1 6 8 ( S n + S 2 2 ) 

If the material is isotropic, it follows that S n = S2 2 = HE, S i 2 = 
-v/E; condition (12) is satisfied and the values of Kj and Ki are 

K1 = (3 + i>)/8 

K.z=(l + 3^ /8 (21) 

which give the usual stress distribution in isotropic constant thickness 
disks [10]. 

The stress distribution expressed by equation (19) is independent 
of angle 8. The nondimensional stress distribution in disks with a value 
of /3 = 0.1, built from materials with different ratios EJE% but all with 
C12 = 0.3 and all satisfying equation (12), is plotted in Fig. 1. 

The independence of the stress distribution from angle 8 for disks 
without a central hole, this time valid for any orthotropic material, 
was already proved by Chang [7, 11]. 

The maximum value of the circumferential stress 

; = p<o2re
2|Ki[2 + 1 • Ktf2 (22) 

is found at the inner radius, and it is easy to check by comparing 
equation (22) with equation (18) in [7], that for /3 -* 0 the maximum 
stress in the disk with a central hole is twice the value of the maximum 
stress in the unpierced disk, which is exactly the same as if the ma­
terial were isotropic. It is also easy to check that with (3 —* 0 the value 
of <jc at the outer edge is the same in the two cases. 

The displacements u and u in the x and y-directions can be easily 
calculated from equation (19) using the stiffness matrix of the ma­
terial: 
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u = pw*x K. 
re

2n2(Sn - 1S12) 

x* + y2 + K3 — 

+ K4y
2 + K1(re2 + n2)(Su + S,2) 

K re
2n2(S22-Si2) 

K\ — — + K&x 2 

xl + y2 

+ K6
J- + Ki(re

2 + n-2)(S22 + S12) (23) 

where 

K 3 =-

K4 

KB 

Ke 

-2Sn(Su + S22) + 4S12
2 - S 6 B ( S I I + S12) 

6(Sn + S22) + 4Si2 + 2S6 6 

_ —3iSn(Sii + 1S22) + iSi2(6Si2 + 1S11 - S22) 

8(Sn + S22) 

2iSi2(Sn — 522) ~ •SW'S'll + S12) 

6(Sn + S22) + 4S1 2 + 2S66 

_ 3S12OS11 — 1S22) ~ Sii(/Su + S22) + 2S122 

8(Sn 4- S22) 

2Sl2(6l22 ~ -Sll) ~ ^66(^22 + S12) 

6 ( S „ + S22) + 4S1 2 + 2S6B 

_ 3Sl2(S22 — Sn) — S22{Sn + £22) + 2£»122 

8(Sn + S22) 

- 2 S 2 2 ( S n + S22) + 4S t 2
2 - S66(,S22 + g12) 

6 (S„ + S22) + 4S12 + 2S6 6 

—3S22(Sii + S22) + Si2(6Si2 — S11 + S22) 

8(Sn + S22) 
(24) 

If ft —• 0, the displacements in the disk with and without central hole 
coincide (equation (23) compared with equation (24) in [7]). In polar 
coordinates (r,d) the expressions of the displacements in the radial 
direction ur and in the circumferential direction uc are 

ur = pw2re
3x\Ki(Sn cos2 8 + S22 sin2 8 - Si 2 ) /3 2 /X

2 

+ Ki(Sn cos2 8 + S2 2 sin2 8 + S12)(l + /?2) 

+ x*[Ka cos4 8/3 + (K4 + K5) cos2 8 + sin2 8 + Ka sin4 0/3]| 

uc = pw2re
3x\Ki(S22 - S „ ) ( l + P1 + /32/x2) 

+ X2[(^5 + K3/3) cos2 8 + (K6 /3 - K4) sin2 8]\ (25) 

If the material is isotropic the first equation (25) gives the familiar 
formula for ur [10], and the second gives uc- = 0. 

Comparison With a Previous Analytical Solution 
In a previous paper, doubts where cast on an existing analytical 

solution [4]; a comparison was made with results obtained via annular 
finite elements in which the displacement field was described by 
third-degree polynomials radially, and by trigonometric polynomials 
circumferentially [13]. 

The argument is strengthened here by the present closed-form 
solution. For a disk with /? = 0.1 built in a grafite-epoxy composite (Ei 
= 207 GN/m2, E2 = 5.17 GN/m2, Gn = 4.98 GN/m2, j / ] 2 = 0.25) 
practically equal to the material referred to as Mx in [4], a case is ob­
tained which can be tested against the solution presented in [4] (Fig. 
2). 

The difference is evident, particularly because the solution in [4] 
is dependent also on angle d while the present solution is not. 

In Fig. 2 a numerical solution obtained with an improved version 
of the method described in [12-14] was also plotted. 

The curves obtained in this way for various values of 8 are all su­
perimposed and not distinguishable from the one obtained from the 
present solution. 

A possible explanation for the discrepancy between our results and 
those of [4] is the fact that, using a polar reference system, all deriv­
atives of the elastic compliances S,-' related to the r and 0-directions 

1 T T I 

~ Present analytical & numerical 
solution (any ft) 

- Analytical solution (5) 

X .9 1 
Fig. 2 Comparison of the present analytical solution with the analytical so­
lution [4] and a numerical one; E-, = 207 GN/m2; E2 = 5.17 GN/m2; G,2 = 4.98 
GN/m2, Vn = 0.2S; the correct solution is independent of 0 

are there forgotten when the strains er, ec, and yrc are differentiated 
with respect to 6. This also explains why at each radius the solution 
is identical to the solution relative to a cylindrically orthotropic ma­
terial having the same elastic parameters found at that radius. 

The correct expressions of the coefficients of equation (10) in [4], 
in reality should be 

Fi = S22'; F 2 = --2S26'; F3 = Sm' + 2S1Z '; 

F4 = -2Si6'; F 5 = S „ ' ; F6 = 2(n + 1)S22'+ (S26'),e 

F1 = (n - l)(See' + 2S12 ') - 3(S16'),„; F8 = S : 6 ' (2 - n) + 2(S„'),o 

F9 = - 3 n S 2 6 ' + (S66'),« + 2(Si2'),«; 

Fio = - S i , ' + n(S12' + S22' + nS22') - (Si6'),» 

- (S28'),»(l + n) + (S12V; 

Fn = 2Si6 ' - (n - l )(n - 2)S2e' - (1 - n)(S66'),» 
+ 2(S„'),» - (SiC'),w,; 

F12 = ~(n - 1)S66 ' - (n - 2)(S, , ' + S1 2 ' - nS12 ') 
+ (Si i ' ) , ,M+(S1 ( i ' ) ,„(3-n); 

Fu = (1 - n)(Su' - nS12') - n(Sw')j, + (Su'),»»; 

Fu = (2 - n)(Si6 ' + S2K' - nS26') + (S16'),„» + (1 - ra)(S66').«; 

p 7 = po>2h0b " [6S22 ' - 2Si2 ' - 3 (S26'),9 + (S12'),o,]. (26) 

This is necessary but not sufficient to obtain a solution, since major 
difficulties can come from the evaluation of the derivatives of the 
stress function (24) in [4], (<J))JI, (0),r», (<l>),im, due to the fact that the 
coefficients Ci, C2, C3, and C4 are unknown functions of 8. 

It should be noted that, curiously enough, the formulas given in [4] 
furnish the correct stress state, if the material satisfies condition (12), 
at 0 = 45°. In this same case however, the solution for the displace­
ments doesn't hold; in fact, the fourth of equations (36) in [4] gives 
uc —• co, except for the special case of isotropic material. 

Generally Orthotropic Material 
If the elastic compliances of the material do not satisfy equation 
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1.21 1 r 1 1 1 1 r 

Fig. 3 Stress distribution in a constant thickness disk not satisfying equation 
(12); numerical solution; E-, = 207 GN/m2; E2 - 5.17 GN/m2; G12 = 9.96 
GN/m2, v12 = 0.25. 

(12), a solution to equation (5) could be attempted by the method of 
the characteristics [6]. Even if the characteristic equation is, in this 
case, particularly simple and its roots are pure imaginary numbers, 
the solution would involve anyway a considerable amount of effort 
[5,6], 

The present authors believe that a much better approach is in this 
case a numerical procedure, as the one already presented in [12-14]; 
in fact generally variable physical parameters, including thickness, 
can then be taken into account in a simple and very general computer 
program, that is conveniently tested against the analytical solution 
described in the present paper. 

The stress state in a disk equal to the disk studied in Fig. 2, but 
having the value of elastic compliance Sea halved, is shown in Fig. 3. 
It can be seen now that, as the material does not satisfy equation (12), 
the stresses depend also on angle d and the shear stresses are, there­
fore, not equal to zero. 

Conclusion 
While the analytical solution for the stress distribution of rotating 

disks without a central hole with constant thickness, is relatively 

simple [7, 11], in the case of pierced disks this leads to considerable 
analytical complications. 

Examining the existing literature on the subject, and criticizing also 
some misleading conclusions [4], these authors have come to the 
conclusion that specially developed numerical procedures perform 
the task in a more efficient and general way [12-14]. 

Of course, the problem remains to evaluate the correctness of the 
numerical results; this could be done in the present work by testing 
them against the newly developed analytical solution which applies 
only to a particular kind of orthotropic material. 
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Stress Concentrations in Cylindrically 
Orthotopic Composite Plates 
With a Circular Hole1 

•fThe equations governing the distribution of the stresses in a cylindrically orthotropic 
"plate with a circular hole are solved for the case when the plate is subjected to uniform 
uniaxial traction. Closed-form solutions are given for the circumferential stresses along 
the edge of the hole. \ 

Introduction 
The inherent advantage of fiber-reinforced plastics is the possibility 

of arranging the fibers in such a manner as to optimize the load-
carrying capacity of the composite structure. This purpose may be 
served by developing arrangements that reduce stress concentrations 
along the edge of a circular hole in a composite plate. An arrangement 
that may be capable of achieving this is one that results in a cylin­
drically symmetric plate with the origin of the system of coordinates 
at the center of the hole. It is believed that such plates can be manu­
factured by laying up tape, by filament winding, and probably also 
by weaving. The purpose of this paper is to calculate the stress-con­
centration factors for cylindrically symmetric plates with a central 
circular hole. 

The first calculation of the effect of a circular hole on the stress 
concentration in a plate was published by Kirsch [1] in 1898. It dealt 
with isotropic plates and resulted in a stress-concentration factor 
(maximum circumferential stress along the edge of the hole divided 
by the value of the uniform uniaxial tensile stress at a large distance 
from the hole) of 3. This calculation can be found, for instance, in 
Theory of Elasticity by Timoshenko and Goodier [2]. A detailed 
summary of work dealing with stress concentrations along the edge 
of a hole is given by Lekhnitskii [3] for plates orthotropic with respect 
to a system of Cartesian coordinates. A concise report on the results 
of these investigations can be found in a book by Jones [4]. 

1 This work was carried out under Grant No. NGL 33-018-003 awarded to 
Rensselaer Polytechnic Institute by the Air Force Office of Scientific Research 
and the National Aeronautics and Space Administration (NASA Technical 
Officer: Leonard A. Harris). 

Contributed by the Applied Mechanics Division for publication in the 
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Conference, University of Colorado, Boulder, Colo., June 22-27, 1981 (No 
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Department. Manuscript received by the Applied Mechanics Division, De­
cember, 1980; final revision, February, 1981. 

Fig. 1 

In the present analysis, as in the calculations presented by Ti­
moshenko and Goodier, a state of plane stress is assumed to prevail 
in the plate. At the outer radius R uniformly distributed tractions are 
applied to the plate in the direction of the x-axis, as indicated in 
Fig. 1. 

Governing Equations 
The conditions of equilibrium are satisfied if the stresses are derived 

from a stress function </> in accordance with the equations 

crr • 
1 d 0 1 d2</> 

r dr r2 bd2 

(TO : 
= b2<l> 

~ br2 

b_llb<t>\ 

dr [r bd) 

The constitutive equation can be written in the form 

Trt) = • 

(la) 

(lb) 

(lc) 
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The compatibility condition can be given as 

d2er i>er d2 , > d2 , v m 

(2) 

(3) 

The boundary conditions are 

Or = Tre = 0 

o> = (o72)(l + cos 20) 

Tr« = - ( c / 2 ) sin 20 

when 

when 

when 

r = l 

r = R 

r = R 

(4a, b) 

(4c) 

(4d) 

t4 - 4t3 + (5 - Srr ~ n2S)t2 - 2(1 - Srr ~ n2S)t 

+ n2[(n2 - 2)(Srr + n*3) - (1 - n2)2S] = 0 (12) 

can be written as 

ti = 1 + a, t2 = l - a , t3 = 1 + ft t4 = 1 - /? (13a-d) 

With these roots, equation (12) can also be given in the form 

(t - ti)(t - t2)(t - t3){t - td = 0 (14) 

Substitution from equations (13) results in 

S4 - 4t 3 + [6 - (a.2 + @2)]t2 - 2 [2 - (a2 + /32)]t 
+ [1 - (a2 + 02) + a2/?2] = 0 (15) 

The last two expressions are in agreement with 

ax = a oy = Tiy = 0 when r = R (5a-c) 

Equations (12) and (15) are identical if 

1 - Srr ~ n2S~ = 2 - (a2 + (32) 

5 - S r r - n2S = 6 - (a2 + /32) 

(16a) 

(166) 

Solution of the Equations 
First, the solution will be sought for the changed boundary condi­

tions 

or = Trfl = 0 when 

or = (u/2) cos nd when 

Tre = -(ff/2) sin re0 when 

The solution can be written in the form 

0 = rl cos nd 

where £ is a constant. Substitution yields 

o> = (t — n2)r'~2 cos n8 

ao = t(t — l ) r '~ 2 cos nd 

r = 1 

r = i? 

r = f l 

(6a, 6) 

(6c) 

(6d) 

(7) 

(8a) 

(86) 

n2[(n2 - 2)(Srr + n2S) - (1 - rc2)2S] = 1 - (a2 + /32) + a2/?2 

(16c) 

from which follow the expressions 

a2 + t32=l + Srr + n2S a2/?2 = (n2 - l)2Srr (17a, 6) 

The two equations can be solved for a 2 and /32. The result is 

a2 = (|)(1 + Sn + « 2 5) + j(i)(l + Srr + Tl2S)2 - (n2 - l ) 2 ^ ) 1 ^ 
(18a) 

02 = ( j ) ( 1 + srr + n2S) - |(J)(1 + Srr + n 2 S) 2 - (n2 - l ) 2 ^ ) 1 ' 2 

(186) 

where the square root should be taken with the positive sign. 
The four roots of equation (12) are real if 

Tro = n(t - l ) r ( 2 sin nd (8c) a n ( j 

The expressions for the strains become 

er = {(t - n2)Srr + t(t - D S ^ J r ' " 2 cos nd (9a) 

€0 = [(t - n2)SrS + t(t - l)Soe\r>-2 cos nO (96) 

yre = n(t - l ) S 6 6 r ' - 2 sin nd (9c) 

(1 + Srr + n2S)2 > 4(n2 - l )2S r , 

l + Srr + n2S>0 

(19a) 

(196) 

When these are substituted into the compatibility condition, the 
result is 

T = Soer1'2 cos n0|t4 - 4t3 + (5 - Srr ~ n2S~)t2 - 2(1 - Srr 

- n2S)t + n2[(n2 - 2)(Srr + n2S) - (1 - n2)2S]j = 0 (10) 

where 

Sab = Sab/Se0 S = 2Sr() + See (Ha, 6) 

The four roots of the equation 

If the "greater than" signs are replaced with "equal" signs, the second 
equation represents a straight line, and the first one a curve with two 
branches in the S — Srr plane. They are shown in Pig. 2 for the case 
when n = 2. 

If an equality sign held in (19a) we would have 

S = (l)(±6y/Sr~r - 1 - Srr) (19c) 

provided n = 2. The curve has zeros at Srr = 0.0294 and 33.97, a ver­
tical tangent at Srr = 0, a maximum of S = 2 at Srr = 9, and it is tan­
gent to the straight line S = 2Sn. In agreement with inequalities (19a) 
and (196), points lying above the upper branch of the curve represent 
plates for which the roots of equation (12) are real. 

When inequalities (19) are satisfied, the following useful relations 
hold: 

•Nomenclature. 

A,B = integration constants in (64) 

Ap = integration constants in (21) 

D = denominator determinant given in 
(24) 

n - integer 

Ng = numerator determinant defined in 
(27) 

p = exponent of r in stress function (55) 
r = radial coordinate 
R = outer radius of circular plate 
Spq = compliance 
Spq = relative compliance defined in (11a) 
5 = second fundamental parameter defined 

in (116) 
Brr = first fundamental parameter defined in 

(11a) 
t = exponent of r in stress function (7) 

u = radial displacement 

a, /3 = defined in (13) 

7r» = shear strain 

epq = strain component 

0 = circumferential coordinate 

a = applied uniaxial stress 

oPq = stress component 
Tro = shear stress 
cf> — stress function 

564 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



-1 

• l l r 

-

-

' 

-

i r /\ i 
ct, /3/ ' ,ARE REAL 

/ 

. ISOTR>c 

o-,. - o o / — 

/ 3̂ -̂— 
' > - - ±45GI 

^ \ + 4 5 G r ° " ^ - ^ 

O"* — CO ^ ~ " " \ ^ 

a, /3 ARE PURE IMAGINARY ^ ~ ~ ~ ^ \ ^ 
i i i r - -_ 

-

X 

8 

i 
8 

s i . 
0 

-3 

Fig. 2 Ranges of solution of equations for boundary conditions (6) 

a2 + P2 = 1 + Srr + n2S > 0 (20a) 

a2 - P2 = {(1 + Srr + n2S)2 - i(n2 - l)2Srr]1/2 > 0 (20b) 

a/3 = (n2 - l)y/Sr~r > 0 (20c) 

(a + P)2 = 1 + Srr + n2S + 2(n2 - Dy/B^ > 0 (20d) 

(a - I3)2 = 1 + Srr + n2S - 2(n2 - l)y/sZ > 0 (20e) 

The values of a and /? can be calculated from equations (18), or 
from 

2« = (1 + Srr + n*E + 2(n2 - l)y/s\r]
m 

+ {l+Srr + n2S-2(n2-l)y/3r~r\m (20/) 

2/8 = |1 + Srr + n2S + 2(n2 - l)y/s7,}m 

-\l + Srr + n2S-2(n2-l)y/s7r}1/2 (20g) 

It follows that 

a > , 8 > 0 

a + P> a- / 3 > 0 

(20h) 

(200 

It is noted that in (20c) the positive sign for the square root was 
selected arbitrarily. The negative sign would be equally justified on 
the basis of (17b). If in (20c) the sign were changed, in (20/) and (20g) 
a would remain unchanged but P would become -/3. This would still 
result in the same four roots as given in (13) except for their order. 

Enforcement of the Boundary Conditions 
The general expression for the stress function can be written as 

' = (Air'i + A2r(2 + A3r^ + A4/-'"j cos 26 (21) 

where t%, S2, t3, £4 are the four roots of equation (12) and Ai, A2, As, 
At are constants of integration. The constants must be determined 
from boundary conditions (6). With n = 2 they give 

12 
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01 

- 6 

Si 

6 * 4 

1 

II 1 

1 1 

1 

~ ~ - — _ _ _ i - i o r . 

GI + 

1 ^ ~ 

1 

_ J h > ^ — 

ISOTROPIC 

JG & CREWS 

" 4 5 ° = 

- 1 
10 

Fig. 3 Variations in stress-concentration factor with changing R and fiber 
arrangement (at 0 = 90°) for boundary conditions (4) 

These equations can be simplified by subtracting the members of the 
second equation from those of the first, and the members of the fourth 
equation from those of the third. Next, the common multipliers —3 
and R~l can be factored out. The result is 

Ai + A2 + A3 + Ai = 0 

aAi - aA% + /3A3 - /3A4 = 0 

fi«Ai + R-«A2 + fl"A3 + R-KAi = -Ra/4 

<xR«A1 - aR-"A2 + PR^As - j8fl-"A4. = -Roll (23) 

The equations can be solved with the aid of Cramer's rule. The de­
nominator determinant is 

D 

When evaluated, this becomes 

1 

a 

R« 

aRa 

1 

— a 

R-" 

-aR-" 

1 

0 
Rt 

PR? 

1 

-P 
R-f> 

-PR~f> 

(24) 

D = 8aP + (a - /?)2(fl"+" + fl-<«+«) - (a + /3)2(fl«-" + fl-<°-«) 

(25) 

D = 8aP + 2{a - /J)2 cosh {(a + /?) In R] 

- 2(a + P)2 cosh {(a - /8) In r] (26) 

The numerator determinants are 

Ni = [2/3(1 + a)R~« + (1 - P)(a - PW 
- (1 + P)(a + P)R-f>](-oRH) (27a) 

( - 3 + a)Ai 

aAi 

( - 3 + a ) ^ " - 1 ^ ! 

a f i ' - M ] 

- ( 3 + a)A2 

-aAi 

- ( 3 + a)i?-<1+">A2 

-aR-(i+")A2 

+ (-3 + P)A3 

+ PA3 

+ ( - 3 + p)RI>-1A3 

+ PRP-lA3 

- ( 3 + P)AA = 0 

-/3A4 = 0 

- (3 + /3)fl-<1+")A4 = (a/2) 

- pR-d+l3)A4 = -(a/4) 

(22) 
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Table 1 Table of constants for Figs. 2 and 3 

Fiber arrangement 
r8 66 Symbol 

Fibers along r 

Fibers along 0 

Fibers at ±45° 
(graphite epoxy) 

Fibers at ±45° 
(glass epoxy) 

Quasi-isotropic 

0 

14 

.068 

.7059 

1 

1 

1 

-0.0204 

-0.3 

-0.83 

-0.39 

-0.3 

2.6154 

38.4615 

0.3684 

1.56 

2.6 

2.5746 

37.8615 

-1.2916 

0.78 

2 

3.3634 

12.8979 

0.8416 
+11.5138 

1.6673 
+10.4690 

3 

0.2326 

0.892 

0.8416 
-11.5138 

1.6673 
-10.4690 

1 

±45Gr 

±45GJt 

ISOTR. 

N2 = 12/3(1 - a)R" + (a + j8)(/3 - l)fl" 

+ (a - p")(l + P)R-f>)iR<r/4) (27ft) 

N3 = [(a - /?)(1 - a)Ra + (a + /3)(1 + a)R~a 

- 2a(l + P)R-e}(Ro/4) (27c) 

N4 = (-(1 - a)(a + P)Ra - (1 + a)(a - P)R~a 

+ 2a(l - P)RP\(R<T/4) (21 d) 

The coefficients of the stress function in (21) are 

A1 = N1/D A2 = N2/D A3 = N3/D A4 = N4/D (28) 

The circumferential stress can be written as 

a, = \Axti(ti - D r " " 2 + A2t2(t2 - l ) / ^ " 2 + A3t3(t3 - l)r^~2 

+ AitSi ~ Dr'*'2} cos 20 (29) 

At r = 1 the sum of the four contributions can be written in the fol­
lowing forms: 

Da0rml = (aR/2)(a2 - p^ipXl - a)Ra - (3(1 + a)R~" 

- a(l - P)Rf> + a(l + (8)fl-") cos 2d (30a) 

Da,rml = <rR(a2 - /32){/3 sinh (a In R) - a/3 cosh (a In R) 

- a sinh ((8 In R) + a/3 cosh (/3 In R)} cos 20 (306) 

, .^ , (a + ffllnfl , , ( a - / 3 ) l n f l 
(a + p) cosh : sinh -D<J,r,1 = aR(a2-^) 

— (a — p) sinh cosh 

2 2 

(a - p") In R 

n . , (a + /3)lnfl . , ( a - / 3 ) l n f l l 
-2a /? sinh ^ s inh- ^ } cos 26 (30c) 

2 2 

Daer=1 = (<xfl/4)(a2 - /32)j(a + p,)[#("+<J)/2 + fl-<"+">/2] 

x rij(„-/3)/2 _ fl-(a-0)/2] _ ( a _ /3)[fl(«+/3)/2 _ #-<«+/9)/2] 

X [fl<a-ffl/2 + fl-(a-0/2] _ 2 o : | 8[f l <«+0>/2 _ fl-<«+«/2] 

[fl(«-«/2-fl-(«-«/2])cos29 (30d) 

In Fig. 3, values of the stress-concentration factor are plotted 
against the outer radius R (note that the radius of the hole is unity) 
for a number of fiber arrangements. Inequalities (19a) and (196) hold 
when all the fibers run circumferentially (\\B) or radially (||r), and when 
the material is isotropic (or quasi-isotropic). In these cases, therefore, 
(25) and (30) are valid. However, the values of the ordinates in the 
figure are not those computed from these equations; to the values 
obtained from (25) and (30) have been added the circumferential 
stresses calculated for the case of uniform radial tensile loads which 
will be discussed later. 

One more question to be answered is how the stress-concentration 
factor behaves as R approaches infinity. Because of inequalities (20i), 
equation (30d) becomes (a and /3 are real) 

a cos 2d 
- R(l/4)(a2 - /32)2(3(1 - a)fl(«+/3)/2fl(«-«/2 a s R 

and (25) becomes 

D - » ( a - / ? ) 2 R ° + < 3 asf l -*<° 

The ratio of the two is 

(31) 

(32) 

JU^JJl-aKa + V^ whenR>>i 

a cos 2d 2 a-ft 

0 when p" > 1 

-(1/2)(1 + a) when (8 = 1 as R -* <*> (34) 

°° when /? < 1 
a cos 28 

When 0 = 1, (20c) yields (with n = 2) 

a = 3y/Srr when (8 = 1 

and the stress-concentration factor becomes 

ogr, - U / 2 ) ( l + 3 V S r r ) when 
a cos 20 

Because of (20a) the condition of this is 

a 2 + P2 = 9S r r + 1 = 1 + Srr + 45 

that is, 

S = 2Srr 

(35) 

(36) 

(37) 

(38a) 

It is to be remembered, however, that in the derivation of (31) it was 
assumed that a > p\ This implies that 

Srr > 1/9 (386) 

in consequence of (35). But the straight line is tangent to the upper 
branch of the curve in Fig. 2. Hence, to the left of the point of tangency 
the stress-concentration factor tends to infinity as R increases beyond 
all bounds in the region of four real roots. 

Equation (38a) is shown as a dotted straight line in Fig. 2. Above 
the line the stress-concentration factor tends to infinity as R ap­
proaches infinity; and between the straight line and the upper branch 
of the curve of Fig. 2 the stress-concentration factor tends to zero as 
R approaches infinity. 

a and (8 Are Complex Numbers 
It has already been stated that between the two branches of the 

curve of Fig. 2 the inequality holds 

(1 + Srr + 4S)2 < A(n2 - \)2Sr, (39) 

The quantities of a and /3 and their useful combinations can be given 
in the form 
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a2 = (1/2)(1 + Srr + n2S) + i{(n2 - l)2Srr 

- (1/4)(1 + Srr + n2^)2}1'2 (40a) 

/32 = (1/2)(1 + Srr + n2S) - i\(n2 - l)2Srr 

- (1/4)(1 + Srr + n2S)2}1'2 (406) 

a = (l/y/2){(n2 - l)V§7r + d /2) ( l + S r r + n W 2 

+ (i/V2)l(n2 - l)y/s7r - (1/2)(1 + S„. + n2S))1 / 2 (41a) 

/? = (1/V2))(n2 - l ) v C + d /2) ( l + Srr + n2S)}m 

- {i/2)\(n2 ~ I)y/S\r - d /2) ( l + Srr + n2S)}^2 (416) 

a + 8 = v ^ K " 2 - 1 ) V § - + (1/2)(1 + Srr + n2S)}V2 (41c) 

and 

1 + Srr + n2S < 0 (49) 

The expressions for a and B are purely imaginary: 

a = f | (1/2)(1 + Srr + n2S) + |(1/4)(1 + Srr + n2S)2 

- ( ^ - l ) 2 ^ ) 1 / 2 ! 1 / 2 (50a) 
8 = - i | (1/2)(1 + Srr + n2S) - |(1/4)(1 + Srr + n2S)2 

- (n2 - l)2Srr\m\m (506) 

Thus the following useful combinations of a and 8 can be given 

y/2{(n2 - l)VSrr - (1/2)(1 + Srr + ^S)]1'2 (41d) 

(41e) 

(41/) 

((41g) 

(41fc) 

(4H) 

(a + /3)2 = 1 + S r r + n2S + 2(n2 - lWSrr > 0 

(a - /3)2 = 1 + S r r + n2S - 2(n2 - 1 ) V § ^ < 0 

a2 + B2 = 1 + Srr + n2S 

a2~^ = 2\(n2 - l)2Srr - (1/4)(1 + S r r + n2S)2}^2 

aB=(n2- 1)VS, 

The expressions for the numerator and the denominator of the 
stress-concentration factor are 

D<j„r=1 -aRa2-B2 

cos 26 2 

la — 
Xsin 

- / 3 In fl\ QI-/3 

i 2 J i 

(a + B)[R(°>+M2 + fl-<«+W2] 

' a - f l l n i ? ' 
. [fi(„+ffl/2 _ fl-<«+0)/2] c o g 

Of2 + /32 = 1 + Srr + n2S < 0 

a 2 - /32 = ((1 + S r r + n 2 S) 2 - 4(ra2 - l)2SrA
1/2 > 0 

aP = (n2-l)^/s7r>0 

(a + B)2 = l + S^ + n2S + 2(n2 - 1 ) V 5 7 < 0 

(a - 0)2 = 1 + S r r + rc2S - 2(n2 - l)y/sVr < 0 

a + B=-i\l + Srr + n2S + 2(n2 - D V ^ I 1 / 2 

a - /3 = i 11 + S r r + n2S - 2{n2 - l)y/sZ\1/2 

Alternate expressions for a and B follow: 

2a = -i11 + Srr + n2S + 2(n2 - 1)y/s7r\
1/2 + i\ 1 + S r r 

+ n 2 S - 2(n2 - 1)Vs7r 11/2 (51/i) 

2/8 = -i\ 1 + S r r + n2S + 2(n2 - l)y/s7r\
 m - i\ 1 + Srr 

+ ra2S - 2(n2 - 1 ) V C | 1 / 2 (51() 

Substitution into (30d) and (26) yields 

(51a) 

(516) 

(51c) 

(51d) 

(51e) 

(51/) 

(51g) 

• 2aP[R{a+m - R-<a+m] sin 
ta-p\nR\ 

\ i 2 1. 

D°0r~l 

(42) 
= - ( a 2 - $2)R 

a+ 13 la+ 8 \ . la - B \ 
cos I——— In RI sin | ;—In fil 

D = 8aB -

• sin In R cos 
'[i?"+'3 + fl-("+'3)] 2J 2i 

lni? 

•2(a + 0 ) 2 c o s p T - ^ l n f l | (43) 

• 201,8 sin f̂ —- In R\ sin | ^ — - In R 
2i 2i 

cos 20 (52) 

It is noted that all the combinations of a and 8 appearing in (42) and 
(43) are real and positive. 

Again, it is of interest to investigate the behavior of the stress-
concentration factor as R tends to infinity. In such a case the domi­
nant terms in (42) and (43) are flfl<"+">/2 and Ra+f, respectively, and 
their ratio determines the behavior at infinity: 

D = SaB + 2(a - B)2 cos F ^ I n R \ - 2(a - B)2 cos T ' lnfi 

09,-. 
/Ri-w+n)n as fl^o, 

a cos 26 

The stress-concentration factor remains finite if 

a + B = 2 

From (41e) the condition of this being true is 

1 + Srr + 4S + e^/E^r = 4 

which can be solved for S to obtain 

S - = ( l / 4 ) ( 3 - S r r - 6 v C ) 

(44) 

(45) 

(46) 

(47) 

(53) 

Again, all the combinations of a and 8 are real. But trigonometric 
functions of a real argument have values between —1 and +1 ; hence 
the numerator tends to infinity as R while the denominator remains 
finite when R approaches infinity. Consequently, the stress-concen­
tration factor tends to infinity as R approaches infinity. 

S o l u t i o n of the A x i s y m m e t r i c P a r t of the P r o b l e m 
To solve the problem set in (l)-(4) completely, the axisymmetric 

part of the solution in which the boundary conditions are 

: 0 when r = 1 

(a 12) when r = R 

(54a) 

(546) 

This equation is shown in Fig. 2 as a dotted line. Between this line and 
the upper boundary of the region of conjugate complex roots the 
stress-concentration factor tends to zero as R approaches infinity; and 
between the line and the lower boundary of the region of complex 
roots the stress-concentration factor increases beyond all bounds as 
R approaches infinity. 

a and /3 Are Pure Imaginary Numbers 
In the region of Fig. 2 below the lower boundary of the region of 

complex roots the following inequalities hold: 

(1 + Srr + n2S)2 > A(n2 - l)2Sr, 

Journal of Applied Mechanics 

(48) 

is also needed in addition to the solution derived for the boundary 
conditions given in (6). It is tempting to obtain the solution of this 
axisymmetric part from the general solution already derived by simply 
setting n = 0. When this is done, the following four expressions are 
obtained for the exponents p of the stress function 

<t> = rP\ (55) 

Pi = 1 + v ^ p 2 = 1 - \ / ^ P3 = 2 p 4 = 0 (56) 

The fourth expression corresponds to a trivial solution in which all 
the stresses are identically zero. But there remain three solutions 
whose integration constants must be determined from two boundary 
conditions. This can be done in more than one way, implying that the 
solution of the problem set is not unique. 
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The explanation of this anomaly is that in the axisymmetric case 
p = 2 is a spurious solution. Although it satisfies (12), it does not 
satisfy the proper compatibility condition of the axisymmetric 
problem. In the axisymmetric case 

+ R -757 

; du/dr tg = u/r (57a, 6) 

where u is the displacement in the radial direction. For the existence 
of a function u the condition must be satisfied 

«r = — (rte) 
dr 

(58) 

which is the compatibility condition in terms of strains. In terms of 
the stress function the strains are 

tr = Srrar + Sr,ag = Srr-^ + SrB-^ (59a) 
r dr dri 

fe = Srtar + Sgoco = Srg h See ~ - (596) 
r dr dr* 

Substitution and differentiation yield the compatibility condition 
for the stress function <t>: 

d I d2<h\ ld</> 

Substitution of <f> = r2 yields 

Sag — Sn •0 

(60) 

(61) 

which is true only for a restricted class of plates. In general, p = 2 is 
not a solution of the problem. 

When the assumption <p = rP is substituted into (60), the result 
is 

:0 (62) p[{p - l)2SBe ~ S, 

The solution is 

pi = 1 + VfJT p2 = 1 - y/HTr' P3 = 0 (63) 

Since ps yields identically vanishing stresses, the complete solution 
of the axisymmetric problem can be written as 

0 = 4 , . i+ , /57+B r w57 (64) 

The two boundary conditions are 

(1 + s/STrW + (1 - y/§r
rr)B = 0 (65o) 

(1 + •y/Er~r)R-i+J&'A + (1 - V S r J f l - 1 - ^ ^ = (a/2) (65b) 

The solution of the two simultaneous equations is 

(66a) 

(66b) 

l + ^rR^-R-^' 

-1 <TR/2 

I - JSr~r R ^ ~ R - ^ 

It follows then that 

d2<p *=-<TR rv57+ r-V§7 
Srr 7%7r 00 'dr2 ' " " 2 ^ 

At the edge of the hole in the plate 

v rr
 RJ57r - n-V^r 

Since \JSrr is positive, 

<JorJo=^/sTrrR1-JS" when fl » 1 
Consequently 

lim 
ff»r=l 

0 when S r r > 1 

V-Srr = 1 when S,T = 1 

°° when S r r < 1 

(67) 

(68) 

(69) 

(70) 

In the limit as R approaches infinity, 

lim (ae„R/<r) = v S r 

(71) 

(72) 

At the outer edge of the circular plate 

Discussion of Results 
One of the interesting results of this investigation is that the four 

independent compliances Srr, Sre, See, and Sm characterizing the 
elastic behavior of the plate can be combined into two relative com­
pliance values Srr — Srr/Sge and S = (l/See)(2Sro + S^) in such a 
manner that the stress concentration at the edge of the hole depends 
only on the two new parameters. This is advantageous both in the 
computation and the presentation of the values of the stress-con­
centration factors. 

A second interesting result is that a state of constant stress ar = o& 
= C\ cannot exist in a cylindrical^ orthotropic circular plate subjected 
to constant uniaxial loading at its outer edge r = R, except in the 
special case when Srr = See- Such a constant stress would give rise to 
constant strains er - (S,r + Sre)C\ and e# = (Sr$ + See)C\. But the 
constant radial strain implies radial displacements u = err + C% from 
which the circumferential strain follows as u/r = (Srr + Sre)C\ + Cilr. 
This can be equal to the circumferential strain calculated before only 
if Ci = 0 and See = Srr, which proves the statement. 

Next, it is perhaps unexpected that the limiting process in which 
R increases beyond all bounds can lead to vanishingly small or to in­
definitely large stress concentrations along the edge of the hole. This 
is not so when the plate is orthotropic relative to a Cartesian system 
of coordinates or when it is isotropic. As a matter of fact, Kirsch's often 
quoted solution states that the maximum tensile stress at the edge 
of a hole in an isotropic plate has a value three times that of the ap­
plied stress at infinity. 

An explanation of the unexpected behavior can be found in the 
values of the exponents of the radius in the expressions for the radial 
stresses. They are - 1 + a, — 1 — a, — 1 + /3, and - 1 — j3, when the load 
terms include the factor cos 26 or sin 26. In the region where a and /3 
are real, they are positive by definition, and the second and fourth 
exponents are always negative. When a < 1 or /3 < 1 the first and the 
third exponents, respectively, are also negative. But because a > (3, 
the condition of the simultaneous occurrence of three negative ex­
ponents can be given as /3 < 1. 

When two exponents are positive and two negative in the general 
expression for the radial stress, the two solutions with negative ex­
ponents can be used to satisfy the boundary conditions at the edge 
of the hole (r = 1) and the two with positive exponents those at infinity 
(r = R, with R —• oo) without any interaction between the two groups 
of solutions. When the edge of the hole is unloaded, this implies 
vanishing stresses at r = 1, and stresses of the order of magnitude of 
a in a boundary layer near r = R. The stress-concentration factor for 
the edge of the hole is then zero. 

On the other hand, if there are at least three solutions with negative 
exponents, and stresses of a magnitude a are applied at r = R, at least -
one solution must have an integration constant of infinity to satisfy 
the boundary conditions at r = R when R increases beyond all bounds. 
In such a case the stress-concentration factor at the edge of the hole 
is indefinitely large. 

It has been shown that in the region of Fig. 2 where (12) has four 
real roots, the stress-concentration factor is finite when (8 = 1 (see (34)) 
which, in turn, implies that S = 2Srr (see (38)). If the value of Srr is 
kept constant and that of S is increased beyond 2Srr, both terms in 
the right-hand member of (18a) increase, and thus a also increases. 
But then (3 must decrease because the product a/3 remains constant 
in agreement with (20c). On the other hand, j8 < 1 implies indefinitely 
large stress-concentration factors according to (34b). Indeed, in the 
region above the line S = 2Srr in Fig. 2 indefinitely large stress-con­
centration factors were obtained for R ~* °°. A similar argument would 
show that below the straight line the stress-concentration factor tends 
to zero as R increases beyond all bounds. 
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In the range of conjugate complex values for a and ft the stress-
concentration factor is finite when a + /3 = 2 implying the relationship 
(47) between S and Srr. It follows from (41c) that the value of a + (3 
increases if S is increased beyond the value stipulated by (47) while 
S„- is kept constant. But an increased value of a + /3 results in a neg­
ative exponent for R in (44) and thus the value of the stress-concen­
tration factor approaches zero as R increases beyond all bounds. This 
again agrees with earlier findings as presented in Fig. 2. Below the line 
corresponding to (47) the value of a + /5 decreases when S is increased 
with Brr remaining constant, the exponent of R in (44) becomes pos­
itive, and the stress-concentration factor of the infinite plate ap­
proaches infinity. 

The situation is simpler in the case of axisymmetric loading. There 
one exponent in the expression for the stresses is —1 — -\/Srr and is 
always negative. The other exponent, —1 + \fSrr, is positive when Srr 

is greater than unity; in this case two boundary layers exist and the 
stress-concentration factor approaches zero as R increases beyond 
all bounds. When Srr is unity, the stresses are constant throughout 
the plate, and when S,T is smaller than unity, the stress-concentration 
factor becomes indefinitely large as R increases beyond all bounds. 

But infinite stress-concentration factors found for infinite plates 
should not dismay the engineer, because no one has yet built an infi­
nite plate or has loaded one at infinity. What counts is the behavior 
in the finite range which is illustrated in Fig. 3. 

In this figure four of the five full lines indicate slowly varying values 
for the stress-concentration factor in the practical range 3.5 S R < 
10, and the fifth full line shows low values for it. Below the value 3.5 
for R the rapid rise in all the curves is a consequence of the rapidly 
decreasing cross-sectional area available to carry the load. 

Of course, the solution obtained in this paper is rigorously valid only 
for the circular plate investigated. Similarly, the Kirsch solution holds 
rigorously only for the infinite isotropic plate. Whenever the stresses 
in a real plate of given shape and proportions are needed accurately, 
the actual article must be tested in the laboratory, a study must be 

made of a suitable model with the aid of photoelasticity, or a numer­
ical investigation must be undertaken with the help of the finite-
element method. 

Such a study has already been carried out in the case of finite rec­
tangular plates of varying proportions made of materials orthotropic 
with respect to a Cartesian system of coordinates. Of the many curves 
so obtained by Hong and Crews [5], only one is reproduced in Fig. 3; 
it is shown as a dotted line. It refers to an isotropic plate whose length 
is equal to twice its width. Between R = 3.5 and R = 10 the value of 
the stress-concentration factor is almost constant along this curve, 
and it differs little from the value obtained by Kirsch for the infinite 
plate. It is gratifying to observe that the dotted curve agrees very well 
with the isotropic curve of this investigation which is rigorously valid 
only for the circular plates. It appears, therefore, that the location and 
the shape of the outer boundary of the plate have much less effect on 
the stress-concentration factor than, for instance, the orientation of 
the fibers. 

It is believed, therefore, that the stress-concentration factor along 
the edge of a circular hole in a finite plate of arbitrary (but reasonable) 
shape and size can be calculated from the equations here derived with 
a value of R between 3.5 and 10 if the elastic properties of the plate 
are cylindrically symmetric with respect to the center of the hole, and 
if great accuracy is not required for the value of the stress-concen­
tration factor. 
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Diffraction of Elastic Waves by a 
Surface Crack on a Plate 

JLThe interaction of time harmonic elastic waves with an edge crack in a plate is studied. 
"~TKe crack is assumed to be normal to the plate surface and its depth small compared to 

plate thickness. Only plane strain deformations are considered: The incident waves are 
assumed to be either plane body waves (compressional (P) or inplane shear (SV)) of arbi­
trary angle of propagation or surface Rayleigh waves propagating at right angles to the 
crack. For each incident wave type the complete high frequency diffracted field on the 
plate surface is calculated. Solution is obtained by the application of an asymptotic theo­
ry of diffraction. Application to ultrasonic inspection techniques is indicated.l 

Introduction 
Study of the interaction of elastic waves with edge cracks is of 

considerable importance in a variety of engineering applications. In 
fracture mechanics the interest is in the stress concentration near the 
crack tip. In ultrasonic nondestructive testing the influence of crack 
length and direction of incidence on the diffracted wave pattern is of 
interest. 

Solution of the problem is complicated by the presence of the free 
surface in addition to the crack surfaces and the associated sharp 
edges. As a consequence inspite of its engineering significance the 
problem has not been widely treated in the literature. 

In a recent paper (Stone, Ghosh, and Mai [13]) the diffraction of 
antiplane shear waves by an edge crack was investigated. In [13] the 
problem was formulated in terms of a singular integral equation which 
was solved numerically for low and intermediate frequencies. At high 
frequencies the asymptotic solution was constructed from the solution 
of the well-known Sommerfield diffraction problem. It was shown that 
the asymptotic solution gives accurate results valid at surprisingly 
low frequencies (also see Achenbach and Gautesen [1]). 

The inplane edge crack problem can be similarly formulated in 
terms of a system of coupled integral equations which can, in principle, 
be solved numerically to determine the response of the crack at any 
frequency. As in most elastodynamic problems, the numerical solution 
is likely to be unreliable at very high frequencies, and should therefore 
be supplemented by an asymptotic solution at high frequencies. Such 
a solution is presented here. 

The inplane problem is considerably more complex than the anti-
plane one due to mode conversion of body waves on reflection as well 
as the presence of Rayleigh waves on the free surfaces. Fortunately 
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Fig. 1 Geometry of the problem 

at very high frequencies the problem can be decomposed into a 
number of canonical problems whose solutions are available in the 
literature. It is expected that the resulting solution will be valid in a 
frequency range which include some cases of practical importance. 

Theory 
We locate a Cartesian coordinate system at the intersection of the 

crack with the plate surface, with the x-axis along the plate surface 
and normal to the crack surface (Fig. 1). The z-axis is taken along the 
length of the crack. Then the plate occupies the region - <» < x < °°, 
0<y <h, - <= < z < «> and the crack occupies the region, x = 0 ±, 0 
< y < (, — co<z<«> , where h is the plate thickness, ( the crack depth. 
The incident waves are assumed to be polarized on the ry-plane, and 
all deformations are independent of z. Thus the problem can be for­
mulated in two dimensions on the xy -plane. We further assume that 
the crack faces do not come into contact during motion. 

The foregoing model corresponds to plane strain deformations of 
the plate. The formulations can be used, with minor modifications 
in plane stress situations (e.g., through cracks in thin plates, — °° < 
x < <*>;Q <y <h,—e <z < e,e small). 

As indicated in the Introduction it is extremely difficult to obtain 
exact solutions of elastodynamic problems associated with the above 
geometry. At low frequencies numerical solutions via integral equation 

570 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 
Copyright © 1981 by ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 

0.25 
0.33 

0.25 e0-314'' 
0.4 eoe< 

To 

0.67 e-1-31'" 
0.6 e~1M 

formulations similar to that in [13] can in principle be obtained. At 
high frequencies application of ray theoretic considerations is a nat­
ural and promising approach. 

In the ray theoretic approach the wave motion is constructed by 
calculating reflected, refracted, and diffracted waves from each in­
dividual surfaces and edges in the system by ignoring the presence 
of the others. In the present problem reflecting surfaces are the free 
surf aces of the plate (x < 0, x> 0, y = 0; — <*> <x <<*>,y =h) and the 
free surfaces of the crack (x = 0 ± , 0 < y <l). The diffracting edges 
are the crack tip x = 0, y = I and the two 90° corners x = 0 ±, y = 0. 
Thus it is necessary that the solution of the following canonical 
problems be available. 

(1) Reflection of Plane Harmonic Body Waves at a Free 
Surface. The solution of this problem is available in standard texts 
on elastodynamics (see, e.g., Eringen [4]). The results are expressed 
in terms of reflection coefficients Rpp{Bo), Rps(Bo), RSP(6O), Rss(6o) 
where the first index (P or S) indicates the incident wave type and 
the second index the reflected wave type, do is the angle of incidence. 
The expressions for these coefficients are given in [7]. 

(2) Diffraction of Body and Surface Waves by a Crack Tip. 
Since the effect of all other boundaries are ignored, the crack may be 
assumed to be semi-infinite. The solution to this half-plane diffraction 
problem has been given by Maue [11] for body wave incidence and by 
Freund [5] for Rayleigh wave incidence. The diffraction coefficients 
DPP(d, do), DPS(d, 60), DPRHO, 6O), DSP(6, 8a), Dss(6, B0), DSRH6, 80), 

DRP{8), DRS(6), DRR± are defined in the Appendix. 

(3) Finally, the Transmission and Reflection of Body and 
Surface Waves by a Right-Angled Wedge. To the authors' 
knowledge no analytical solution of this problem is available in the 
literature. However excellent experimental data and numerical so­
lutions for the reflection and transmission coefficients Ro, TQ of the 
Rayleigh waves have been obtained for Poisson's ratios of 3 and \ (see, 
e.g., Mai and Knopoff [10]; Fuyuki and Matsumoto [6]; Achenbach, 
Gautesen, and Mendelsohn [2]). These values are listed in Table 1. 

Unfortunately none of the available results include estimates of the 
spatial and angular variations of the diffracted body waves at the 
corner. Clearly, they decay as (feyr)-1'2 at a distance r from the corner 
where kj is the wavelength of either P or S waves. Further the decay 
becomes 0(kjr)~3/2 on the free surfaces of the wedge. The amplitudes 
of the reflected and transmitted Rayleigh waves in Table 1 also in­
dicate that very little of the incident wave energy is converted into 
body waves. Thus the diffracted body waves from the corner can be 
ignored for all practical purposes. 

In the case of body wave incidence, all propagating body waves can 
be obtained by ray construction, except for one ray incident directly 
on the corner. Since all the incoming energy is carried away by the 
doubly reflected P and SV waves, this single ray can not produce any 
outgoing surface waves on the faces of the wedge. It can be further 
argued that there can be no scattered body waves propagating away 
from the corner, since any virtual source of body waves at the corner 
must also produce surface waves. Thus the only possible effect of the 
unaccounted for ray is a disturbance restricted to the immediate vi­
cinity of the corner. The displacements produced by this disturbance 
in the far field must be of much lower order in magnitude than those 
due to the primary and secondary diffracted propagating waves in­
cluded in the present analysis. 

With prior knowledge of the solution of the three canonical prob­
lems described previously, an approximate solution of the edge crack 
problem at high frequencies can be constructed in a straightforward 
manner. 

Edge Crack in a Half Plane. We first assume that the lower 
surface of the plate is at infinity; so that the crack is located in a uni-

T + 

Fig. 2(a) 
crack 

Diffracted Rayleigh waves from body-waves incident on an edge 

1 "o \ P or S 

y 

Fig. (26) Reflection of diffracted body waves 

form half plane y > 0. The influence of the lower surface of the plate 
will be included in the next section. 

Incident Body Waves (Figs. 2(a, b)). Let plane harmonic P or 
SV waves be incident on the crack at angle do. The elastodynamic field 
due to the incident waves may be conveniently described by scalar 
potentials (foe-'1"', i/'0e~'™t, 

00 = / toe - '*1 '1 cos °° + y s in 6o' 

\p0 = BQ e-'k2(x cos 80 + y sin fl0) (1) 

where u> is the circular frequency and kj = a/cj, j = 1, 2; ci, C2 being 
the velocities of P and S waves in the medium. The time function 
e->ut appears in all field quantities and will be suppressed. 

If diffraction effects are ignored, approximate solutions for motion 
at all points in the medium can be immediately written down by 
means of the plane wave reflection coefficients RPP, Rps, RSP, Rss-
The solution obtained in this manner is usually called the geometric 
solution following a terminology used in optics. The geometric solution 
can also be described by means of potentials <j>g and \f/g, whose ex­
pressions can be easily written down. The displacement components 
due to the plane waves given by the geometric solution can be calcu­
lated from these expressions. These displacements are discontinuous 
across the boundaries between the various regions defining shadows 
of P and S waves. Diffracted waves from the corners at O and the edge 
at L must be added to the geometric solution in order that the total 
displacement field is continuous everywhere except on the crack 
OL. 

We shall assume that the displacement components in the incident 
(and geometric) field are 0(1) in frequency. As indicated earlier the 
diffracted body waves are 0(fe,r)~1/2 at a distance r from the dif­
fraction point. On the free surfaces the diffracted body waves are 
0(fe,r)~3/2 while the diffracted surface (Rayleigh) waves are 0(1). The 
behavior of the diffracted surface waves imply that multiple reflection 
between O and L must be included in the solution even at extremely 
high frequencies. The situation is further complicated by the fact that 
each Rayleigh wave arriving at the crack tip L gives rise to diffracted 
body waves which are of same order in frequency as the primary dif­
fracted body waves. It should be noted, however, that each successive 
reflection at O or L reduces the amplitude of the surface waves con-
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siderably so that for practical purposes inclusion of one or two re­
flections would be sufficient. We include all reflections in the analysis, 
since they are the lowest order terms in the high frequency solution 
and return to the significance of multiple reflections later. 

It is not necessary to retain the multiple reflection of body waves 
between 0 and L since they are two orders of magnitude smaller than 
those that are retained in the asymptotic solution. As indicated earlier, 
we also ignore the diffracted cylindrical body waves from the cornor 
0 , since either they are small, or are higher order (on the free surfaces) 
than (kjr)-1'2. 

In summary the diffracted field will be calculated by including 

(a) Cylindrical body waves due to primary diffraction of incident 
and surface reflected plane waves at crack tip L. 

(b) Surface (Rayleigh) waves generated by primary diffraction 
of incident and surface reflected plane waves at crack tip L. 

(c) Diffracted surface waves due to multiple reflection and 
transmission of the surface waves described in (6) between 0 and 
L. 

(d) Cylindrical body waves generated at L by all surface waves 
reaching L. 

The resulting solution would be valid to 0(fe/r)-1, strictly at points 
on the free surface and approximately (but with small error) at points 
in the interior of the solid. 

It is straightforward to write down the potentials due to the primary 
diffraction of the body waves at L. Denoting by ^pr^, ^pr

d the re­
sulting potentials, it can be easily shown that for incident P waves 

4>pr
d = A0\DPP(-K + 8, 80) + RPP(60)DPP(TT + 8,ir- B0) 

+ Rps(-0Q)DSp(ir + 6,TT-6s)\ 

i/Vrf = A0\DPS(ir + 8, 90) + RPp(d0)Dps(ir + 0, TT - 0O) 

€i(kir-w/i) 

k\r 

eHHr-rH) 
+ Rps(-e0)DSs(^ + e,w-6s)} = — (2) 

where (r, 8) are measured from L, as shown in Fig. 2(a) and 

8S = s i n - 1 (sin Bo/a) 

Similar expressions can be easily written in the case of incident S 
waves. The displacement components (ur

d, ugd) can be calculated 
from (2) by means of the relations 

ue 

'- iki4>d 

: ik2\p
d (3) 

The displacement components on each face of the crack after each 
successive reflection of the Rayleigh waves can in principle be written 
down in terms of the reflection coefficient RQ at 0 and the reflection 
and transmission coefficients at L defined in the Appendix. The 
transmitted surface waves on y = 0 and diffracted body waves from 
L due to each Rayleigh wave propagating on the crack faces in either 
direction can also be calculated. In order to carry out the details of 
this procedure we recall that for a Rayleigh wave propagating along 
a free surface, the surface displacement components normal and 
parallel to the surface differ by a multiplicative factor which is fixed 
for a given solid. Further, the two components of the displacement 
always differ in phase by TT/2 and the sense of motion is retrograde 
elliptic. Thus, recalling that time-dependence e~iwt has been sup­
pressed, the surface displacement vectors 

(4) 

where yr is a constant defined in the Appendix and kr is the Rayleigh 
wave number, represent Rayleigh waves propagating along the posi­

tive and negative x - directions in a half plane — °° <x < c ° , y < 0 . Then 
surface displacement on y = 0 must be given by 

(5) 

for x > 0 and by 

for x < 0, where T* are unknown complex constants. 
Similarly the displacement on the crack surfaces 0 < y < I are given 

by 

A+\ i j eikry + B+ | ^ | e~
ihr^-''> 

ITr/ \7r 
(6) 

for x = 0+ and by 

for x = 0—, where A±, B * are unknown complex constants. 
For an incident P wave the Rayleigh waves generated by primary 

diffraction at L and multiple reflection and transmission at 0 and L 
may be described by the system of linear equations 

A±=RaB
±eikrl 

B* = D B J J + A W + DRR-A±eikrl + ftiAoflra^flote-'7"'8in % 

T± = ToB±eihrl (7) 

Similar equations result for incident S waves; only the term con­
taining A0 is changed into k2B0D

:r
sll(80)e-ik^si" «o. Solution of the 

simultaneous equations (7) gives the unknowns A*, fi*, T* in terms 
of known quantities, 

A± = AnAoftoe'V-'"*!'8in i<>{Rae2ikrl(DRR+DpR±(8(>) 

-DRR-DPR*(8o)) + O M ' W I / A 

B * = k1A0e-ikil3i"6<>{R0e
2ikrl(DRR+DpR

±(.80) 

~ DRR-DPR*(8o)) + DpR^(8oW^ 

T± = kiA0Toeikr<-ihi<sin » ° | B o e a V ( Z ) M + 1 ^ ( 0 0 ) 

-DRR-DpRHBo))+DpR^(B0)}/A (8) 
where 

A = (RoDRR-e*l>r> - l ) 2 - (RODRRVT1)2 

It should be noted that if multiple reflection of the Rayleigh waves 
between O and L were ignored the surface displacments would be 
simply given by 

B± si k1A0D*pR{80)e-ikilsia<l° 

A± ^ .RoB±e'V 

r * en ToB±eikrl (9) 

The other terms in the resulting series expressions for A*, B±, T± 

in (8) give results of higher-order reflections between O and L. 
The cylindrical body waves generated by secondary diffraction of 

the.Rayleigh waves at L are given by the potentials 03ec
d , i /w d , 

where 
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0 s e c
d = {A-DRP(B) + A+DRP(-6)} 

i / w d = \A-DRS(6) + A+DRS(-8)\ 

The total diffracted body wave field given by 

ei(k\r - *V4) 

ei(k2r — TT/4) 

iktf 

* ikltj>
d = iM^pr + <j>d

aec) 

(10) 

(11) 

is valid for large (kjr) to 0(fe ;r)_1. In addition the diffracted Rayleigh 
waves on two sides of the crack are given by the surface displace­
ments 

(12) 

V 
(11) and (12) are the main results for P wave incidence. If the dif­
fracted body waves are observed on the free surface y = 0, their am­
plitudes and phases will be different from those obtained from (11) 
due to reflection effects. In order to include these effects let the field 
point be located at Q(x, 0), x > 0 (Fig. 2(b)). 

At very high frequencies the x and y- components of the surface 
displacement at Q must be modified by the multiplicative factors 

1 + flPP(0i') • 
y V - sin2 0! Rps(6i) 

sin Si 

and 

- 1 + RPPW) - tan 6lRPS(01') (13) 

Similarly, for S wave incidence the multiplicative factors are 

1 - Rss(8i') - tan 81RSP(8I') 

and 

V I - a2 sin2 0i RSp(8i). 
1 + Rss(8i')+-

<j sin tfi 
(14) 

where 

a = kz/hi, 8' = ir — 8\ 

The foregoing formulation can now be used to calculate high fre­
quency displacements at almost all points on the surface of the me­
dium for incident body waves. 

Incident Rayleigh Wave. Let a Rayleigh wave with surface 
displacement 

A0 
(i/yi 

be incident on the crack from the left side (Fig. 3). The situation is 
somewhat different from the body wave cases considered previously, 
since the Rayleigh waves are inhomogeneous waves and there is no 
primary diffraction at the crack tip at high frequencies. The dis­
placement components can be calculated as before. It can be shown 
that the Rayleigh waves on the +ve and —ve faces of the crack are 
given by 

/ l 

eikry; B+ I _ ; J e-ikrly-l) 

\yr 

•iy / - i | 
A~ I'JL I e'kry' B~ \~l I e-ikr<y-') 

W I \7r 

-°v 
T+ 

Fig. 3 Diffracted Rayleigh waves from incident surface wave on the edge 
crack 

where 

A+= R0T0TLe2ikrl/A 

A' = To + R0T0\R0e^r'(TL2 - RL2) + RLe2ikrl\/A 

B+ = T0TLeikr'/A 

B- = \ToRLeikrl + fl0r0e
3iV(TL

2 - flL
2))/A 

A = (R0RLe2ikrl - l ) 2 - (R0TLe2ikr1)2 

and we have written D+RR = Th; D~RR = RL. Transmitted and re­
flected Rayleigh waves on the free surface are given by the displace­
ment vectors 

(15) 

for x > 0, and 

Yr I e~'Krx (16) 

V 1 

for * < 0, where 

T+ = T0
2TLe2ikrl/A 

T~=Ro+ [T0
2e2ikrlRL + R0T<?e*ikr'(TL

2 - RL
2)]/A 

The influence of the successively reflected Rayleigh waves between 
L and O can be recovered as before by expanding A - 1 . The diffracted 
body waves can also be calculated in a straightforward manner. The 
details of these calculations will be omitted. 

The transmission and reflection coefficients T + and T~ are func­
tions of (krl) as might be expected. It can be easily seen however that 
they are both 0(1) in krl. Thus each of them oscillates about a con­
stant value at all frequencies, so that even if krl —>• °°, i.e., the crack 
is infinitely long compared to the wavelength T+ does not vanish. This 
result although somewhat unsatisfactory, is easily explained by the 
unrealistic two-dimensional nature of the model. 

It should be further noted that if multiple reflection between L and 
O are ignored 

| T + | \T<?TL 

and 

\T~\ - |fio| 

For most materials |T 0 | =* 0.6, \TL\ <* 0.2, and |fi0 | =* 0.3. Thus 

\T+\ =* 0.07, \T~\ ^ 0 . 3 

Clearly a very small amount of the incident energy is transmitted 
across the crack and the overall energy balance implies that most of 
the surface wave energy is converted into body waves by interaction 
with the crack. 

Edge Crack in a Plate. The solution just described can be ex­
tended to the cases where the solid medium may contain other 
boundaries. The additional complications are only geometric and 
algebraic in nature. 
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Fig. 4 Diffracted body waves from the crack tip 

As an illustration of the foregoing we assume that the medium is 
bounded below by a free surface — » < x < <», y = h, — <» < 2 < <». We 
seek solution under the restriction kjl » 1 (waves short compared to 
plate thickness), and / « h. 

We consider the motion generated by the diffracted waves at a point 
Q on the plate surface located at (x, 0). The body wave ray paths be­
tween the crack tip L and Q are shown in Fig. 4. Other ray paths which 
include multiple interaction between the plate surfaces are ignored, 
although they can be included if necessary. Clearly the direct P or S 
waves must leave L at an angle 81, where 

9i = 7r - t an" 1 (x/l) (17) 

in order to arrive at Q. The PP or SS wave leaves L at angle 82 
where 

x = (2/i - 0 tan 82 (18) 

Similarly the angles of the PS and SP are 6S and 84, respectively, 
where 

x = (h — I) tan 83 + h tan fa 

x = (h — I) tan 84 + h tan 04 

c 2 . 
sin (£3 = — sin 83 

C l • a 
sin 04 = — sin 04 

C2 

(19) 

(20) 

It is to be noted that the angles 0\, 82,8a, 84 are well defined for all C2/C1 
< 1 so long as x, I, h are finite. For given values of C2/C1, x/l, h/l, 8\ and 
62 are calculated directly from (17) and (18) while 83 and 84 axe most 
easily calculated by trial and error. 

The effect of the bottom surface of the plate is to give two reflected 
body wave rays for each diffracted body wave incident on it. At high 
frequencies (kjh » 1), these contributions can be calculated by simple 
plane wave reflection considerations. 

Special attention must be paid to the diffracted body wave rays that 
propagate directly downward from L: No mode conversion (from P 
to S or vice versa) of these rays occur on reflection at the bottom 
surface of the plate. Since most of the energy in the diffracted ray is 
returned on reflection, the secondary diffraction at the crack tip from 
these reflected rays are relatively strong, thus significant Rayleigh 
waves on both sides of the crack are produced. These waves have same 
orders of magnitude as the primary diffracted body waves. The 
Rayleigh waves in turn are transmitted through the corners to create 
motion on the plate surface on either side of the crack. The motion 
due to these waves can be calculated from the results of the previous 
section by assuming incidence angle Bo = 0. 

The motion on either surface of the crack due to diffraction can be 
calculated by means of the procedure just described. For Rayleigh 
wave incidence the secondary diffracted Rayleigh waves previously 
discussed are the strongest distinguishing features in the surface 
motion for the plate problem as opposed to the half plane. 

Numerical Results and Discussions. The normalized x-com-

r\ V \ V \ /~\ /'\ r\ 

Fig. 5 Amplitudes of transmitted, reflected, and secondary shear converted 
Rayleigh waves for Poisson's ratios of ^ (solid curves) and 1 (dashed 
curves) 

Fig. 6 Amplitudes of Rayleigh waves in x > 0 due to shear waves incidence 
at different angles; solid curves are for primary diffracted waves, dashed 
curves for secondary shear converted Rayleigh waves 

ponent of the displacement on the plate surface y = 0 due to various 
types of wave incidence is plotted against the dimensionless frequency 
k\l in Figs. 5-8. The normalized displacement U is defined by 

U = u(x, 0)/u°(0,0) 

for Rayleigh wave incidence and by 

U = uU,0) / | u° (0 ,0 ) | 

for body wave incidence. In all cases it is assumed that h = 101, and 
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Fig. 7 The significant diffracted body waves at x/l -
wave at 30°; wave types are defined in Fig. 4 

10 due to incident shear Fig. 8 Motion at x/l = - 1 0 due to P wave incidence at 30°; R is primary 
diffracted Rayleigh wave, SR the secondary shear converted Rayleigh wave; 
diffracted body waves are defined in Fig. 4 

that the Poisson's ratio of the plate material is I (except in Fig. 5). 
The surface displacements produced by transmitted, reflected, and 

secondary diffracted Rayleigh waves due to an incident Rayleigh wave 
are shown in Fig. 5 for two values of the Poisson's ratio. It can be seen 
that the reflection coefficients are significant, especially for v = J and 
that the transmission coefficients are negligibly small. For v — \ the 
reflection and transmission coefficients oscillate about 0.3 and 0.07, 
respectively, values previously obtained by ignoring multiple reflec­
tion of the Rayleigh waves within the crack. The same is true for 
v = \. 

It should be noted that the reflection and transmission coefficients 
T± are not influenced by the bottom surface of the plate. Hence, these 
coefficients are identical with those for an edge crack in a half plane. 
The half-plane problem has been considered in three recent papers 
by Achenbach and his colleagues [2, 3,12]. Reference [2] contains the 
high frequency asymptotic solution for Rayleigh wave incidence. The 
reflection and transmission coefficients given in [2] are in basic 
agreement with T± shown in Fig. 5 for v = \. 

The secondary Rayleigh waves shown in Fig. 5 are generated by the 
reflection of the diffracted S waves at the bottom surface of the plate 
and subsequent diffraction of these reflected waves at the crack tip 
L. Amplitudes of these waves decay with frequency and are symmetric 
with respect to the crack. Secondary Rayleigh waves are also generated 
by the reflection a ty = h of P waves from the virtual source a t i . But 
the amplitudes of these secondary waves are negligibly small in all 
cases studied here, and therefore are not shown in Fig. 5. Amplitudes 
of the other body wave arrivals after reflection at the lower plate 
surface y = h are also smaller than those of the transmitted Rayleigh 
waves and are not plotted in Fig. 5. 

Figs. 6 and 7 contain representative results for shear wave incidence 
at different angles. Rayleigh waves produced by the interaction of the 
edge crack with shear waves incident at 0°, 30°, and 45° are shown 
in Fig. 6. Clearly, shear waves propagating parallel to the crack pro­
duces the strongest Rayleigh waves amongst all cases considered here. 
The secondary shear converted Rayleigh waves are also quite strong. 
The amplitudes of these waves decrease with increasing angle of in­
cidence. The primary diffracted and reflected body waves arriving 
at a point x/l = 10 on the surface y = 0 due to S wave incidence at 30° 
are shown in Fig. 7. The notable features here are the strong reflected 
SS and direct PD waves for the diffraction point L. The diffracted 
body wave amplitudes are considerably smaller at other angles of 
incidence (including incidence parallel to the crack). 

Body and surface waves of significant amplitude produced by in­
cident P waves at 30° are plotted in Fig. 8. It can be seen that the field 

is dominated by reflected waves from the lower surface of the plate 
y = h. 

Calculations of the diffracted field for other values of x/l were also 
carried out. The diffraction pattern was found to be similar except 
for the amplitude changes of the body waves caused by changes in 
distance between the virtual source and the field point. 

The general conclusions that can be drawn from the present study 
are as follows: 

1 The crack is an efficient reflector and poor transmitter of 
Rayleigh waves. The crack tip diffracted shear waves reflected from 
the opposite face of the plate directly below the crack produce rela­
tively strong Rayleigh waves after secondary diffraction at the crack 
tip. 

2 Both primary and secondary diffracted Rayleigh waves gener­
ated by incident shear waves are relatively strong at all angles of in­
cidence, and especially for incidence parallel to the crack. Some of the 
body wave rays also carry significant energy. 

3 Primary diffracted Rayleigh waves generated by incident P 
waves are small for all angles of incidence. The secondary shear con­
verted Rayleigh waves and some of the body wave rays reflected off 
the lower surface of the plate have significant amplitudes for oblique 
incidence. 

For Rayleigh wave incidence both the primary and secondary 
Rayleigh wave pulses have been observed and recorded in experiments 
involving plates containing long fatigue cracks (Tittman and Buck 
[14]). Fourier analysis of these pulses should exhibit the oscillatory 
behavior in their amplitudes as shown in Fig. 5. The period of oscil­
lation is approximately related to the crack length through krl = ir. 
It should also be possible to record the onset and pulse shape of some 
of the relatively strong body waves. These observations could be useful 
in the accurate determination of the geometrical properties of an edge 
crack. 
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APPENDIX 

The Diffraction Coefficients 
For P wave inc idence on t h e crack x > 0, y = 0 ± , t h e po ten t i a l s in 

t h e inc iden t a n d diffracted body wave field a re re la ted t h r o u g h t h e 

equa t ions , 

00 = e.7ji(aoj + /Joy), ^ 0 = 0 

0<* = DPP(B, 6a)e^kv ~ 'M/y/kir 

\pd = DpS(8, 0o)e
i^r ~ */4)/i/ktf 

where 

a0 = cos 8Q, @O = sin do, 

6o is t h e angle be tween t h e inc iden t ray a n d x-axis ; (r, 8) t h e polar 

coord ina tes of t h e field po in t (x, y); Dpp, Dps a re t h e diffraction 

coefficients. Similar ly , diffraction coefficients Dsp{8, &o), Dss{8, 8o) 

can be def ined for S wave incidence. T h e diffracted Rayleigh dis­

p l a c e m e n t c o m p o n e n t s are given by 

udR(x,0+) = k1DXR^ «ft)' 
udli(x,0-) = k1DXR-(d0) 

ihr 

- 1 

,ikrx 

rjikrX 

T h e symbol X in t h e diffraction coefficients is ei ther P or S depending 

on w h e t h e r t h e inc iden t wave is a P or S wave, a n d 

kr — o>/c>, 

yr = (2 - (c r/c2)2j/{2 y/T- (c r/c2)2) 

For Rayle igh wave inc idence we a s s u m e t h a t t h e crack is located 

in x < 0, y = 0, a n d t h e waves a re inc iden t a long t h e negat ive face of 

t h e crack x < 0, y = 0—. T h e d i s p l a c e m e n t vector on t h e crack face 

d u e t o t h e i nc iden t wave is 

'i/y, 

- 1 
jikrx 

T h e diffracted b o d y waves in t h e far field are descr ibed by t h e po­

ten t i a l s , 

hd~ 
P f l p W ,i(*ir - *H)/y/kl 

ki 

T h e ref lected Rayle igh waves on t h e negat ive face of t h e crack a n d 

t h e t r a n s m i t t e d Rayle igh waves on t h e posi t ive face have associa ted 

d i sp l acemen t vectors u r a n d u ' w h e r e 

-i/yr\ 

- 1 

ihr 

D~ •ikrx 

.D.-(t •ikrx 

T h e express ions for t h e n o n d i m e n s i o n a l diffraction coefficients are 

given in [7]. 
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Plane Elastic Waves Generated by 
Dynamical Loading Applied to Edge 
of Circular Hole 

[n the generalized plane stress, or plane strain, elastodynamic problem of an unbounded 
body", subjected to sudden application of tractions at the surface of a circular hole, is con­
sidered. In general this problem involves three independent variables, two spatial coordi­
nates, and time, but it is shown how the method of characteristics, for one spatial variable 
and time, can be applied when the dependent variables are expanded as Fourier series 
in terms of the polar angle 6. A numerical procedure is proposedjor the method of charac­
teristics and numerical results are obtained for a specific example} 

Introduction 
The plane problem of the response of an unbounded elastic body 

subjected to a suddenly applied, spatially uniform, application of 
loading at the surface of a circular hole has been studied extensively 
by Kromm [1], Selberg [2], and others. Kromm and Selberg used 
Laplace transform techniques to obtain their solutions, and Miklowitz 
[3], in solving a related problem of waves from a suddenly punched 
hole in a stretched plate, used an improved and more direct method 
of inversion of the Laplace transforms. The problems considered in 
[1-3], involve one spatial variable and time. Such problems can also 
be solved, numerically, by the method of characteristics as shown by 
Chou and Koenig [4]. In th is paper we are concerned with a general­
ization of the problem considered in [1, 2], which arises when a spa­
tially nonuniform application of surface tractions is applied at the 
circular hole. Eringen [5] considered this generalization and also 
moving loads at the surface of the hole and indicated how solutions 
could be obtained by using integral transform methods, but did not 
give any numerical results. Ziv [6] has shown how the method of 
characteristics can be extended to analyze elastic wave propagation 
problems with two spatial variables, but again no numerical solutions 
were given. In this paper we present a different approach for the so­
lution of a class of elastic wave propagation problems with two spatial 
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variables. The dependent variables are represented by Fourier series 
in terms of the polar angle 6. Each "harmonic" of these variables is 
governed by a system of partial differential equations, which is hy­
perbolic. Such a system of equations and boundary conditions is not 
coupled with any other harmonic and has two independent variables, 
a spatial variable, and time. A solution is obtained by solving each 
system by the numerical method of characteristics, for one spatial 
variable and time. This gives the coefficients of the Fourier series for 
the dependent variables. 

Haddow and Mioduchowski [7] used the method of near charac­
teristics to obtain solutions to the problem of the unloading waves 
from a suddenly punched hole in a uniaxially stretched elastic plate. 
It has now become evident to us that this problem is a special case of 
the class of problems considered in this paper and that results can be 
obtained by the simpler procedure presented here. 

Formulation of Problem 
It is assumed that the plane elastic body is homogeneous and iso­

tropic, although, with trivial modification a transversely isotropic 
body with the axis of isotropy in the direction of the axis of the hole 
can be considered. It is further assumed that the dimensions of the 
body in the plane are very large compared with the radius of the hole 
so that the body can be taken as unbounded and there are no reflected 
waves. The procedure presented is valid for both plane strain and 
generalized plane stress but the equations given are for generalized 
plane stress. Since the two independent elastic constants in these 
equations are taken as the shear modulus fi and Poisson's ratio v, the 
plane strain equations can be obtained by replacing v, in the plane 
stress equations, by c/(l — v). 

We take the origin of plane polar coordinates, r and 8, on the axis 
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u = u<°'(r, t) + E w(n)(r, t) cos W0, 
n = l 

o = £ «<"'(/•, t) sin nS. 
n = l 

(13) 

(14) 

Substituting equations (10)-(14) in equations (3)-(7), and equating 
coefficients of cos nd, gives 

d<rr<
n» nr<n> (o><"> - <r»(n>) • d2u ( n ) 

• + + = P-
dr r r 

dTM 2 r ( n ) n 

dfc2 

• + -
r r 

(n) : d2l><n) 

dr r r ' d t 2 

duW _ (g>("> - iW"> 

dr "2JL*(1 + ") ' 

uM nvin) ^ (aeM-VCrrM 

r r 2/i(l + v) 
Fig. 1 Coordinate system 

of the hole of radius a as shown in Fig. 1. Initially the body is at rest 
and unstressed so that 

nu M du'"' v^ T ' " ' 

(15) 

(16) 

(17) 

(18) 

(19) 

or(r,0,t) = ag(r, 8,t) = rrg(r, 8,t) = 0 
r>a,t<0 (1) 

r dr r n 

for n = 0 ,1 , 2 . . . 
We note that T<°> = 0 and u(0) = 0, so for n = 0 equations (15)-(19) 

reduce from five equations to three, namely, equations (15), (17), and 
(18). 

Comparing equations (8) and (9) with (10) and (12), gives 

u(r,8,t) = v(r,8,t) = 0 

where ay, ag, and rrg are the stress components in the usual notation, 
t is time and u and v are the radial and circumferential components 
of displacement, respectively. At t = 0 surface tractions 

<rrLa,0,t) = p ( 0 , t ) H ( t ) , 

Trt,(a,d,t) = T(d,t)H(t), 

are applied at r = a, where H(£) is the unit step function. 
The equations of motion are 

arM(a,t)=Pn(t), 

7-<">(a, t) = Sn(t). 

(20) 

(21) 

(2) 
If equations (17)-(19) are differentiated, partially with respect to 

time, equations (15)-(19) can be put in the form 

5q(n) dq(n) 
A - 2 — + B - ^ — = b<">, 

dt dr 
(22) 

dffr 1- dTrfl (o> - era) _ d2u 

dr r d0 dt2 

ld<r8 dTr8 2 d2u 

r d0 dr r dt 2 

(3) 

(4) 

where 

and the constitutive equations in terms of the shear modulus and 
Poisson's ratio are A = 

dU _ (a> — lHJg) 

dr ~ 2(1 + v)n ' 

u 1 dv _ (ae — var) 

r rdd 2 (1+ !/)/*' 

1 du dv V Trg 

r dd dr r n 

(5) 

(6) 

(7) 

2(1 + v)n 2(1 + v)n 

v 1 

2(1 + v)n 2(1 + v)n 

M e t h o d of C h a r a c t e r i s t i c s 
First we consider loading at r = a which is symmetric about 0 = 0. 

Boundary conditions (2) may then be expressed as 
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ar(a, 6, t) = Pa(t) + £ P„{t) cos nd, (8) 

Tr6(a, 8,t) = Z Sn(t) sin nd. (9) 
n = l 

We seek a solution for the stresses and displacements in the form 

(10) ffr = o- r«»(r,t)+ £ ffr(»)'(r, t) cos nd, 
n = l 

<jg = <7«<°»(r, t) + L aeM(r, t) cos n8, 

Trg = £ 7-(n)(r, t) sin nB, 

(11) 

(12) 

,M : 

.<«n 
(») CO 

T (n) , (n) : 

0 

r r 

r r 
(<7r<"> - agM) nrM 

r r 
2T<"> n<rgM 

and a superposed dot denotes differentiation with respect to time. 
Equation (22) represents a set of five linear first-order partial-dif­
ferential equations. The system is hyperbolic and by using the stan-
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dard techniques, given by Whitham [8], we obtain the characteristic 
directions, 

- = ±cT, 
dt 

dr 

dt 
±CL, 

dr 

dt 
• = 0 , 

and the relationships, 

do'") 

dt 

du<»> 

1 dTM 1 ( 1 

ptr dt r [ p 

+ CT{ndM + vW) on 
dr 

dt 

1 

dt pCh dt 

d<r,>> 1 
• = ± - (<r,» • 

Id op (n) 

- vCL{uM + nvM) 

dor
M' 

,<"' + reT(n)) 

dr 
l — = 

dt 

2(1 + v)̂ t I dt dt 
- (u^ + nvM) 
r 

±CT , (23) 

±CL, (24) 

l — = 0, 
dt 

(25) 

where 

""-e 
1/2 

and C/, = Cy 
1/2 

are the transverse and longitudinal wave speeds, respectively. When 
n = 0, equation (22) represents a set of three equations. The charac­
teristic directions are then 

dr 
- = ±CL dt 

and 0, 

and the relations along the characteristics are equations (24) and (25). 
Henceforth we denote the characteristics with slopes ±Cy, ±Cf,, and 
0 as the ±fr» ± f t , and fo characteristics, respectively. 

If the boundary conditions (1) and (2) have discontinuities with 
respect to time these discontinuities are propagated at speeds CL and 
CT, respectively. It may be deduced from those of equations (22) 
which are in conservation form that, for waves traveling radially 
outwards, 

[ae<»>] = vWn\ 

[<TrM] = -PCL[uM], 

[T-M] = -pCT(vM], 

(26) 

(27) 

(28) 

where the square brackets have the significance [A] = Ai — A\ and 
Ai and A\ are the values of A ahead of, and behind the wave front, 
respectively. Since the material of the body is homogeneous we deduce 
that discontinuities of o>("' and T ' " ' travel in the (r, t)-plane along 
straight characteristics with slopes C/, and CT, respectively. 

If we consider loading at r = a which is antisymmetric about 
0 = 0 the boundary conditions (1) and (2) may be expressed in the 
form 

or(a,0,t)-= £ Qn(t)smnd, 
n=l 

Tre(a, 6, t) = T0(t) + Y. Tn(t) cos nO. 
n = l 

(29) 

(30) 

The procedure followed is analogous to that for symmetric loading. 
The characteristic directions are the same, however, in the relations 
along the characteristics, n in equations (23)-(25) is replaced by —n. 
Also, o>(0) = 0,<re<

0> = 0, and u(0» = 0 so that for n = 0, the matrix 
equation (22) represents two equations and the relations along the 
JY characteristics are equations (23) with n replaced by —n. 

Nondimensionalization 

We introduce the following nondimensionalization scheme: 

(o>», ov,*"1, f (">) = (ar
M, <reM, T(re))//i, (u,v) = (u,.v)/CT, 

t = CTt/a, CT = 1, CL = CL/CT = (2/1 - v)W 

Fig. 2 Characteristic mesh 

(u, u) = (u, u)/a, r = r/a, a = 1. 

Henceforth we use nondimensional forms but for convenience we omit 
superposed bars. The nondimensional forms of the slopes of the 
characteristics are 

dr dr 
— = ±1 , — : 
dt dt 

2 \i/2 dr ;0, 
U - v] dt 

and the corresponding relations along the characteristics are 

dvM drrt)
M 1 

dt dt 
= - ) ± ( 2 T 1 " ' -ra<r«(n>) + mi'"1 + t)<n'}, 

r 

dii<"> ll-vY^dar
M 1 fr) dt \ 2 I dt 

12 - i/2\i/2 

on dr/dt = ± 1 , (31) 

±(<rrM -a0
M + reT<n)) 

l - v 

daeW 

(uM + rwM) 
dr 

dt 

U/2 
(32) 

2(1 + v) 

dar
M 1 dr 

-(u<"> + ra)<n)) on — = 0. (33) 
r dt 

dt dt 

The nondimensional forms of equations (26)-(28) are 

W„M] = v[arM], 

2 \i/2 
Wn)] [u(n)], 

[TM] = [„(«)]. 

(34) 

(35) 

(36) 

Again we note that the relations presented are for generalized plane 
stress and the plane strain relations can be obtained by replacing v 
by vl(l - v). 

Solution of Problem 
In this section we present the method of solution for loading, at 

r = 1, which is symmetric about 8 = 0, so that it can be represented 
by equations (8) and (9). The method of solution for the antisym­
metric loading represented by equations (29) and (30) is similar but 
with the appropriate changes, for example, n replaced by — n in 
equations (31)-(33). 

The first step is to obtain the coefficients Pn(t) and Sn(t) in 
equations (8) and (9). It follows from equations (20) and (21) that this 
gives us prescribed data for ar

M and T , " ' o n r = l in the (r, t) char­
acteristic plane. We have five families of characteristics in the 
(r, t)-plane for n > 1. A numerical scheme for stepwise integration 
of such systems has been suggested by Whitham [8], however, this 
scheme was found to be inapplicable to the present problem. The 
characteristic mesh used is shown in Fig. 2 and is similar in form to 
the near characteristic mesh used in [7] but has a different signifi­
cance. 

In Fig. 2 only segments of the ± f r characteristics are shown except 
for the characteristic AP given by r = t + 1, which is shown as a 
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dashed line. Referring to Fig. 2 the characteristic AB given by r = Ci,t 
+ 1, where, in nondimensional form Cx = (2/1 — v)^2, represents the 
wave front and divides the (r, £)-plane into two Regions I and II. It 
follows from equation (1) that in Region I all the field variables are 
zero. Along characteristic AB on Side II all the elements of the column 
matrix q(n) = \<rr

{-n'1, <r/n\ r ( n \ u ( n ) ) r , where the superscript T denotes 
the transpose, are known. If P„ (0) = 0 there is no discontinuity of any 
of the elements of q (n) across AB so that q(n) = 0 on Side II of AB. If 
P„(0) ^ Othereisajump [oy<"> (1,0)] and the discontinuity [aT^nKCLt 
+ 1, ()] is propagated along AB. It follows from the theory of propa­
gation of wave fronts [9] that [o-/">(CLt + 1, t)] = [o>(nHl, 0)] r"1/2. 
The discontinuities [ti'™'] and [ov/"'] across AB are found from 
equations (34) and (35), and o ( n ) and T (n ) are continuous. It follows 
then that q'"' is known on Side II of AB. If Pn (t) is discontinuous at 
times other than 4 = 0 the discontinuities are propagated along the 
appropriate fo, characteristic. Similar remarks apply to discontinuities 
in Sn(t) except that these discontinuities are propagated along Jv 
characteristics. 

Referring to Fig. 2, the three unknowns at D are 
found by solving the three simultaneous equations given by the finite 
difference: forms of equations (31)-(33) for the segments AD, CD, and 
ED of the fo. — fz,, ~ fT characteristics through D. Next, the five un­
knowns, that is the elements of q(">, at G are found by solving the five 
simultaneous equations given by the finite-difference forms of 
equations (31)-(33) for the segments DG,FG, EG, HG, and IG. The 
values of q'"' at F and H are found by interpolation. The values of q'") 
at the other nodal points along the fz, characteristic DJ are found, 
successively, in a similar manner. The procedure is repeated for nodal 
points along LM and continued until point K is reached. If Sn (0) 5̂  
0, there is a jump [ r ( n , ( l , 0)] and the discontinuity [r^it + 1, £)] is 
propagated along the fr characteristic AP. This discontinuity also 
decays as r~l12 and when the finite-difference forms of equations 
(31)-(33) are used in the numerical technique, account must be taken 
of the discontinuities for segments cut by the IT characteristic AP. 

The determination of the field q<°> = |o><°>, a0
m, u ( 0 ) lT is 

straightforward since only ±fo and fo characteristics are involved and 
the technique described by Chou and Koenig [4] is applicable. 

We note that if p(0, t) and T(0, t) in equations (2) can be expressed 
in the forms 

p ( 0 , t ) = p * ( 0 ) / ( t ) , 

T(0, t ) = T * ( 0 ) / ( t ) , 

a simplification arises in the determination of the coefficients Pn(t) 
and Sn(t) in equations (8) and (9) since these can be expressed as 

Pn(t) = Pn* fit), 

Sn(t) = Sn*f(t) 

where Pn* and Sn* are constants. 

Consideration of Special Cases 
1 Waves From Suddenly Punched Hole in Plate Subjected 

to Uniaxial Tension. Solutions for the sudden punching of a circular 
hole in a thin plate subjected to uniaxial tension have been obtained 
by Haddow and Mioduchowski [7] who used the method of near 
characteristics and the details of the problem are given in [7]. This 
problem can be regarded as a special case of the class of problems 
considered here if we subtract the initial uniaxial tension ay = s. The 
boundary conditions are 

o>(l ,9,t) = - - ( l - c o s 2 0 ) / ( t ) , (37) 

TrdlJ.t) = - - s i n 20 

is the time to punch the hole as discussed in [7]. Consequently nonzero 
coefficients in equations (8) and (9) are 

Po = - - / ( * ) , Pi = -f(.t), 
2 2 

s2 = --f(t). 
2 

A solution to the problem with quiescent initial conditions and 
boundary conditions (37) and (38) is readily obtained by the method 
described. The initial uniaxial tensile stress is then added to obtain 
a solution to the original problem. Results obtained are not presented 
but are identical to those in [7] but were obtained with substantially 
less computational effort than by the method of near characteris­
tics. 

2 Waves Due to Suddenly Applied Normal Stress on Part of 
Circumference. The problem that we now consider involves normal 
tractions at r = 1, which are symmetric about 0 = 0, and zero shearing 
traction. The numerical results which are given are for plane strain, 
so that v is replaced by v/(l - v) in the governing equations. A step 
function application of loading is assumed at r = 1,0< |0 | < a,of the 
form 

1 / TrfA 
or(\,6, t) =- 1 + c o s — H(t), | 0 | < a , 

= 0, a < \6\ < ir, (39) 

T r 9 ( l , 0 , i ) = O. (40). 

The Fourier coefficients, in equations (8) and (9), which correspond 
to equations (39) and (40) are 

Po = r-H(t), 
2ir 

sin na I TT \ „ , , 
Pn= — H(t), n = l , 2 , . . . 

na \7r̂  — n'-cr] 

Pn= — H(t), n = w/a, 
2ir 

Sn = 0, n = 0, 1, 2 . . . (41) 

The coefficients given by equations (41) were used in the procedure 
already described and results were obtained for a = 60°, for the 
stresses. A nondimensional time increment, At = 0.01, that is AD = 
0.02 in Fig. 2, was used in the finite-difference form of equations 
(31)-(33), and the series was terminated at re = 14. For smaller values 
of the semiangle a, more terms are required since convergence of the 
Fourier series representation of equation (39) is slower, the smaller 
the value of a. Numerical instability is encountered in the numerical 
scheme, described in the previous section, beyond a certain value of 
t which decreases as re increases and as the increment At is increased. 
For values of n up to 14 and with an increment t = 0.01 it was verified 
that the numerical values of ar

 <n), crgM, and 77s(n) obtained from the 
method of characteristics approached closely the equilibrium values 
and no instability occurred for t < 7. The equilibrium values were 
obtained from a special case of a solution obtained by Michell [10]. 

The variations of the stresses, with time, for several points are 
shown graphically in Figs. 3-6. Equilibrium values, obtained from the 
solution of Michell [10] are also shown, and the time-dependent 
stresses approach these as time increases. 

It is interesting to note that the arrival times of the disturbance, 
for points not in the region r = 1, 60° > |0 | , are clearly evident in the 
figures. 

Miklowitz [11] has given a solution, based on transform methods, 
for the problem of a normal line load of unit intensity at the cavity-
surface. We can approach this problem by taking 

where 

/ ( t ) = - | H ( t ) - H ( i - t * ) } + H ( i - i * ) and t* 
t* 

o>(l,0, t)=— 1 + c o s — | H ( t ) , | 0 | < a 
2a \ a I 

= 0, a< |0| < i r , 

Tre(l,8,t) = 0, (42) 
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Fig. 3 Variation of nondimensional circumferential stress with nondimen-
sional time at r = 1 for 0 = 0°, 45°, 90°, 180° 
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Fig. 4 Variation of radial stress with time at r = 1.496 

and le t t ing a become smal l , however for small a, say a = 5° consid­

erably m o r e c o m p u t a t i o n a l effort is r equ i red t h a n for t h e example 

given. As a, in equa t ion (42), approaches zero i t is p robab le t h a t an 

integral t ransform me thod with numerical inversion of the transforms, 

as descr ibed in [12], would require less computa t iona l t ime b u t more 

difficult analy t ica l t e chn iques . T h e m e t h o d p r e s e n t e d is n o t readi ly 

appl icable t o t h e l imi t ing case of equa t ion (42) a s a - ' O , which cor­

responds to a c o n c e n t r a t e d radia l load of un i t in tens i ty , since t h e 

Four ier series (8) does n o t converge. 
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Equilibrium of Heavy Elastic 
Cylindrical Shells 

I An originally circular, heavy elastic shell rests on a horizonal surface. The equilibrium 
shape is governed by the heavy elastica equations. The solutions depend heavily on the 
parameter B, which represents the relative importance of density and perimeter length 
to flexural rigidity. There are four distinct cases. A perturbation analysis is obtained for 
small B while a similarity solution exists for large B. The general solution is obtained by 
accurate numerical integration using a least change secant update quasi-Newton method 
and a new homotopy method. \ 

Introduction 
Consider a thin elastic originally circular cylindrical shell lying on 

a horizontal surface. Due to its own weight, the shell deforms into a 
noncircular shape (Fig. 1). The equilibrium of heavy elastic shells is 
important in the following areas: Thin shells intended for aquatic or 
space environments may not be able to support themselves on ter­
restrial ground. The shell may experience irreversible damage due 
to high local bending moments. On the other hand, the equilibrium 
shapes provide a means of testing the flexural rigidity of flimsy ma­
terials such as textile loops. 

If the thickness of the shell is thin compared to its perimeter, the 
heavy elastica equations may be used to describe the equilibrium 
shape [1, 2] 

d20 
EI = Tsin0 + (F-

ds'2 

dx' dy' 
— = cos a, — = 
ds' ds' 

ps') cos ( (1) 

(2) 

Here EI is the flexural rigidity, 8 is the local angle of inclination, p is 
the weight per perimeter length of the material, s' is the arc length, 
x' and y' are Cartesian coordinates, T and F are the horizontal and 
vertical forces at s' = 0, respectively (Fig. 1). We normalize all lengths 
by the half perimeter length L 

s = s'/L, x = x'/L, y = y'/L (3) 

Equations (1) and (2) become 

d20 
— = A sin 8 + (C - Bs) cos 6 
rind, 

(4) 
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Fig. 1 The coordinate system 

dx 

ds 

dy 

where 

A-^, B~e.t c = ^ 
EI EI EI 

(5) 

(6) 

Equations (4), (5) are strongly nonlinear and closed-form solutions 
do not exist. 

The Boundary Conditions 
The most important parameter is B, representing the importance 

of density and length to flexural rigidty. Bl/3 is the ratio of half pe­
rimeter length L to "bending length" (EI/p)113. When B is zero, 
gravity has no effect and we expect the shape to be a perfect circle. 
As B increases we have the following four distinct cases (Fig. 2). 

Case I. One Point Contacts Ground. In this case F = pL or 
C -B. The boundary conditions are 

s = 0, 8 = x = y = 0 

s = 1, 8 = w, x = 0 
(7) (8) 

The five unknowns are 8, d8/ds, x,y,A. 
Case II. One Segment Contacts Ground. Let 2a be the contact 

width. The vertical force at s = 0 is then pL(l - a) or C = (1 - a)B. 
The six boundary conditions are 
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^ o 

(9) (10) 

Fig. 2 The four cases 

s = 0, 0 = dd/ds = x = y = 0 

s = 1 — o, x = —a, 6 = 7r 

The six unknowns are 0, d8/ds, x,y,A, and a. 
Case III. One Segment Plus One Point Contact Ground. The 

seven boundary conditions are 

s = 0, 0 = dd/ds = x = y = 0 

s = 1 — a, x = —a, y = 0, 8 = ir 

The seven unknowns are 6, dd/ds, x, y, A, a, and C. 
Case IV. Two Segments Contact Ground. The seven boundary 

conditions are 

s = 0, 8 = d8/ds = x = y = 0 

s = b, y = d8/ds = 0, 8 = ir 

The seven unknowns are 8, d8/ds, x, y, A, b, and C. 

The solution is 

—3 1 1 
01 = sin 7rs H—- (s — l)(cos irs — 1), ao = (27) 

2TT3 7r2 2T 

* I = (s — l)(cos 27rs + 3 — 4 cos 7rs) 
4 T 3 

H—- (sin ITS sin 2-KS) (28) 
ir4 2 

1 1 ( s - 1 ) . 
yi = — - cos 27rs cos ws H — sin 27rs 

2TT4 I T 4 4TT3 

( s - 1 ) s2 - 2s 1 , ^ 
- sin TTS + — + — - (29) 

TT3 4TT2 2TT4 

Now dd/ds represents the local m o m e n t normalized by EI/L. We find 
from equa t ions (23) a n d (27) 

ds 
= 7T + 6 

- 1 1 , U - s ) . 
— - cos 7rs H sin ws 
2ir2 w2 •K 

•• ir + 0.0649225 e + O (e2) 

d8 3 

(11) (12) T h e 

maximum height is at s = 1 

+ 0(e2) 
i 

(30) 

(31) 

(32) 

(33) 

(13) (14) 

The maximum width is at 8 = ir/2. Using equations (17), (23), and (27), 
we obtain the arc length at which it occurs. 

2 \2-ir4 2ir3 6 + 0(e2) (34) 

A p p r o x i m a t e S o l u t i o n for Smal l B 
When B is small, the effects of gravity are much smaller than the 

effects of stiffness. We expect Case I, small A, and the cylinder would 
be almost circular in shape. Let 

Substitution of equation (34) into equations (18), (23), and (28) yields 
the maximum width 

w = '2x\ 
2 (2 

x/2 = - + — • 
2ir3 

£ + 0(e2) 

B = e«l, A = ae 
where a is a constant of order unity. Equation (4) becomes 

(15) 

(16) d28/ds2 = ea sin 8 + e(l — s) cos 8 

We also perturb 8, x, y, and a 

8 = 80(s) + «0i(s) + . . . 

X = Xo(s) + fXl(s) + . . . 

y = yo(s) + tyiis) + . . . 

a = ao + e«i + . . . 

Substitution into equations (5), (7), (8), and (16) yields the following 
successive equations: 

d280 n dx0 dy0 . 
—— = 0, — = cos 0o, — = sin 0O 
dsz ds ds 

0O(O) = JCO(0) = y0(0) = 0, 0(1) = TT, xod) = 0 

The zeroth-order solution is the circle 

The maximum height to maximum width ratio is 

^ = 1 _ n _L)e + 0 ( e 2 ) 
w \8ir Air*] 

(35) 

(36) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

00 = ITS, X0 • yo = -

The first-order equations are 

d28i/ds2 = ao sin 0O + (1 — s) cos 0o 

dxi/ds = —0i sin 0o, dyi/ds = 8\ cos 0o 

0i(O) = *i(0) = yi(0) = 0i(D = *i( l) = 0 

(23) 

(24) 

(25) 

(26) 

S i m i l a r i t y S o l u t i o n for L a r g e B 
When B is very large the effect of rigidity is relatively small and we 

expect Case IV to occur. The problem is simplified further as follows. 
We multiply equation (4) by d8/ds and integrate once to obtain 

, 1 /d0\2 
- — = -A cos0 + C sin 8 - B(s sin 8 - y) + D (37) 
2 \ds) 

where D is a constant of integration. Using equations (13) and (14) 

y = d8/ds = 0 . at 0 = 0 and at 0 = w (38) 

we find 

A = D = 0. (39) 

Thus equation (4) reduces to 

d26/ds2 = (C - Bs) cos 0 (40) 

Now let 

s = Bl'3s, C = S- 2 / 3 C, x = B^x, y = B1 /3y (41) 

which yields 

d W d i 2 = (C - s) cos 0 (42) 

dx/ds = cos 0, dy/ds = sin 8. (43) 
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Fig. 3 The similarity shape for Case IV 

T h e n u m b e r of b o u n d a r y condi t ions is t h u s r educed to five 

s = 0, 0 = dd/ds = x = y = 0 

0 = 7r, y = 0 

(44) 

(45) 

s ince dd/ds = 0 a t 6 = v, y = 0 is au tomat ica l ly satisfied by (37). 

B y t ry ing different values of C, we in tegra te equa t ions (42)-(44) 

by t h e var iable s t ep R u n g e - K u t t a a lgor i thm un t i l equa t ion (45) is 

satisfied. W e ob ta in 

C = 3.7450050 

T h e solut ion is similar, i.e., valid for all large B. T h e similari ty shape 

is shown in Fig. 3. O the r p e r t i n e n t va lues are 

*max.= 0.7572519, xm-m = -2 .4844776 

5 w = 0.9065969, s m a x = 4.6833276 

T h e m a x i m u m m o m e n t , occurr ing a t 6 = w/2, is 

d0 

ds 

ds 

= 2.5337470 

• 2.533747 B1/a 

(49) 

(50) 

T h e m a x i m u m he igh t is 

h = 0.90660 B~1/a 

T h e m a x i m u m w i d t h is 

W = 1 T |Xmin| T *Lxmax S m a x 

= 1 - 0 . 6 8 4 3 5 B ~ 1 / 3 

Simi lar ly t h e base w i d t h is 

W b a s e = l - 2 . 1 9 8 8 5 B ~ 1 / 3 

T h e he igh t t o w i d t h ra t io is 

h 0.90660 

w ~ B1'3 - 0.68435 

Not ice equa t ions (50)-(54) are exact and are n o t expansions for large 

B. T h e similari ty equa t ions (42)-(45) were first in tegrated by S t u a r t 

[3] using a finite-difference algorithm. S tuar t ' s values of y m a x = 0.9066 

a n d smax = 4.683459 a re ex t remely close t o our equa t ion (48). 

N u m e r i c a l S o l u t i o n 

For in te rmedia te values of B, especially Cases II and III, numer ica l 

in tegrat ion is necessary. W e shall descr ibe t h e numer ica l m e t h o d s for 

Cases I, II, and III which are m u c h m o r e difficult t h a n t h e previously 

discussed m e t h o d for Case IV. 

(51) 

(52) 

(53) 

(54) 

Table 1 Some 

B 

O.OOOO 

1 0 . 0 0 0 0 

1 8 . 3 8 6 5 

1 0 0 . 0 0 0 " 

1 7 6 . 1 0 6 

2 5 0 . 0 0 0 

3 6 8 , 3 0 7 

2000.OO 

For Case I, let 

» representative numerical values; I 

A 

0.OOOOO 

- 1 . 7 8 9 0 3 

- 3 . 6 8 8 7 7 

- 1 1 . 0 6 28 

4 . 5 7 4 9 9 

1 . 6 8 8 2 6 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

C 

0 . 0 0 0 0 

1 0 . 0 0 0 0 

1 8 . 3 8 6 5 

7 3 . 7 3 0 8 

1 2 1 . 9 7 8 

1 5 0 . 0 4 5 

19 2 . 4 2 4 

5 9 4 . 4 8 3 

vt = (A,6'(0)), 

9 = free length/2 

JE/L 

1.OOOOO 

1.OOOOO 

1.OOOOO 

0 . 7 3 7 3 0 8 

0 . 6 9 2 6 3 9 

0 . 6 7 3 8 9 0 

0 . 6 5 3 3 7 8 

0 . 3 7 1 7 1 6 

(55) 

a n d x(s;ui), y (s;v\j, d(s;v\) be t h e solut ion t o t h e init ial value p rob lem 

given by equa t ions (4)-(5) wi th ini t ia l condi t ions (7) a n d (55). T h e n 

t h e two-poin t boundary-va lue p rob lem equa t ions (4), (5), (7), and (8) 

is equ iva len t to 

Fl(vX) : •0 (56) 
lx(l;ui) 

Wl;ui) -
Solving t h e nonl inear sys t em e q u a t i o n (56) a m o u n t s to de t e rmin ing 

t h e correct p a r a m e t e r s and initial condi t ions such t h a t t h e boundary 

condi t ions a re satisfied. T h e a p p r o p r i a t e var iables a n d nonl inear 

sys tem for Case II a re 

(46) 

(47) 

(48) 

un = (A, a) 

\0(1 - a;vn) - irl 

and for Case III 

vm = (A,a,C) 

jx(l — o;uin) + a 

Fm(vui) = 1^(1 -a;vm) 

10(1 - a;vm) - ir 

•0; 

= 0. 

(57) 

(58) 

(59) 

(60) 

T h e notat ion v,F(u) will be used generically to refer to any of the three 

cases equa t ions (55)-(60) . 

Our m e t h o d s r equ i re t h e J a c o b i a n m a t r i x DF(v) of F(v). Fo r ex­

ample , for Fy(vi), t h i s is 

dx(l;v{) i>x(l;vi) 

DF^Vi) 
dA d(0'(O)) 

d0(l;uT) d0( l ;u i ) 

dA 

Consider t h e ini t ial va lue p r o b l e m 

dzi _ 

ds 

dzt 

ds 

d(0'(O)) 

(61) 

dzi . dz3 
COS 2 3 , ——= Sin 2 3 , —— ' 

ds ds 
2 4 

A s in 23 + (C — Bs) cos zs 

dzf, 

dz8 

-27 Bin 23, 
dzs 

ds 
: 27 COS 23, 

dz-i 
' 2 8 

= Az-i cos 23 + sin 23 — (C — Bs)27 sin 23 
ds 

2l(0) = 22(0) = 23(0) = 25(0) = 26(0) = 27(0) •• 

(62) 

28(0) = 0 

24(0) = ui,2 (63) 

T h e n 25 = dx/dA a n d 27 = Z>d/dA. T h e o the r pa r t i a l s of F are calcu­

l a t ed similarly. T h e s e different ial equa t ions a re solved by a very ef­

ficient var iable order , var iable s t ep O D E a lgor i thm, and compu t ing 

t he se pa r t i a l s is n o t as expensive as i t m i g h t appea r . 

T h e equat ion F(u) = 0 was solved by either a quasi-Newton or a new 

h o m o t o p y m e t h o d , d e p e n d i n g on t h e case a n d c i rcumstances . T h e s e 
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two methods are described in the following. Whenever a quasi-Newton 
method converges, it is much more efficient than a homotopy method. 
However, even the best quasi-Newton algorithms sometimes fail, and 
then another algorithm, like the globally convergent homotopy al­
gorithm proposed here, becomes necessary. Basically, our approach 
was to try the quasi-Newton first and then use the (much more ex­
pensive) homotopy algorithm wherever the quasi-Newton method 
failed. 

Case I is fairly easy, and was solved entirely by the quasi-Newton 
method. Case II yields to quasi-Newton for B < 100, but for B > 100 
it requires an initial estimate so close to the true solution as to be 
impractical (e.g., starting from the solution for B = 100, it failed for 
B = 101). The homotopy algorithm was used for Case II (B > 100), 
and most of Case III. Accurate B -values for the boundaries between 
the cases were determined by the secant method using quasi-Newton 
for the required function values. Essentially, quasi-Newton was used 
to home in on the case boundaries and homotopy was used in between 
the boundaries. 

The quasi-Newton algorithm used was the code HYBRJ from the 
MINPACK package developed at Argonne National Laboratory. This 
method [4, 5] approximates the Jacobian matrix DF(v) ofF(u) rela­
tively cheaply, is reliable, robust, and does not require good initial 
estimates in general. Conceptually, a quasi-Newton algorithm oper­
ates as follows: 

1 Start with an estimate Bo of the Jacobian matrix and an esti­
mate v0 of the solution. For i = 0 ,1 , 2, . . ., until convergence, do 

2 Compute a search direction p; by solving fl;p; = —F(i>i). 
3 Compute the next approximation 

Vi+l = Vi + tiPi, (64) 

where £; is chosen to minimize ||.F(UJ + Sp,)|| in some "trust region" 
[4,5]. 

4 Update the Jacobian approximation by 

Bi+1=Bi+M, (65) 

where M is an easily and efficiently computed combination of rank 
one matrices, elementary matrices, and B;. See Dennis and More [5] 
for the precise form of M. 

The homotopy algorithm used was the code PIXPT from Watson 
and Fenner [6]. This powerful method is globally convergent (under 
farily general hypotheses) and thus does not require a close initial 
guess. Versions of the method have been previously applied to fluid 
mechanics [7], nonlinear complementarity [8], fixed point [9], and 
continuum mechanics problems [10]. The homotopy algorithm is 
applied to the nonlinear system of equations F(u) = 0. The theoretical 
justification of the algorithm requires fairly deep differential geom­
etry, although the algorithm itself is deceptively simple. Thorough 
discussions of both the theory and some applications can be found 
in [6-11]. 

Define a homotopy map <pw: [0, 1) X E" -» En (where n = 2 or 3 
depending on the case) by 

<pw(X, v) = <p(w, X, v) = \F{u) + (1 - X)(u - w). (66) 

The supporting theory [9] says that for almost all w (i.e., all w except 
possibly those in a set of Lebesgue measure zero), the Jacobian matrix 
Dipw of <pw has full rank on 

^„,-1(0) = [ ( X , u ) | 0 < X < l , veE", <pu){\,v) = 0}, (67) 

the set of zeros of <pw in X, u space. The full rank condition implies that 
the zero set of ipw consists of smooth disjoint curves which cannot just 
"stop" in the interior of (0, 1) X En. The hope is that there is a zero 
curve 7 of <pw reaching from a trivial known solution (at X = 0) to the 
desired solution (at X = 1). Such a zero curve exists under fairly gen­
eral hypotheses, but they are often difficult to verify for practical 
problems. Nevertheless, the homotopy method works well in prac­
tice. 

The algorithm is conceptually simple: track the zero curve 7 of <pw, 
emanating from (0, w) until a point (1, u) is reached. Then, by equa-

V/ -Eq<32) 

VEq(31) \ del fT . / dslrmjd point ds 

n 
B" 6 

-Eq(30) 

Fig. 4 Local bending moments as a function of 0 1 / 3 

tion (66), I; solves F(v) = 0, hence also the original two-point bound­
ary-value problem. This algorithm differs significantly from standard 
continuation in that X need not increase along 7, and there are never 
any "singular points" along 7 [9]. The power of the algorithm derives 
from this ability of X to both increase and decrease along 7, with 
turning points posing no special difficulty. Parameterize 7 by arc 
length x so X = X(r), v - u(r) along 7. Then 7 is the trajectory of the 
initial value problem 

dr 
<pw(\(r),v(r)) = 0, 

d\\i 
— + 

\dr 
= 1, 

X(0) = 0, u(0) = w, 

where r is arc length along 7. Equation (68) is 

D<pw(X(r), u(r)) * I = 0, 

\d~rt 

(68) 

(69) 

(70) 

(71) 

where Dipw is the nX(n + l) Jacobian matrix of <pw. Dipw has full rank 
on the zero curve 7 given parametrically by X(r), v(r). Thus the de­
rivative (dX/dr, dv/dr) is calculated by numerically finding the kernel 
of Dtpw, and then using equation (69) and the continuity of the de­
rivative [6,9]. A sophisticated variable step, variable order ordinary 
differential equation solver (as in [12]) is used to solve equations 
(68)-(70), where the derivatives required by the ODE solver are cal­
culated as just described. Such an ODE solver is very efficient [12], 
and considerable computational experience indicates that this ap­
proach is superior to schemes using Newton's method and/or simpler 
ODE techniques to track 7 [9, 11]. 

Results and Discussion 
The case boundaries are found to be 

Case I 0 < B < 18.38654 

Case II 18.38654 < B < 176.10643 

Case III 176.10643 < B < 368.30735 

Case IV 368.30735 < B < » 

Fig. 4 shows some normalized local moments plotted against B1/a, the 
ratio of half perimeter length to bending length. The corresponding 
case boundaries are at B1/a = 2.63937, 5.60521, 7.16809. Notice that 
as B is increased, the slope of the moment curves show abrupt changes 
at the case boundaries. 
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Fig. 5 The equilibrium shapes 

Fig. 5 shows the integrated shapes for various B. Only the right half 
is shown since the configuration is symmetric; Fig. 6 shows the di­
mensions of the configurations. For B1/s > 4.12 the midpoint height 
no longer represents the maximum height since the curvature becomes 
negative at the midpoint. 

Fig. 7 is useful in the determination of the flexural rigidity of heavy 
elastic cylinders. Since maximum height h, maximum width w, pe­
rimeter length L, and density p can be easily measured, Fig. 7 yields 
EI, the flexural rigidity. Stuart [3] proposed a similar method, but 
his analysis can only be applied to Case IV, the extremely flimsy cy­
lindrical shells. 

From Figs. 4, 6, and 7, we see our approximate solutions for small 
B compare well with the exact numerical solution for almost the entire 
range of Case I. This is because the constant coefficients in our first-
order solutions are small, thus extending the range of validity to values 
of B larger than unity. 
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G) 

Finite Elements Based Upon Mindlin 
Plate Theory With Particular 
Reference to the Four-Node Bilinear 
Isoparametric Element 

' Concepts useful for the development of Mindlin plate elements are explored. Interpolato-
ry~schemes and nodal patterns which are ideal according to the proposed criteria are 
found to be somewhat more complicated than desirable for practical applications. How­
ever, these ideas are found to be useful as starting points in the development of simpler 
elements. This is illustrated by the derivation of a new four-node bilinear quadrilateral 
which achieves good accuracy without ostensible defect\ 

1 Introduction 
There has been considerable effort of late directed toward the de­

velopment of improved plate and shell finite elements. Much of this 
effort has been focused upon theories which include transverse shear 
strain effects, for physical and computational reasons [22]. As a basis 
for the development of "displacement" plate elements of this type, 
the Mindlin theory [35] serves as the canonical starting point. Anal­
ogous, but generalized, theories may be used as the basis of shell ele­
ment formulations. The "degeneration concept" is the terminology 
often applied to these ideas [1]. The literature on this topic, although 
mostly recent, has already become extensive. The interested reader 
may consult works among the following (incomplete) bibliography 
to familiarize himself with developments in this area: [6, 8, 9,14-16, 
19-25, 28, 29, 31, 37, 39-45, 49-52, 54, 56]. Although general im­
provement in element behavior is being sought, particular emphasis 
of late has been placed on reliability (i.e., making elements "fool 
proof) and simplicity. This latter requirement is an essential one in 
nonlinear analysis and especially in nonlinear transient analysis. Here, 
cost is the overriding consideration, and simple, inexpensive elements 
are actively sought after. Until fairly recently, there really was no plate 
or shell element which was sufficiently simple and inexpensive to be 
considered viable for large-scale nonlinear transient problems. 
However, the situation appears to be changing considerably as many 
efforts in the direction of simplicity have been performed (for a 
sampling of the literature on this topic, we may mention [3,5,7,8,17, 
23-26, 28, 29, 31, 52, 54]). Progress is being made on many fronts, al­
though a consensus favoring a particular approach is not yet in evi-

Contributed by the Applied Mechanics Division for publication in the JOURNAL 
OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering. Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
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dence. Efforts of ours in this area have employed reduced and selective 
integration techniques (see e.g., [22-26]), a topic which has generated 
considerable literature in recent years. 

Unfortunately, efforts to develop effective simple elements (e.g., 
3-node triangles, 4-node quadrilaterals) often engender conceptual 
complexity. To make simple functions and nodal patterns work well 
seems to require the use of special procedures, or "tricks," depending 
on one's viewpoint. These encumbrances are quite puzzling to the 
nonspecialist and even create controversy among specialists. 

One of the purposes of this paper, is to attempt to provide some 
explanation why special techniques are necessary for the development 
of simple, effective elements within the context of Mindlin plate 
theory. Based upon an idea due to MacNeal [31], we propose criteria 
for the development of Mindlin plate elements. Interpreted strictly, 
not allowing for reduced/selective integration or allied procedures, 
the interpolation schemes suggested involve different order polyno­
mials for displacement and rotation, and consequently different nodal 
patterns. Thus it may be argued that "natural" elements, from the 
standpoint of the performance criterion, are neither natural nor 
convenient from implementational and practical standpoints. It is 
thus no wonder that elements of this type have apparently not been 
investigated heretofore. The traditionally used alternative of equal-
order interpolation, if to be optimally effective, requires additional 
embellishments. This is acknowledged by a weakened version of the 
criterion, which accommodates the use of special techniques, such as 
reduced/selective integration. This form is, in fact, the one used by 
MacNeal [31]. 

These thoughts are, at first, somewhat disconcerting since they 
seem to imply that elements which should work well, within the 
standard Ritz-Galerkin framework, are not practically desirable. 
However, it is felt that there are lessons to be learned from these el­
ements in that they may serve as conceptual starting points for ele­
ments which are simpler than their progenitors. We use this idea to 
generate a new four-node quadrilateral which employs bilinear iso-
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parametric shape functions for all dependent variables. The element 
possesses correct rank and thus cures the spurious zero-energy mode 
problem which has beleaguered our previous endeavors on four-node 
plates [22, 26]. The new element turns out to have some features in 
common with MacNeal's QUAD4 [31], although it is felt that several 
advantages are accrued in the present formulation. These are men­
tioned as follows: 

The development of the element for the general quadrilateral 
configuration is different from MacNeal's and appears to preclude 
some of the complications alluded to in [31]. In particular, no special 
local Cartesian system is necessary for effectuating good element 
behavior, or for achieving an invariant formulation. 

In nonlinear analysis, the entire strain and stress tensors need to 
be calculated at each evaluation point. A shortcoming of what may 
be described as the classical selective integration procedure is that 
different components are calculated at different points, thus pre­
cluding straightforward generalization to nonlinear analysis. Recently, 
a generalization of selective integration has been developed which 
enables the pointwise definition of all strain, and consequently stress, 
components [18, 23]. The present element was developed within this 
format and thus may be straightforwardly generalized to the nonlinear 
case. This does not appear to be the case for QUAD4, in which a 
complicated variant on the selective integration theme is em­
ployed. 

We have avoided the use of any ad hoc modification to attain spe­
cial behavior under certain circumstances. Robinson [45] has criticized 
QUAD4 on this point because of its tunable aspect ratio parameter 
whose value is selected to give acceptable test results in certain single 
element test cases. Although we are sympathetic of efforts to improve 
high aspect ratio behavior, ad hoc techniques of this kind, based on 
linear test cases, become suspect in generalizing to nonlinear analysis, 
and even in linear cases, improvement in one situation may result in 
deterioration in another. (An example of this phenomenon is pre­
sented in Section 5.6, "The Twisted Ribbon.") Presently, aspect ratio 
deterioration is an ubiquitous, but poorly understood finite-element 
phenomenon. 

Another area in which we have opted for simplicity, compared with 
QUAD4, is in the calculation of bending strains. MacNeal develops 
a special selective integration procedure to accurately represent 
certain cubic bending modes. (Herein we refer to these as "Kirchhoff 
modes," see Section 2.) MacNeal goes on to show that full cubic be­
havior is unattainable, despite the introduction of a further compli­
cation, namely, modification of stiffness parameters via so-called 
"residual bending flexibility." Since an order-of-accuracy improve­
ment is not achieved, it is felt that the additional complications are 
unwarranted. Admittedly, the price is not high in linear analysis; 
however, in nonlinear analysis it is not at all clear what can even be 
done along these lines. Consequently, standard procedures are em­
ployed herein to calculate bending strains. 

An outline of the remainder of the paper is given as follows. In 
Section 2, criteria for designing effective Mindlin plate elements are 
discussed. A link between function approximation (i.e., order of ac­
curacy) and special techniques, such as reduced/selective integration, 
is incorporated in the criteria. Element interpolatory schemes and 
nodal pattterns, suggested by these ideas, are presented. 

Using one of the elements as a conceptual starting point, the new 
four-node bilinear quadrilateral plate is developed in Section 3. The 
only nonstandard feature of the development is the way transverse 
shear strains are interpolated, which is presented in detail in Section 
3. In Section 4, implementational ideas are discussed. The special 
treatment of transverse shear strains manifests itself in the definition 
of the well-known "B-matrix" (i.e., strain-nodal displacement matrix) 
of finite-element theory. The modification falls within the framework 
presented in [18, 23]. In Section 4, numerical examples illustrate the 
good overall behavior of the element. Since it is now well known that 
plate/shell elements may behave well on one problem and patholog­
ically on another, an extensive set of problem results is presented. The 
studies range from standard convergence tests to difficult problems, 
incorporating singular behavior, which tend to manifest element 
weaknesses. In addition, we consider a single-element test proposed 

by Robinson [45] as a critical measure of the performance of a plate 
bending element. Conclusions are presented in Section 6. 

It is felt that some of the ideas presented herein significantly con­
tribute to the understanding of plate element design and behavior. 
Many new element possibilities arise in the presentation which will 
no doubt be the objects of future studies. Furthermore, it is hoped that 
analogous concepts will be useful in the study of related problem areas, 
such as continuum elements for incompressible, and nearly incom­
pressible, behavior (see, e.g., [4,12,18,19, 32-34, 36, 38, 48]). 

The new four-node bilinear element developed herein is a decent 
performer. The overall accuracy level of the element appears to be 
good, without any ostensible defect, and this is accomplished while 
retaining simplicity. Nevertheless, it is not claimed to be a panacea. 
For example, its aspect ratio behavior on some problems is disap­
pointing. Perhaps further improvement may be made here. On bal­
ance, however, it appears as good as any four-node element we have 
seen, perhaps better. It is a common practice for the developers of 
elements to see only the virtues of their own work, and only the sins 
of others, so we shall not belabor this point, leaving it for the reader 
to decide what is most appropriate for his/her circumstances. 

2 Criteria for Designing Effective Mindlin Plate 
Elements 

The first criterion which shed some light on the design of Mindlin 
plate elements was the method of constraint counting. This was em­
ployed in the investigations of Malkus and Hughes [34], Hughes, 
Cohen, and Haroun [22], and several studies of Hinton, Zienkiewicz, 
and colleagues (see, e.g., [42, 55]). Although helpful in predicting the 
performance of many plate elements, for some time it has been known 
that an overly pessimistic assessment may be obtained in certain 
situations. Recently, Spilker and Munir [49-51] have proposed a 
modified constraint counting measure, called a "rotational constraint 
index," which has achieved better correlation for the performance of 
hybrid plate elements. 

The criterion advocated herein is based upon the ideas originally 
presented by MacNeal [31] and employed by Parisch [39]. Thin plate 
behavior is governed by the classical Poisson-Kirchhoff theory. In this 
limiting situation the face rotations become equal to the slopes of the 
transverse displacement field. Analytically, the rotations are no longer 
independent kinematic variables, but become the derivatives of the 
transverse displacement field. To assess the ability of Mindlin-type 
plate elements to correctly handle limiting thin-plate behavior, we 
shall examine the Mindlin elements with respect to the modes of 
deformation emanating from the classical theory. 

To be more precise, let us define a Kirchhoff mode by the rela­
tion 

da = H>,„ (1) 

where w is a given transverse displacement; Ba is the x„-rotation, a 
= 1, 2; and a comma is used to denote partial differentiation (e.g., wt„ 
- £>w/oxa). 

A Kirchhoff mode of order m will be one in which w is taken to be 
a complete mth-order polynomial, Pm(xi, x2)- An example of a com­
plete polynomial is the quadratic polynomial 

Pfai, *2) = Ci + C2xt + C3x2 + C4*i2 + CBxix2 + C W (2) 

where the C's are arbitrary coefficients. 
Criterion 1. As a measure of the effectiveness of an element, we 

shall ask what order Kirchhoff mode the element is able to exactly 
interpolate. The higher the order, the greater the ability of the element 
to perform accurately in the thin-plate limit. 

Criterion 2. A weakened version of the foregoing criterion, which 
accommodates reduced/selective integration and other procedures, 
asks for what order Kirchhoff mode is the strain energy calculated 
exactly. This is the form of the criterion employed by MacNeal [31] 
and Parisch [39]. Note that Criterion 1 implies Criterion 2. 

Posing the criteria in terms of complete polynomials links up with 
order-of-accuracy concepts and may be useful in mathematical error 
analysis. 
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Fig. 1 Beam elements derived from the Kirchhoff-mode criterion 

Criterion 1 has the advantage that it suggests element interpolation 
schemes which may be effective. In this regard, it is immediately ap­
parent that, according to Criterion 1, ideal interpolations may be 
devised by assuming w to be a polynomial one order higher than that 
assumed for the d„'s. Before considering some detailed examples of 
this type, it is worth remarking that schemes like this have apparently 
not been tried before and would be somewhat inconvenient from an 
implementational standpoint. 

As a starting point, let us consider some one-dimensional beam-type 
examples. The lowest order possibility is quadratic displacement and 
linear rotation. (Note that linear displacement, constant rotation, is 
inadmissible since the rotation would necessarily be discontinuous, 
in violation of the continuity requirements of the governing theory.) 
The nodal pattern is illustrated in Fig. 1. This element achieves 
quadratic accuracy according to Criterion 1. The center displacement 
degree of freedom is inconvenient, however. An element of equivalent 
accuracy, in the sense of Criterion 2, which exclusively uses linear 
interpolations, may be devised by employing the reduced integration 
concept (one-point Gaussian quadrature need be used). This element 
was introduced in [26] and has led to the simplest effective two-
dimensional shell formulations [14, 24, 25, 54]. In the linear constant 
coefficient case it can be shown to be identical to the quadratic dis­
placement, linear rotation beam. (The center displacement degree 
of freedom may be statically condensed to yield an identical stiffness 
matrix [2].) Here we have a primitive illustration of the success of the 
reduced/selective integration concept, in that an element possessing 
a convenient interpolatory scheme may be made to behave like one 
possessing a higher-order, inconvenient scheme. 

The next beam example consists of cubic interpolation for dis­
placement and quadratic interpolation for rotation. The nodal pattern 
is illustrated in Fig. 1. Again, the internal degrees of freedom are in­
convenient in practice. Static condensation leads to the usual element 
stiffness of structural theory (see, e.g., [10, p. 333]). An equivalent 
element may be obtained with quadratic interpolations for both w 
and 6, in conjunction with reduced two-point Gaussian quadrature. 
Again, static condensation of the internal degrees of freedom leads 
to the usual stiffness of structural theory [2]. Higher-order examples 
of this type may be constructed similarly. 

Analogous two-dimensional interpolatory schemes may be devised 
for triangles. The triangular family illustrated in Fig. 2 appears unique 
among two-dimensional element families in that the functions which 
constitute the rotational interpolations are obtained exactly from the 
derivatives of displacement—no more, no less. This is unlike the 
situation for a somewhat analogous family of quadrilaterals in which 
Lagrange interpolations are used, the displacement being one order 
higher than the rotation (see Fig. 3).1 For this family of elements, the 

w 
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Fig. 2 Triangular plate elements derived from the Kirchhoff-mode crite­
rion 
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1 In consideration of quadrilateral elements, for purposes of discussing 
Kirchhoff modal behavior, we shall assume a rectangular geometry. 

Fig. 3 Quadrilateral Lagrange plate elements derived from the Kirchhoff-
mode criterion 

derivative of displacement contains more monomials than does the 
rotational interpolations. The classical Lagrange family of quadri­
lateral plate elements, in which identical interpolations are used for 
displacement and rotations (see Fig. 4), creates the opposite situation 
in that the rotational interpolation contains more monomials than 
does the derivative of displacement. That this situation is harmful 
has been suggested by Spilker and Munir [50]. Further research is 
required to determine the nature and extent of the problem when 
displacement and rotation fields fail to "match" according to the 
criteria. In any event, the triangular family of Fig. 2 appears canonical 
in this sense. 

Of course, classical Lagrange-type interpolations, in which identical 
nodal patterns are employed for displacement and rotation (e.g., Fig. 
4), are more easily implemented and applied than the new schemes 
suggested by the Kirchhoff modal criteria (i.e., Figs. 2 and 3). The 
behavior of Lagrangian elements has been shown to improve through 
use of the reduced/selective integration technique (unfortunately, 
so far at the expense of rank deficiency) [22,42]. The excess rotational 
monomials are "filtered" by the lower-order quadrature resulting in 
higher-order behavior in the sense of Criterion 2. Thus we see again 
that convenient interpolations necessarily entail special procedures, 
such as reduced/selective integration and allied techniques, if they 
are to achieve optimal accuracy in practice. It has been argued that 
if high enough order interpolation (e.g., bicubic level) is used there 
is no need to employ reduced quadrature as adequate accuracy is 
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Fig. 4 Classical Lagrange plate elements 

achieved. The fact remains, however, that the behavior of such ele­
ments with full quadrature is suboptimal and may be further im­
proved by the use of appropriate reduced/selective integration 
techniques. 

In passing, we may note that the behavior of serendipity interpo-
latory schemes [53] is similar to Lagrange schemes with respect to 
Kirchhoff modal behavior. Specifically, classical schemes, in which 
the same interpolations are used for displacement and rotation, result 
in excess rotational monomials, whereas schemes in which displace­
ment is interpolated one order higher than rotation possess excess 
monomials in the displacement-derivative field. 

It is interesting to note that by using different interpolations for 
displacement and rotation, the possibility arises of devising 
"matched" interpolations for quadrilaterals. As an example of this 
phenomenon we may mention the combination of nine-node biqua­
dratic Lagrange interpolation for displacement with eight-node ser­
endipity interpolation for rotation. (This scheme has in fact been used 
as the starting point for the development of a discrete-Kirchhoff el­
ement by Irons [27].) 

In summary, the ideal interpolations, with respect to the proposed 
criteria, are not the most desirable from the practical standpoint. In 
the sequel we shall attempt to use the idea of "optimal interpolation" 
(roughly speaking, one order higher for displacement than rotation) 
as a basis for the design of a practically appealing four-node quadri­
lateral element which simultaneously achieves simplicity and accuracy 
without engendering rank deficiency. 

3 The Four-Node Bilinear Isoparametric Element 
The present version of the four-node bilinear isoparametric element 

is based upon the concepts described in the previous section. The 
conceptual starting point is the straight-edged quadrilateral element 
in which transverse displacement is interpolated via nine-node 
Lagrange shape functions and rotations are interpolated via four-node 
bilinear shape functions (see Fig. 3). This element achieves quadratic 
accuracy with respect to Kirchhoff modes. The idea is to calculate the 
transverse shear strains in a special way independent of the midside 
and center node displacement degrees of freedom. In this way, the 
element stiffness senses only the corner node transverse displacement 
degrees of freedom and, consequently, four-node bilinear shape 
functions may be used in place of the nine-node Lagrange shape 
functions in formulating the element arrays. Examination of the in­
terpolations reveals that the midpoints of the sides are locations at 
which the transverse shear strain components parallel to the sides are 
independent of the aforementioned nodal values. These four scalar 
values will be used to define the transverse shear strains. The details 
of the procedure follow. 

Definition of Element Transverse Shear Strains. Geometric 
and kinematic data is defined in Fig. 5. Note that the direction vectors 
have unit length (e.g., | | eu | = 1, etc.). Let wa and 8a denote the 
transverse displacement and rotation vector, respectively, associated 
with node o. Throughout, a subscript 6 will equal o + 1 modulo 4. 
That is 

Fig. 5 
ment 

Geometric and kinematic data for the four-node quadrilateral ele-

Fig. 6 Definition of nodal transverse shear strain vector 

a b 

1 2 
2 3 
3 4 
4 1 

(3) 

The definition of the element shear strains may be facilitated by the 
following steps: 

1 For each element side define a shear strain component, located 
at the midpoint, in a direction parallel to the side, viz., 

• (wb - wa)/ha + 0„)/2. (4) 

2 For each node, define a shear strain vector (see Fig. 6 for a 
geometric interpretation of this process): 

Jb = 7 t i e 6i + 7t2e62 

762 = (1 ~ ctb2)~l(gb2 ~ gbiab) 

761 = (1 - or&2)-lC?Ai ~ gb2ttb) 

gbl = gb 

gb2 = -ga 

(5) 

(6) 

(7) 

(8) 

0) 

(10) 

3 Interpolate the nodal values by way of the bilinear shape 
functions (Na's). 

7 = T.Naya 
a = l 

(ID 
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Remarks : 

1 If the nodal transverse displacements and rotations are specified 
to consistently interpolate a constant transverse shear strain field, 
say y, then the preceding steps will result in y = y. That is, constant 
transverse shear deformation modes are exactly representable in the 
general quadrilateral geometry. 

2 In the rectangular configuration, the shear strains take on the 
following form (we assume the origin of coordinates coincides with 
the element center): 

7i(*2. x2) = «>,i(0, 0) - 0i(O, 0) + x2[ui,i2 - 0i,2(O, 0)] (12) 

72(*1. *2) = U>,2(0, 0) - 02(O, 0) + Xi[l«,i!i - 02,l(O, 0)] (13) 

where wti2 = wy2i = constant. In this case the linear variations of yi 
with x2 and y2 with xi may be clearly seen. Note that there are four 
scalar transverse shear strain modes. (This may be concluded in 
general from the foregoing steps 1-3 which amount to an interpolation 
of the four scalar parameters gh g2, g3, and g4.) These modes include 
the two constant transverse shear modes, and the "hourglass" and 
"in-plane twist" modes (see [22] for a discussion), thus enabling the 
element to achieve correct rank. In the rectangular configuration, the 
transverse shear strain variation is equivalent to the selective inte­
gration scheme of MacNeal [31]. The generalizations to quadrilateral 
configurations differ somewhat. 

3 The "constraint index" (as defined in [34]) for the present ele­
ment is —1, which suggests failure in the thin-plate limit. As will be 
seen from the numerical examples, this is not the case, an illustration 
that the constraint index is sometimes overly pessimistic for 
plates. 

4 To assess the effectiveness of the present element we employ 
the ideas of Section 2. Consider the rectangular configuration. It can 
be shown, with the aid of (12) and (13), that quadratic accuracy with 
respect to Kirchhoff modes is attained. This could be anticipated from 
the way the transverse shear strains were interpolated. The re­
duced/selective integration elements presented in [22,26] effectively 
achieve the same end. However, they do not retain correct rank as does 
the present element. 

5 Analogous procedures may be used to derive a three-node 
triangle employing linear shape functions. The conceptual starting 
point, in this case, is the triangle with quadratic w and linear 0„'s (see 
Fig. 2). Again, quadratic accuracy with respect to Kirchhoff modes 
is achieved in the sense of Criterion 2. If effective in practice, this el­
ement would represent one of the simplest effective elements ever 
devised for bending applications. 

4 I m p l e m e n t a t i o n 

In this section we consider the implementation of Mindlin plate 
elements in which the same interpolatory patterns are used for dis­
placement and rotations. This is general enough to encompass our new 
four-node element. It suffices in the present circumstances to consider 
the simpler case of a homogeneous, isotropic, linearly elastic plate of 
constant thickness t. 

bB2
b 

SB2
S 

0 

0 

0 

Na 

0 

Na 

B„6] 

B„ 

1 

2 

S] 

0 ' 

Na,2 

Na,l 

1 < a < n. 

(17) 

(18) 

(19) 

The definition of B„s is the essential ingredient in the development 
of an effective element. In the "normal" case, B„s = B a

s , which is de­
fined by 

'JV„,i -iV„ 0 

Na,2 0 -Na. 
B„s = 1 < a < n. (20) 

With this definition, some form of reduced/selective integration 
usually needs to be employed for success in the thin plate limit. 

In the present formulation the reduced/selective-integration effect 
is accounted for directly in the definition of B„s [18, 23]. For the 
transverse shear strain interpolations derived in the previous section, 
B„s takes on the following form [recall the relation between subscripts 
a and 6, see (3)]: 

BV = [B6lsB62sB635] 1 < b < 4 (21) 

Bbl
s = ha-

xQa ~ hb'^t, (22) 

I(.2S = (efc2
1Ga ~ efci

1a6)/2 (23) 

BM
S = (e62

2Ga - ebl
2Gb)/2 (24) 

G„ = (1 - n l - ' i V a l e , , - aaea2) - (1 - a62)-i jy6(eM - abebl) 

(25) 

e6l : 
CM1' 

e t i 2 ) etc. (26) 

The matrices D6 and Ds, for the isotropic, linearly elastic, constant 
thickness case, take on the following forms (respectively): 

{3 

12 

2/x + X X 0 

2n + X 0 

symm. n 

and 

P s = KtjX 
1 0' 

0 1. 

(27) 

(28) 

where X = 2Xfi/(X + 2/u), X and fj, are the Lame parameters, and K is 
a "shear correction factor," which is taken to be | throughout. 

The external load vector, 1e, is given by 

1e = [//' 

fie 

C NaFdA + C NaQds, 7 = 3 a - 2 , l<a<n 
•SA' »/s«ns2 

- \ NaCadA - C NaMads, I = 3a + a - 2, 1 < a < n, a = 1, 

(29) 

(30) 

Let Ae and se denote the area and boundary, respectively, of a 
typical element. Let Ni, N2,..., Nn denote shape functions, where 
n is the number of element nodes. 

The element stiffness matrix, ke, may be defined as follows: 

; k t
e + ks 

kb
e = \ BbTDbBbdA bending stiffness 

. J A' 

k,e = f BsTDsBsdA shear stiffness 
J A' 

(14) 

(15) 

(16) 

where F is the total applied transverse force per unit area, Ca is the 
total applied couple per unit area, Q is the applied shear force, Ma is 
the applied boundary moment, and s2 is the portion of the plate 
boundary upon which forces and moments are prescribed. 

The element stress resultants may be obtained from the following 
relations: 

• DbBbde bending moments (31) 
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fly. 
•• DsBsdc shear resultants 

where 

die U>a, 

Poca, 

Olo] 

02j 

I = 3a-2, 

I = 3a + a -- 2, 
1 <a <n 

1 <a<n 1,2 

(32) 

(33) 

(34) 

(35) 

Remark . Generalization of the formulation to fully nonlinear 
analysis is straightforward by way of the procedures described in [18, 
23]. 

5 Numerical Examples 
All calculations were performed at the California Institute of 

Technology Computer Center on an IBM 3032 computer in double 
precision (64 bits per floating point Word). Unless otherwise specified, 
a Poisson's ratio of 0.3, Young's modulus of 10.92 X 10B, and geometric 
parameters L = 10 and t = 0.1 were used throughout. 

In the context of Mindlin theory, two interpretations of the classical 
simply supported boundary condition are possible: SSi, in which only 
the transverse displacement is set to zero; and SS% in which the 
transverse displacement and tangential rotation are set to zero. In 
applications to thin plates, SSi is generally preferable since it leads 
to convergent results when polygonal approximations of curved 
boundaries are employed. Nevertheless SS2 corresponds to the simply 
supported condition of classical thin plate theory and may be safely 
employed for the analysis of polygonal, and in particular rectangular, 
plates. See [22] for a discussion of the treatment of simply supported 
boundary conditions and references to pertinent literature. 

The following codes are used to denote the elements compared: 

SI—This element employs 2 X 2 Gauss quadrature on the bending 
stiffness and one-point Gauss quadrature on the shear stiffness 
("selective reduced integration"). It was originally proposed in [26] 
and has subsequently been studied extensively in [22] among other 
places. It possesses two spurious zero-energy modes [22, 26]. 

Tl—This is the element developed herein; 2 X 2 Gauss quadrature 
it used on all terms. It possesses correct rank. 

Ul—This element employs one-point Gauss quadrature on all 
terms ("uniform reduced integration"). It was first proposed in [22] 
and studied therein. It possesses four spurious zero-energy modes. 

In one case, the "twisted ribbon," we compare results with an ele­
ment proposed by Robinson [45], dubbed LORA, and the MSC/ 
NASTRAN element QUAD4 [31]. 

Despite the defects of SI and Ul (i.e., spurious zero-energy modes) 
they behave well in many situations and are of interest because of their 
economy. With appropriate stabilization measures, such as so-called 
"hourglass" stiffness and viscosities, they hold significant potential 
in nonlinear analysis. See [11,13,30] for discussions of stabilization 
ideas employed in the continuum case. 

In cases in which the dimensions enable the plate to be considered 
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Fig. 8 Convergence study for thin square plate 

N„, = 48 
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Fig. 9 Circular plate meshes; due to symmetry, only one quadrant is 
discretized > 

"thin," comparison is made with results of classical Poisson-Kirchhoff 
theory. 

5.1 Thin Square Plate. This set of problems is perhaps the most 
common employed in testing plate element behavior. Meshes are 
depicted in Fig. 7 and results in Fig. 8. As may be seen, results for el­
ements SI and T l are identical for plotting purposes. All elements 
perform well for this case. 

5.2 Thin Circular Plate . These problems test the behavior of 
the elements in nonrectangular configurations. The radius R = 5.0. 
The meshes are shown in Fig. 9 and convergence results presented in 
Fig. 10. In this case, T l is generally the best performer, although all 
elements perform well. 

5.3 Thin Rectangular Plates. These problems test the response 
of the element to changes in planar aspect ratio. The meshes are 
shown in Figs. 11 and 12 and results are prsented in Figs. 13 and 14. 
In these cases, as in the case of the square plate study, the differences 
between SI and T l are indiscernible on the scale of the plots. 

As may be seen from Figs. 13 and 14, by far the worst displacement 
results are obtained for the clamped-boundary, concentrated-load 
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case. (This same pattern is in evidence for the square plate, see Fig. 
8.) Robinson [45] has selected this case to compare SI with an element 
he proposes, and some others, on crude meshes. Furthermore, some 
of the data he presents for SI shows the error to be approximately 
twice the actual amount. Nevertheless it must be admitted that there 
is deterioration of accuracy with planar aspect ratio, a common, but 
not well-understood phenomenon for virtually all finite elements. 

5.4 Thin Rhombic Plate. The configuration and mesh are 
shown in Fig. 15. The length parameter a = 100. The plate is uni­
formly loaded and simply supported boundary conditions (SSi) are 
employed. This problem is a difficult one since there is a singularity 
at the obtuse vertex. The analytical solution reveals that the x\ and 
%2 bending moments have opposite signs in the vicinity of the obtuse 
vertex. Many thin plate elements yield pathological results for this 
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Fig. 13 Convergence study tor thin rectangular plate (aspect ratio = 2) 

problem in that moments with the same sign are obtained (see [46, 
47] for a discussion). Moment results are presented in Fig. 16. The 
general trend for each element is correct. However, the elements have 
a tendency to oscillate somewhat as may be seen. The worst oscilla­
tions are produced by Ul . Considering that the mesh is not biased to 
favor the singularity, and that the problem is a numerically difficult 
one, the accuracy of the results obtained for SI and Ul is considered 
to be fairly good. 

5.5 Thick Circular Plate. This problem employs the same 
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48-element mesh as shown in Fig. 9, except the thickness is taken to 
be 2.0, and thus the plate may be considered "thick" (R/t = 2.5). It 
has been our experience that increasing thickness creates problems 
for rank-deficient elements [26]. An analytical solution obtained from 
Reissner's theory is used as a basis of comparison. The behavior under 
the load is singular and this gives rise to almost identical oscillatory 
patterns for elements SI and Ul as may be seen in Fig. 17. On the 
other hand, element Tl produces very accurate results for this 
case. 

5.6 Twisted Ribbon. Configurations, data and results for this 
problem are shown in Fig. 18. In each analysis, only one element is 
employed. Robinson [45] has proposed this as a critical single element 
test for plate bending elements. Comparisons are made with data 
presented in [45] for Robinson's element, LORA, and MacNeal's 
QUAD4 [31]. 

For Cases A and C (fully fixed boundary), comparison is made with 
respect to a benchmark analysis, reported upon in [45], involving 
sixteen high-precision elements. As may be seen, the results for our 
new element Tl are superior to the results for both LORA and 
QUAD4. Furthermore, no deterioration with increasing aspect ratio 
is detected. For this case, elements SI and Ul exhibit pathological 
behavior due to rank deficiency (not shown). 

It is interesting to note that Robinson [45], in advocating the use 
of LORA, has particularly emphasized its good behavior with respect 
to aspect ratio. Clearly, however, there is significant and inexplicable 
deterioration of LORA in Case B. Special emphasis has also been 
given to aspect ratio behavior by MacNeal [31] in the development 
of QUAD4. The technique employed is ad hoc and employs an ad­
justable parameter. Although improvement is noted in some situa­
tions, deterioration is encountered in others, as may be concluded 
from the comparison of Tl and QUAD4 in this example. 

+ denotes Gauss points( I - point rule) nearest x2 = 0 

Fig. 15 Rhombic plate mesh; due to symmetry, only one quadrant Is 
dlscretlzed 
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If only half the domain is modeled, and antisymmetrical boundary 
conditions are enforced (Cases C and D), the exact solution is one of 
pure twist. For these cases, SI and Tl yield exact solutions, whereas 
Ul still behaves pathologically (not shown). 

6 Conclusions 
In this paper a new conceptual framework has been established for 
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the development of plate elements based on Mindlin theory. The 
interpolatory patterns suggested have not been studied heretofore, 
but are somewhat more complicated than practical requirements 
presently dictate. It is proposed, however, that the ideas are useful 
in the development of more appealing elements, and this is illustrated 
by the development of a new four-node quadrilateral element 
employing bilinear isoparametric interpolation for all dependent 
variables. The element represents an improvement over past efforts 
of ours in that no spurious zero-energy modes are present. Simplicity 
is retained in the formulation and the element is shown to behave well 
on a variety of plate problems. The formulation enables straightfor­

ward generalization to nonlinear analysis, and appears to have some 
advantages over competing elements. 

Considerable further work remains to be done in exploring the 
behavior of some of the new elements proposed herein. In addition, 
serious studies of aspect ratio effects and transverse shear resultants 
would be very helpful in improving the understanding of element 
response. Finally, the rigorous mathematical convergence analysis 
of elements of the type considered in this work, which is a delicate 
matter judging from related studies [38, 48], needs to be assiduously 
pursued to put matters on a sound footing. 
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Loss of Contact in the Vicinity of a 
Right-Angle Corner for a Simply 
Supported, Laterally Loaded Plate11 

7Vie solutions to problems of laterally loaded, simply supported rectangular plates are 
classical ones that can be found in standard textbooks. It is found that forces directed 
downward must be present to prevent the corners of the plate from rising up during bend­
ing. The objective of the present analysis is to determine the extent to which such a plate 
will rise if the corner force is not present and the plate is unilaterally constrained. Rather 
than determine the solution for a rectangular plate, we consider a laterally loaded, simply 
supported plate which occupies a quarter space region. The plate is unilateraIly_SLOJi^, 
strained and may rise at the corner due to an absence of restraining force there.UJsing in­
tegral transform techniques appropriate to the quarter space for elastic plates, the region 
of lost contact is determined for a general loading. The special loading due to a concen­
trated force is given as an example. J 

I n t r o d u c t i o n 
The solutions to problems of laterally loaded, simply supported 

rectangular plates are classical ones that can be found in standard 
textbooks [1], where it is shown that forces directed downward at the 
corners must be present to prevent the corners of the plate from rising 
up during bending. In the vicinity of a corner, therefore, if the plate 
is not solidly joined with the supporting members, then there will be 
a tendency of the plate to rise there. 

It is clear that the problem is one of receding contact [2], since parts 
of the plate near the corners, if not constrained bilaterally, will bend 
away from the supports upon loading, resulting in a receding contact 
between the plate and the supporting structure. Since the contact is 
of the receding type, it can be predicted that the extent of contact 
between the plate and the supports is independent of the level of 
loading and that the support reactions are proportional to the load. 
Rectangular plates w hich are partially supported have been consid­
ered by Kiattikomol, et al., [3], by Stahl and Keer [4,5], and rectan­
gular plates which involve considerations of advancing contact have 
been considered by Dundurs, et al. [6], 

j~^The objective of the present analysis is to determine the extent to 

1 This work was supported in part by the National Science Foundation, Grant 
CME-8006265. 
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10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, May, 
1980; final revision, February, 1981. Paper No. 81-WA/APM-ll. 

which a simply supported plate will rise in the vicinity of a right-angle 
corner if the force at the corner is not present. The support is viewed 
as a unilateral constraint allowing only upward motion of the plate.) 
Rather than determine the solution for a rectangular plate, it is more 
revealing to consider instead a laterally loaded, simply supported plate 
that occupies a quarter infinite region, x > 0, y > 0. The analysis to 
a certain extent follows concepts from Sneddon's analysis of the elastic 
quarter space [7]. 

One could also develop a solution using the superposition of edge-
point load solutions for half planes at right angles to each other with 
suitable symmetries. Although the exposition using that technique 
might be clearer, it is not clear that the path leading to integral 
equations (23) and (24) would be significantly eased. 

F o r m u l a t i o n 
The problem concerning the lifting at the corner of a simply sup­

ported quarter infinite plate can be formulated as the sum of two 
solutions. The first is the solution to a laterally loaded, simply sup­
ported, quarter infinite plate in which the corner does not lift. For 
many cases a solution in closed form can be obtained and a specific 
example is given in the next section. The displacement corresponding 
to a problem of this type will be denoted as Wo(x, y). The total dis­
placement w(x, y) can be represented as the sum 

w(x,y) = w0(x,y) + wi(x,y) (1) 

where W\(x, y) represents the displacement solution required to insure 
that there is no loading on that region where the plate lifts from the 
support. 

The equation governing w is 

D V a i = q (2) 
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where 

DV4»„ = g, DA*W! = 0, D = Eh3/I2(l - v2), (3a-c) 

and q(x, y) is the applied load. The stress couples and resultants 
are 

Mx = -D\—-+ v—-
\dx2 dy2/ 

„ld2w d2w\ 
My = -D — - + v — -

\dy z dx2l 

Mxy = -Myx = D(\ - v) 

-D-

d2w 

dxdy 

d2w 

Vv = -D 

d2w 

djc2 dy 2 

d2u) d2«J 
+ (2 - i0 

dx 

_d_ 
dy dy2 

dx-

and the corner force R, at x = 0, y = 0, is given by 

if = 2MXy\x=0y=0. 

The boundary conditions for the lifting plate are (Fig. 1) 

My = My0 + Myl = 0 ? = 0, 0 < I 3 » 

w = u)0 + wi = 0 y = 0, a < x < = > 

Vy = Vyo + Vyi = 0 y = 0, 0 < x < a 

Mx=Mx0 + Mxl = 0 x = 0, 0 < y < <*> 

w = wo + wi = 0 x = 0, b < y < ° ° 

Vx = Vx0 + Vxt = 0 x = 0, 0 < y < 6. 

Furthermore, 

Mxy = 0 x = 0, y = 0. 

The boundary conditions for w0 are the following: 

w0 = Myo = 0 y = 0, 0 < x < °° 

ui0 = M Io = 0 x = 0, 0 < y < < = , 

(4a) 

(46) 

(4c) 

(5a) 

(5b) 

(6) 

(7a) 

(7b) 

(7c) 

(8a) 

(8b) 

(8c) 

(8d) 

(9a) 

(9b) 

where w0 satisfies (3a) and stress resultants having subscript "0" 
correspond to WQ. Similarly, wi satisfies (3b) and stress resultants 
having subscript " 1 " correspond to w\. The remainder of the problem 
requires the determination of u>\ such that boundary conditions (7) 
and (8) are satisfied, including the corner condition (8d). 

The lateral deflection u>\, appropriate for the region x > 0, y > 0, 
and satisfying equation (3), can be written in the following form: 

D Wl(x,y) = ( " V * [A(f) + £yB(£)]e-«* sin J xd£ 
Jo 

sin y] y dr). (10) 
Jo 

Using equations (7) and (8) and assuming that w0 and its corre­
sponding stress resultants are known, one may determine boundary 
conditions on uii in terms of the assumed known solution wo-

Differentiating equations (76) and (8b) twice with respect to x and 
y, respectively, and integrating equations (7c) and (8c) with respect 
tox and y, respectively, leads, after use of equations (4), (5), (10), (7a), 
and (8a) to the following coupled equations: 

f B(£) sin £xdf = 0 a < x < » , 

J D(T]) sin 7)ydri = 0 b < y < ° ° , 
o 

(ID 

(12) 

f (1 - v){r)x - l)D{v)e-ixdn - f (3 + v)B(£) cos £ xd£ 

= 9y(x) + Cy; 0<x<a, (13) 

- j"° (1 - v) (fy - l)B(Z)e-todt 

~ So" (3 + V)Dir,) C°S V ydv = ̂ x(y) + C" 
0 < y < 6 , (14) 

where Vy(x) = §Vy0 (x)dx and Vx(y) = JVx0 (y)dy and Cy, Cx are 
constants of integration. We note that for many cases of simple loads 
the functions Vx and Vy can be found in closed form. 

The corner force, Ri, is given as 

d2wi 
fli = 2(1 -v)-

dxdy 
= - 2 ( l + i/) C"[B(s)+D(s)]ds. (15) 

;g J o 

According to condition (8d), we must have 

R = RQ + Ri = 0. 

Therefore, 

(16) 

("" [B(s)+D(s)]ds=R0/2(l + v). (17) 

Let x = 0 in (13) and y = 0 in (14), and if the resulting equations are 
summed, then we are led to the result 

Cy + Cx = -Ro-Vy(Q)-Vx(0), (18) 

where use has been made of equation (17). 
At this point it is convenient to represent the transforms .B(£) and 

D(£) as the following finite Fourier transforms: 

B(Q= C" b(t) sin £tdt, D{r}) = C d(t) sin ijt dt. (19a,b) 
Jo 'Jo 

Here we note that b(t), d(t) are related to the second derivatives of 
w with respect to * and y. These represent quantities which have the 
same singularities at a, b as do the moments there. 

Substitution of equations (19) into equations (13) and (14) leads 
to the following coupled pair of singular integral equations (see, e.g., 
(7)): 

- ( 1 - ' } / o 

-a-") f 
Jo 

Let x = 0 and y = 0 in equations (20) and (21), respectively, and take 
the difference of these two equations to obtain 

rtix2-t2)d(t)dt 
h (x2 + t2)2 
3 +" r ° , , , 

b(t) 
2 Jo 

1 1 
+ 

t — x t + x 
dt = 9y(x) + Cy 

0<x <a 

rt(y2-t2\it)dt 
h (y2 + t2)2 

d(t) 
2 Jo 

1 1 

t - y t+y 
dt=?x(y) + Cx 

0 < y < b. 

(20) 

(21) 

Cy - Cx = 4 X 
* d(t)dt 

X 
' b(t)dt 

- VJ0) + VX(0). (22) 

Equations (18) and (22) are simultaneous equations for Cx and Cy. 
When they are determined and put into equations (20) and (21), the 
following equations are obtained, whose solutions will yield b(t) and 
d(t): 

-x b [(1 - V)t(x2 - t2) 4' 

(x2+t2)2 t 
d(t)dt 

-x " (3 + v) I 1 _ _J_ 

- x t + xf 
b(t)dt 

Vy(x)-?y(0)- — (-3 + V\ 0<x<a (23) 
2 (1 + v) 
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-x - f(1 - v)t(y2 - t2) 4' 

(y2 + £2)2 t. 
b(t)dt 

- r f f l f c ^ * * 
= V x ( y ) - V , ( 0 ) - ^ ^ 4 , 0 < y < 6 . (24) 

2 (1 + v) 

N u m e r i c a l A n a l y s i s 
Equations (23) and (24) are prepared for numerical analysis by first 

extending the regions of integration to — a < x < a, — b < y < b and 
introduce the following changes of variables and redefinition of bit) 
and d(t): 

t = as, x = au, b(as) = b(s) V l — s 2 

t = bq, y = bz, d(bq) = d(q) V l - (J2, (25) 

where b(s) and d(q) are regular at ±1 . Here we note that the definition 
of b(s), d(q) in terms of b(s),d(q) imply that the moments of a, b are 
bounded there. This is in agreement with [6] where the related ad­
vancing contact problem was considered. 

Equations (23) and (24) can thus be written in the following 
form: 

IT J-l 

i b(s) V l 3 ^ 2 

+ C K(au, q)d(q) V l - q2 dq 

7T i / - l q — Z J-l 

•• F2(bz), - 1 < 2 < 1 (27) 

where 

K(ln) -
TT(3 + v) l/x 

2 | / l - y \ M ( ^ - M
2 ) 

(« I 2 j (f2 + M
2 ) . 

- - 7 r ( 3 + i')i;'i(x) = V v ( * ) - t ? v ( 0 ) - — ^ - ^ 
2 y 2 ( 1 - M 

- i i r ( 3 + i.) F2(y) = Vx(y) - V*(0) - ^°{A±^ 
2 2 (1 + v) 

(28a) 

(286) 

(28c) 

and a = alb. 
An important physical quantity is the displacement the plate 

undergoes near the corner of the plate as it lifts off the simple support. 
Using equations (13), together with (10) and (19), one obtains the 
following values for the edge displacements: 

Dwi(x,0)=-^—\ C*b(t)tdt+ C"b(t)xdt 
1 - V [Jo Jx 

= I tb(t)dt, 
1 - v Jo 

Dwi(Q,y)=^—\ Cyd(t)tdt+ C d(t)y dt 
1 - V [JO Jy 

TV f*b 
= | td(t)dt, 

1 - v Jo 

0 <x <a 

x > a 

(29a) 

0 <y <b 

y>b. 

(29b) 

Equations (29) require a rigid-body displacement term, wc, to shift 
U)! so that w\(x, 0) and wi(0, y) are zero for x > a, y > b, respectively. 
Thus the additional condition 

is imposed, i.e., 

u>i(a, 0) = n>i(0, b) = —wc 

J a tb(t)dt = C td(t)dt. 
o Jo 

(30) 

(31) 

Fig. 1 A simply supported plate being loaded laterally by a concentrated 
force P acting at a position (/?, d). a and b denote the parts of the edges being 
lifted up 

The Gauss-Chebyshev integration formula is applied to equations 
(26) and (27), which are then written as [8] 

£ . 1 - S i 2 

;=i n + 1 

" 1 - 9 i 2 

; - i n + 1 

b(si) 

Is; - uk 

dim) 

W - Zk 

+ TrK(auk, qt)d(qi) 

+ 7rJf(a_1z/j,Si)fa(sj) 

G^Uk) (32) 

= G2(zk) (33) 

where Gi(uk) - F^auk), G2(zk) = Fi(bzk). Here, 

Si = qi = cos , i = 1 n 
\n + 1/ 

In 2k - 1\ 
Uk - Zk = cos |— — , k = 1 , . . . , n + 1. 

2 n + 1 

Equation (31) becomes 

n IT I ITT \ 
£ \a2b(si)siWi - d(qi)qm\ = 0; wt = - s in 2 ——-
j=i n + 1 \n + V 

(34a) 

(346) 

(35) 

There are In + 3 equations arising from equations (32),^33), and (35) 
from which we wish to solve for n values each of 6(s;), d(qi) and one 
value each of a and b. During the process of solution an even value of 
n was assumed, and the equations corresponding to k = nil + 1 in 
both (32) and (33) are identical equations and one can be discarded. 
The remaining In equations are then solved using an assumed value 
for a. The resulting b(s) and d(q) are put back into (35) and either 
one of the (re/2 + l)th equations of (32), (33) for checking. A series of 
values for a and b are tried until the correct ones that simultaneously 
satisfy the checking equations are found. 

Example—Concentrated Load. We consider a concentrated load 
located at a position (ft, 8) as shown in Pig. 1. Solution to the simply 
supported quarter plane plate having a concentrated load at (ft, 6) 
can be found by use of the solution to the concentrated load in an 
infinite plate along with the method of images. The resulting deflec­
tion is given by 

wo(x,y) = — — |[(* - p i ) 2 + (y • 
8irD 

P2)2 

X l o g [ ( x - P l ) 2 + ( y - p 2 ) 2 ] i / 2 

+ l(x + pi)2 + {y + p2)2] log [(x + Pl)
2 + {y+ p2)

2]1/2 

- [(x - Pi)2 +(y + p2)
2] log [(* - pi)2 + (y + p2)2]1 / 2 

- [(x + Pl)
2 + (y - p2)

2] log [(* + pi)2 + (y - p2)2]1/2) (36) 

where pi = ft cos d,p2 = ft sin 8. Using this solution for w0, the corner 
force fto can be computed as 

d2w0 fto = 20(1 - v) -
dxdy 

2P(1 - v) 

J=o° t P\Pi 

12+P22. 
(37) 

and the integrated values of the shears are found to be 
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Table 1 Values of a/R, b/R for different locations of concentrated load 

8 \ b 

»/4 

Sir/16 

»/8 

i/16 

IT/32 

»/512 

0 

a/R 

0.829 

0.857 

0.891 

0.928 

0.946 

0.955 

b/R 

0.829 

0.813 

0.808 

0.820 

0.836 

0.850 

0.125 

a/R 

0.788 

0.810 

0.839 

0.868 

0.883 

0.889 

b/R 

0.788 

0.776 

0.773 

0.783 

0.800 

0.809 

0.250 

«/R 

0.742 

0.761 

0.783 

0.807 

0.815 

0.820 

b/R 

0.742 

0.734 

0.734 

0.746 

0.756 

0.762 

0. 

a/R 

0.692 

0.705 

0.723 

0.739 

0.745 

0.747 

375 

b/R 

0.692 

0.686 

0.687 

0.698 

0.705 

0.708 

0 .5 

a/R 

0.632 

0.642 

0.654 

0.665 

0.668 

0.670 

b/R 

0.632 

0.630 

0.632 

0.639 

0.643 

0.645 

VyW = SVyQ(x)dx 
-p 

It 

+ (1 - v)pipi 

-P 

tan - l rn 
P I 2 + 

-

P22 

t a n 
^ 

I ( x + P i ) 2 + p 2
2 ] [ ( x - p i ) 2 + p 2

2 ] . 

Vx(y) = SVxa(y)dx tan" i(y±M-
Pl 

t a n 
- P2\ 

Pi I 

(38) 

w(x,o) 

w(o,y) 

Fig. 2 The displacements of the edge near the corner for 6 = 7T/512, TT/8, 
TT/4, with v being 0.25 

+ (1 - e)piP2 
\[(y + P2) 

PI2 

2 + 

+ P 2 2 -

Pi2][(y 

y 2 

- P 2 ) 2 + Pi2]. 
• (39) 

Us ing the se values , Gi(w) a n d Gi(z) in equa t ions (32) a n d (33) are 

ca lcula ted as 

Gi(u) •• 
ir2 \H + v, 

1-v 

1 + v. 
sin 2 0 - 2 0 + 1 

1 u2 s in 20 

(1-W I #2 

1 + — i r 
R2 

4 a 2 
(40) 

G 2 (z) = • 
T2\3 + V. 

1 - K ) 

( I + P) 
sin 28 + 26 - ir + 8i 

(1-v) 

b2 \ 
1 z 2 s in 20 

R2 

b2 \2 4 6 2 

1 H — - z 2 e 2 c o s 2 ( 
R2 I R2 

i = t a n -l ( a u + Pi 

\ Pi I 
t a n 

au — p i 

P2 

i te±P»]_t„,-ifc^ 

(41) 

(42a) 

7i = t a n " 1 1 — — — I - t a n - 1 1 - —|. (426) 
Pi / \ Pi 

Applying the numerical scheme jus t described, values for a/R and b/R 

can be compu ted for various locations of t h e concen t ra ted load P and 

for different values of v. T a b l e 1 shows several such values t h a t de­
scribe t h e locations of t h e loss of contact . In addi t ion Fig. 2 shows t h e 
edge d i sp l acemen t s n e a r t h e corner of t h e lifting p l a t e for some of 
these values . 

Conclusion 

Solut ions are ob ta ined for some cases of a qua r t e r infinite, lateral ly 
loaded, s imply s u p p o r t e d p l a t e hav ing a un i l a t e ra l cons t ra in t . T h e 
solut ion t e c h n i q u e used h e r e r equ i r ed t h e ident i f ica t ion of cer ta in 
l imi t ing values of in tegra l t r an s fo rms r e l a t ed t o t h e corner forces 
ar is ing from t h e b i l a te ra l p rob lem. Once th i s ident i f ica t ion was es­
tabl i shed s t a n d a r d numer ica l solut ion t echn iques for such p rob lems 
could be employed . 
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On a One-Dimensional Theory of 
Finite Torsion and Flexure of 
Anisotropic Elastic Plates^"" 

[Equations for small finite displacements of shear-deformable plates are used to derive 
a one-dimensional theory of finite deformations of straight slender beams with one cross-
sectional axis of symmetry. The equations of this beam theory are compared with the cor­
responding case of Kirchhoff's equations, and with a generalization of Kirchhoff's equa­
tions which accounts for the deformational effects of cross-sectional forces\Results of 
principal interest are: 

1 The equilibrium equations are seven rather than six, in such a way as to account for 
cross-sectional warping. 

2 In addition to the usual six force and moment components of beam theory, there are 
two further stress measures, (i) a differential plate bending moment, as in the corre­
sponding linear theory, and (ii) a differential sheet bending moment which does not occur 
in linear theory. 

The general results are illustrated by the two specific problems of finite torsion of 
orthotropic beams, and of the buckling of an axially loaded cantilever, as a problem of 
bending-twisting instability caused by material anisotropy. 

-rfU Introduction 6^ « " " a - ' / / ' "[/' ' ' ' ' "'' 

~fThe_principal purpose ofthe-following is the derivation of a system 
of one-dimensional nonlinear beam equations for originally straight 
beams, as a rational consequence of a given nonlinear system of plate 
equations. \The method of derivation and certain basic constitutivity 
assumptions are the same as those used previously for the problem 
of torsion and flexure within the framework of linear theory [3]. The 
present derivation is based on a system of nonlinear plate equations 
which represents a generalization of the Kirchhoff-von Karman sys­
tem, in such a way that the effect of transverse shear deformation 
(which turns out to be more significant than anticipated) is included 
[1,4]. 

The equations of the one-dimensional theory which is obtained here 
are compared with the corresponding classical Kirchhoff equations, 
and also with a direct generalization of Kirchhoff s equations in which 

1 Supported by the Office of Naval Research. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL op APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Department, 

ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1981. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, May, 
1980; final revision, December, 1980. 

account is taken of the deformational effects of cross-sectional forces, 
in addition to the deformational effects of cross-sectional moments 
[2]. 

The results of the present analysis which are thought to be of main 
interest are the following: 

1 The equilibrium equations of the nonlinear beam theory are 
seven in number rather than six. 

2 The relevant stress measures, in addition to force and moment 
components are (i) a differential plate bending moment, Rp, as known 
from linear theory, and (ii) what may be called a differential sheet 
bending moment, Rs, which does not occur in linear theory. 

The meaning of the general results is illustrated by means of two 
specific problems. The first of these is the problem of finite torsion 
of an orthotropic beam, and the second the problem of Euler buckling 
of a cantilever beam as a problem of bending-twisting instability 
caused by material anisotropy. Both problems show a non-negligible 
effect of the two differential bending moments which are a part of this 
theory, over and above the conventional six force and moment com­
ponents. 

Equations of Nonlinear Plate Theory 
We take as given a system of six equilibrium equations of the form 

[1] 
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NU,1 + N2l,2 + P l = 0, iVl2,l + N22,2 + p 2 = 0, Nl2 = N21, (1) 

Ql.l + Qi,2 ~ KuNu - K22N22 - Kl2iVi2 - K2liV21 + q = 0, 

Mn,i + M2i,2 - Qi + T i ^ i i + 72N21 + mi = 0, (2) 

M124 + M22,2 - Q2 + 71W12 + 72^22 + m2 = 0, 

in conjunction with strain displacement relations 

Kll = 01,1, «12 = 02,1, «21 = 01,2, "22 = 02,2, 
(3) 

7 ! = 0! + W,h 72 = 02 + W,2, 

«11 = "1,1 + W01.1 - 201, «Z2 = "2,2 + U>02,2 - 202. 

fl2 = "2,1 - U> + W02.1 - 20102> 
(4) 

«21 = "1,2 + CO + 1001,2 ~ 20102. 

Xl = C0,1 — 20102,1 + 20201,1, X2 = C0,2 + 20201,2 _ 20102,2, 
with (3) and (4) being consistent, via considerations of virtual work, 
with equations (1) and (2).2 

We note that in the foregoing equations stress resultants N and Q 
and stress couples M, as well as body forces and moments and 
translational and rotational components of displacements are taken 
with respect to body-fixed directions, which in the undeformed state 
coincide with the cartesian axes xi, x2, and X3. 

A reduction to the Kirchhoff-von Karman theory takes place upon 
assuming, as part of a system of constitutive relations, that 71 = 72 
= 0. Significantly, when this reduction is assumed the remaining 
system of equations seems no longer of sufficient generality so as to 
retain within its scope the possibility of leading to a system of one-
dimensional equations which is general enough to allow a solution of 
the Prandtl-Michell lateral stability problem. 

Const i tu t ive E q u a t i o n s and S t r a i n D i s p l a c e m e n t 
R e l a t i o n s for t h e D e r i v a t i o n of B e a m T h e o r y 

The essence of our procedure for the derivation of a conventional 
system of one-dimensional equations depends on the assumption that 
only those components of strain which enable stresses acting over the 
cross section of the prospective beam to do work are of a non-negli­
gible magnitude. If we consider x\ as the direction of the axis of the 
beam we then have, as part of the constitutive equations of the plate, 
the system of rigidity conditions 

«21 = «22 = 72 = «21 = K22 = ^2 = 0, (5) 

with Nix, N22, Q2. M2\, and M22 now being reactive quantities,3 and 
with the remaining constitutive equations being of the form 

UVu,]Vi2,Qi,Mu,Mi2) = /(en,ei2,ei,Kii,Ki2). (6) 

Leaving aside for now a stipulation of the form of (6) which will be 
used explicitly in what follows, we observe that equations (5) imply 
as expressions for displacements 

02 = 02(*l), 01 = 0l(*l), 0) = w(xi), W = w(x1) - X202, (?) 

U2 = "2U1) + 2*202. "1 = u l (*) _ * 2 ( W - 20102), (8) 

and equations (7) and (8) in turn imply as expressions for the re­
maining components of strain, with differentiation with respect to 
x i now indicated by primes, 

Kll = 0l ' , Kl2 = 02' , 71 = 01 + «"' _ *202' , (9) 

«U = Ul' ~ 201 - *2(«' + 20l' 02 - 202' 0l), 

612 = "2 ' - W + W<j>2' - 20102-

2 The nonlinear strain displacement relations (4) have been derived in [1] 
by considerations which involved an element of speculativity. For an alternate 
systematic derivation see [4]. 

3 We note the appearance of the quantity X2 in (5). The statical counterpart 
of X2 would be a moment component P2 with axis perpendicular to the plate 
surface which, in the nature of a further constitutive stipulation, we do not 
consider here. 

Equations (9) and (10), and therewith the constitutive equations 
(6), contain altogether six unknown one-dimensional displacement 
functions, 0i, 02, <o, " l , "2, VJ, and in order to complete the system of 
one-dimensional beam equations it is now only necessary to derive 
six one-dimensional equilibrium equations, as a consequence of the 
six plate equilibrium equations (1) and (2). If we do this we obtain a 
one-dimensional beam theory which is in effective agreement with 
the result in [2]. We will here, however, not proceed in this direction 
and, instead, consider a shortcoming of the foregoing which will then 
show the way to a generalization of the theory, involving a total of 
seven one-dimensional displacement functions and seven one-di­
mensional equilibrium equations. 

The shortcoming of the results in (6) and (7) consists, in essence, 
of the fact that the bending strain measure Kii and the rotational 
displacement 0i are independent of the width coordinate x% that is, 
the equations of the theory based on the assumption (5) do not make 
provision for the effect of differential bending. In looking for the cause 
of this excessive limitation we find that this cause is one of the con­
straint conditions in (5), namely, the condition K2I = 0. 

What follows is then based on leaving five of the six conditions in 
(5) as they are, while at the same time relaxing the sixth condition in 
the simplest way possible, by stipulating instead of the relation K21 

= 0 a relation 

K21 = f (*i), (5') 

with this relaxed condition then leading to a one-dimensional non­
linear beam theory which is significantly different from "conven­
tional" Kirchhoff-type theories. 

In evaluating the consequences of the assumption (57) it will be 
convenient to introduce the notation 

0i(*i) = 0, 02<*i) = 6, «i(*i) = " , "2U1) = v. (11) 

Therewith we now obtain as expressions for displacement compo­
nents 

01 = 0 + X2\p, 02 = 0, W = U)(X\) - X28, (12) 

o) = w(xi) - hx2\p8, u2 = v + ix2B
2, 

(13) 
u\ = u — x2{o> + wip — y>6) + x\ipd, 

with (12) and (13) agreeing with the previously derived equations (7) 
and (8) except for the additional terms with \p. 

Having equations (12) and (13) we obtain from (3) and (4) for the 
set of nonvanishing strain components 

*ii = 0' + x2^', K12 = 6', K21 = i/', 71 = 0 + w' + x2(\p - 6'), 

(14) 

and 

en = u' + W(j>' — J02 — x2[o)' — i^(0 + w') 

4- i(00' - 06')] + x t W - fcW, 
«12 = V — CO + U)d' — 200. 

Equilibrium Equations of Beam Theory 
We now consider the plate equilibrium differential equations (1) 

and (2), with expressions for the components of strain which occur 
in them given by (14), with a view toward deducing altogether seven 
one-dimensional equilibrium equations. 

As a step toward obtaining this one-dimensional system, we con­
sider that we have as boundary conditions for two spanwise edges x2 

= x2\ and X2 = x22 of the plate 

JV21 = N22 = Q2 = M2 i = M22 = 0. (16) 

To make apparent the physical meaning of the various kinematical 
terms which will appear in the one-dimensional equations we intro­
duce in equations (14) the defining relations 

0 ' = KP, 8' = Kt, 0 + w' = yp. (17) 
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With (16) and (17) we then obtain from equations (1) and (2) a 
system of eight integrated relations, 

(18) 
SNu + SPi = 0, J"iV'12 + J p 2 = 0, 

SxiN'n - fN12 + J x 2 p i = 0, 

SQ'i ~ KpSNu - VSxzNu - (Kt + i)JNl2 +Sq = 0, (19) 

Jx 2 Qi - SQ2 - KPSX2NU - \p'SxlNn 

-(Kt + ^)SxiN12+ Sx2q = Q, (20) 

§M'n - SQi + yPSNu - (at - i)SxiNn + S™i = 0, (21) 

J"Af12 - $Q2 + yPSNu - (Kt - t)Sx2Ni2 + §m2 = 0, (22) 

Sx2M'n - JM2i - Sx2Qi + yPSx2Nu 
- (Kt - MJxlNu + §x2my = 0, (23) 

In writing (18)-(23), as well as in what follows, we omit, to save space, 
the usual factor dx2, and also the limits x2i and x22 in the definite 
integrals. The desired seven beam equations are derived from 
(18)-(23) in two steps. The first step consists in stipulating in equation 
(23), as part of the complete system of constitutive equations, the 
relation 

JM21 = JM12. (24)4 

The second step consists in the elimination of Q2 from (20) and (22). 
The result of doing this is the one equation 

J W 1 2 - * 2Qi) ' + KpSxaNn + y„SNlt + V J*|2VU 

+ 2tSx2Nu+S(m2-x2q) = 0, (25) 

in place of (20) and (22). 
Therewith, and with the notation 

SQi = QP, SN12 = Qs, SNu = P, 

J"<7i = <7p. SP2 = Qs, SPi = P (26) 

SMu = Mp, Sx2Nu = Ms, SMl2 = TM, 

Jmi = mp, Sx2P = ms, Sm2 = tM (27) 

Sx2Qi = -TQ, Sx2Mn = Rp, Sx\Nu = Rs, 

-Sx2q = tQ, fx2mi = rp, Jx fp i = rs, (28) 

where the subscripts p and s have been chosen to indicate the dif­
ference between plate and sheet action, we now rewrite the seven 
beam equilibrium differential equations in the form 

P' + p = 0, Q's + q„ = 0, M's - Qs + ms = 0, (29) 

(Qp - iMs)' - KPP - KtQs + qP = 0, (30) 

M'p - KtMs - (Qp - fMs) + ypP + mp = 0, (3D 

T'M + (TQ + W + KpMs + ypQs + tM + tq = 0, (32) 

R'P ~ KtRs ~TM+ (TQ + \PRS) + ypMs + rp = 0. (33) 

The following observations may be made in regard to the appear­
ance of the system (29)-(33). 

1 We obtain a Kirchhoff-type system of the kind given in [2] by 
assuming \p = 0 and by disregarding the seventh equation, (33). The 
additional assumption yp = 0 leads to an appropriately abbreviated 
version of the original Kirchhoff system. In saying this we take account 
of the fact that for beams of narrow cross section, as discussed here, 
the additional terms KSQS, KPQP, KSN, KtQp, KtMp which are included 
in the full version of equation (29) and the additional terms KST and 

4 The stipulation (24) is neither required, nor possible, in the event that we 
presuppose the additional constraint relation K2I = ^ = 0, in which case equation 
(23) becomes a defining relation for JM21, in place of being a part of the dif­
ferential equation system. 

KSMP which are included in the full version of equations (31) and (32) 
would be of negligible consequence.6 

2 In order to obtain the term KtMs in equation (31), which term 
cannot be dispensed with, we had to make use of the term YiiVn in 
the plate equilibrium equations (2). What this seems to mean is that 
we cannot deduce an appropriate version of Kirchhoff s beam equa­
tions, as a consequence of the Kirchhoff-von Karman plate equations, 
without generalizing these plate equations first so as to account for 
the effect of transverse shear deformation. 

3 The terms \pMs and \[/Rs in (30)-(33) account for sheet stress 
contributions to beam stress measures which, without explicit con­
sideration of cross-sectional warping, would be due to plate stress 
action only. 

Constitutive Equations for Beams 
In deriving one-dimensional constitutive equations on the basis of 

a given system of constitutive equations for plates, in accordance with 
(6) or with generalizations of (6) in which account is taken of equation 
(5'), we limit ourselves here to cases of plate constitutive equations 
which are included in the following: 

Nu = CNen, €12 = 0, Qi = CQ7i , (34) 

Mu = DBKu + DBT(KI2 + K21), 

Mi2 = DT(KU + K21) + DBTKU. (35) 

In this the coefficients C and D are given functions of xi and x2. 
Furthermore, 

KU = Kp + x2\p', Ki2 = Kt, K2i = \p, yi = yp + x2(\p- Kt), (36) 

and, in accordance with (15), 

en = e + X2KS + x2\p(iit - hP), 1̂2 = 7» + WKt - ht>6, (37) 

where 

i = u' + u>Kp — lfj>2, ys = v' — o>, 
KX = -U' + i^7P + \(4>Kt - BKP). (38) 

Introduction of equations (34)-(37) into the defining relations 
(26)-(28) then gives 

P = eSCN + KSJX2CN + t(Kt - U)Sx\CN, 

Ms = t$x2CN + KSSX\CN + \p(Kt - hP)Sx\CN, 

Rs = e$x\CN + KsSx\CN + \f/(Kt - %p)Sx\CN, 

QP = yPSCQ + W- - KI)SX2CQ, 

-TQ = ypfx2CQ + (^ - Kt)fxlCQ, 

Mp = KPSDB + t'Sx2DB + (Kt + MSDBT, 

RP = KPSX2DB + i/'Sx2DB + (Kt + \p)Sx2DBT, 

TM = (Kt + MJDT + KPSDBT + \p'Sx2DBT. 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

In using (39)-(46) account has to be taken of the fact that the forces 
P and Q and moments M and T are components with respect to body 
fixed axes rather than with respect to the Cartesian axes x;. Within 
the range of applicability of the present formulation, these differences 
are negligible for tangential force components and plate-normal 
moment components, but not for normal force components and tan­
gential moment components. The relevant formulas are 

V3 = QP + S (iVntfi + Ni2<t>2) = QP + P<t> + Mst + Qs6, (47) 

5 A previous generalization of Kirchhoff s nonlinear beam theory, with 
three-dimensional theory equations as the point of departure, in which con­
sideration of warping introduces a seventh equilibrium equation has been given 
by Wempner [5]. The present equations differ from equations which are in­
cluded in Wempner's equations by the terms with \[/ and yp in (30)-(32). 
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M1 = TM+ TQ + /*2(JVii0i + Nufa) 

= TM + TQ + MS4> + Rsi + iRs0, (48) 

where we have used the relation fx2N'u— 2fx2Ni2 = 0, and with w 
in the integral as in equation (7) 

M2 = MP + JNuw =MP + Pw- MSB. (49) 

F i n i t e T o r s i o n of O r t h o t r o p i c S y m m e t r i c a l Cross -
S e c t i o n B e a m 

We consider, as a relatively simple illustration of the use of the 
foregoing, a beam for which 

DBT = 0, $x2CN = $X2CQ = $x2DB = Sx\CN = 0, (50) 

with the only load being a torque Mi, as defined by (48). 
By symmetry, we may assume that the only nonvanishing measures 

of strain are the quantities e, Kt, and \p; and the only nonvanishing 
measures of stress the quantities TM, TQ, and Rs. 

The relevant constitutive equations for this problem are then, in 
accordance with (39)-(46) 

0 = € j - C N + ^ ( K t - ^ ) J x l C N , 

Rs~tSx\CN+TP(Kt-kP)Sx\CN, 

(51) 

(52) 

and 

TQ = (Kt-t)Sx2
2CQ, TM = {Kt + ^)SDT, (53) 

with the applied torque equation (48) here reducing to the form 

M1 = TM+TQ + W„. (54) 

Equations (51)-(54) are, in effect, a system of three relations for 
the four quantities e, \j/, Kt, and Rs. The needed fourth relation is given 
by the seventh beam equilibrium equation, (33), which here be­
comes 

TM-TQ + (Kt - <p)Rs = 0. (55) 

The result of principal interest which may be derived from the 
system (51)-(55) is a nonlinear torque-twist relation Mi = f(Kt). In 
deriving this relation it is instructive to begin with a consideration 
of the case of negligible transverse shear deformation which results 
upon setting 

JXICQ = °°, \p = Kt, (56) 

with TQ now being reactive and, in accordance with (55), such that 
TQ = TM-

We next obtain, from (51) and (52) 

RsSCN = Wt[SCNfxiCN - (Sx\CN)\ (57) 

and therewith, from (53) and (54), as expression for Mi 

, SCNSXZCN - (J-xSCw)* 
Mi = 4KtfDT+K3

t
: (58) 

2fCN 

For the case that SX\CQ is not assumed to be infinite we have in 
place of (57) 

RJCN = t(Kt - hp)UCNSx\CN - (Sx2
2CNn (59) 

It now remains to determine ip as a function of Kt, through use of 
equations (55) and (53), that is from the relation 

MSDT + SX\CQ) + Kt(§DT - Sx\CQ) = ty - Kt)Rs, (60) 

with the solution of this to be introduced into the torque expres-

Mi - Kt(SDT + SXICQ) + f(jDT - SXICQ) + ^Rs (61) 

As the exact determination of \p as a function of Kt, by means of (59) 
and (60), now involves the solution of a cubic we limit ourselves here 
to an approximate determination, with (56) replaced by the stipula­
tions, 

SDT/Sx2
2CQ«l, xP = (l + 8)Kt, (62) 

with 5 « 1. We obtain in this way an expression for Mi which follows 
from (58) upon changing Kt into K((l — \§DTI JX2CQ). 

E u l e r B u c k l i n g of A n i s o t r o p i c N o n h o m o g e n e o u s 
Cant i l ever 

We consider a beam of length L which is acted upon at the end xi 
= 0 by an axial compressive force P = —F, with the line of action of 
this force coinciding with the elastic centroidal axis of the beam. We 
assume that the end xi = L is fixed. 

In view of our assumption that the ^i-axis is the line of centroids 
we have now SX2CN = 0, with the state of strain in the unbuckled state 
given, in accordance with (39) by e = —F/JCff. In view of (41) the 
state of stress in the unbuckled state involves in addition to P the 
stress measure Rs with a value 

Rs = ~P2F, (63) 

where p 2 = Sx2CN/fCN. 
Equilibrium equations for the problem of buckling follow from 

(30)-(33), with Qa = 0 and M, = 0, in the form 

QP' + FKP=0, MP' - QP - Fyp = 0, (64) 

TM' + TQ' - p*Ft' = 0, Rp> - TM + TQ + p2F(Kt - tf = 0, 

. (65) 

where Kp,Kt, and yp are given in terms of displacements as in (17). 
The four equations in (64) and (65) are associated with the five 

constitutive equations (42)-(46). With their help (64) and (65) may 
be transformed into four simultaneous equations for the four dis­
placement variables <j>,w,9, \p. 

Boundary conditions for the system of buckling differential 
equations are the conditions of support 

w(L) = 4>(L) = 6(L) = \j/(L) = 0, (66) 

together with conditions of vanishing end moments, 

Mp(0) = TM(0) + TQ(Q) - p 2 ^ ( 0 ) = Rp(0) = 0, (67) 

and together with a fourth loading condition which expresses the fact 
that the direction of the force F remains unchanged during buckling. 
It is simplest to express this condition for the built-in end of the beam, 
where it means the absence of a transverse force at the support, that 
is, we have in place of a fourth condition for xi = 0 a fifth condition 
for xi = L, 

QP(L) = 0. (68) 

Buckling Equations for the Case of Negligible Transverse 
Shear Deformation. We assume that, effectively, S(1,X2,X%)CQ 
= °° and set yp = 0 and \[/ = Kt, with Qp and TQ now being reactive. 
The remaining constitutive equations (44)-(46) take on the form 

Mp = <t>'fDB + r fx2DB + 2tSDBT, (68) 

Rp = * ' Jx 2 D f l + f'SxlDB + 2 ^ J X 2 D B T , (69) 

TM = HSDT + <t>'fDBT + f'fxiDBT, (70) 

and the four equilibrium equations in (64) and (65) reduce to two 
defining relations, Qp = M'p and TQ = TM ~ Rp, and to two differ­
ential equations 

Mp" + F4,' = 0, 2 7 V - Rp" - P2F^' = 0. (71) 

The order of the system (71) may be reduced, through use of the 
second conditions in (66) and (67), in conjunction with (68), leaving 
as a fourth-order problem in terms of 0 and i/', 

Mp' + F4>=0, 2TM ~ RP - P2Fi/ = 0, (72) 

with the remaining boundary conditions being 

4>(L) = i(L) = <f,'(0) = ^'(0) = 0. (73) 
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Equations (72), when written with the help of (68)-(70), become 

£ W " + F<t> + Dblf" + 2DbtxP' = 0, (74) 

Dblr - 2Dbt<t>' + Db2i" - 4Dtf + p2Fi = 0, (75) 

with the coefficients in these equations defined by 

Dbn = SxlDB, Dt = SDT, Dbt = SDBT. (76) 

Equations (74) and (75) contain as special cases the problem of an 
orthotropic beam, upon setting Dbt = 0, and the problem of the beam 
with coincident centroid and shear center location, upon setting Dbi 
= 0. We will here give an exact solution of the former problem and an 
approximate solution to the latter. 

Orthotropic Unsymmetrical Cross-Section Beam. Setting 
Dbt = 0 we may obtain the solution of (74) and (75) which satisfies all 
four boundary conditions in (73) by setting 

0 = A cos X*i, \f/ = B cos \xi, (77) 

with X = 7r/2L. Equations (74) and (75) become, with (77), two si­
multaneous homogeneous equations for A and B. The vanishing of 
the determinant of this system gives as equation for the critical load 
Fc, 

Fc = Db0\
2 'DbM2 Dbo 

Dbol 4Dt + Db2\
2- P2Fc\ 

(78) 

Since, necessarily, (DbiX/Dbo)2 « 1 we must, for a numerically sig­
nificant effect of the nonvanishing of Db\, have that Dt/Dbo « 1. In 
general, this condition will not be satisfied for the class of narrow 
cross-section beams and so the effect of a nonvanishing Dbi is here 
negligible. 

Anisotropic Symmetric Cross-Section Beam. We now set Db\ 
= 0 and attempt to determine the effect of a nonvanishing Dbt on the 

value of Fc. While it is possible to obtain an exact relation for Fc on 
the basis of (73)-(75), we will limit ourselves here to a simple ap­
proximate solution of the form (77), by assuming the effect of the term 
with Db2 in equation (75) to be negligible. Consistent with this we 
disregard the boundary conditions for \p in (73). Equation (75) now 
gives 

-2Dbt ,, 

and (74) becomes therewith 

\DM-

4Dt - p2F 

b" + F<t>=0. 

(79) 

(80) 
4Dt - p2FJ 

The solution of (80), with boundary conditions in accordance with 
(73), gives an equation for Fc which can be written in the form 

Db0\
2 - = i 

IDb 

\Db J \Db0 4 DboX' 
1 

Pit 
DtDb0 

(81) 

with the simplified version of the result following from the fact that 
DJDbo = 0(1) and, necessarily, p2X2/4 « 1. 

References 
1 Reissner, E., "On the Equations of Non-Linear Shallow Shell Theory," 

Studies Appt. Math., Vol. 48,1969, pp. 171-175. 
2 Reissner, E., "On One-Dimensional Large-Displacement Finite-Strain 

Beam Theory," Studies Appl. Math. Vol. 52,1973, pp. 87-95. 
3 Reissner, E., "On Torsion and Transverse Flexure of Orthotropic Elastic 

Plates," ASME JOURNAL OP APPLIED MECHANICS, Vol. 47,1980, pp. 855-
860. 

4 Reissner, E., "On the Derivation of Two-Dimensional Strain Displace­
ment Relations for Small Finite Deformations of Shear-Deformable Plates," 
to appear. 

5 Wempner, G., Mechanics of Solids, 1973, pp. 352-400. 

Readers Of. 
The Journal Of Applied Mechanics 
Will Be Interested In: 
AMD-Vol. 44 

New Concepts In Finite Element Analysis 
Eds. T. J. R. Hughes, D. Gartling, R. L. Spilker 

Contents: Some New Results on Finite Element Methods for Contact Problems with Fiction; Use of Stress Functions 

and Asymptotic Solutions in Fem Analysis of Continua; Finite Elements for Fluids With Memory; Sommerfield's 

Radiation Conditions and Cloning Algorithm; A Comparison of Paraxial and Viscous Silent Boundary Methods in 

Finite Element Analysis; Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-

Node Bilinear Isoparametric Element; Bifurication and Post-Buckling Analysis of Laminated Composite Plates Via 

Reduced Basis Technique; Variational Inequalities; The Solution of Quasi-Static Nonlinear Mechanics Problems by 

the Nonlinear Conjugate Gradient Method; A Comparison of Alternating-Direction Collocation Methods for the 

Transport Equation; Reduced Integration for Shallow-Shell Facet Elements; A Family of Solution Algorithms for 

Nonlinear Structural Analysis Based on Relaxation Equations; Plate Bending Elements Based on Orthogonal Func­

tions; Invariant-Hybrid-Stress Elements for Thin and Moderately-Thick Plates; Development of Finite Element Proce­

dures and Computer Implementation Aspects in Fluid-Structure Interactions. 

1981 Bk. No. G00202 272 pp. $40.00 Members $20.00 

Descriptions of other ASME volumes of interest appear on pages 492, 499, 508, 514, 538, 542, 554, 569, 618, and 633. 
Address Orders lo: 
ASME Order Department • P.O. Box 3199, Grand Central Station • New York, N.Y. 10163 

AM 89 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 605 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. G. Adams 
Assistant Professor. 
Assoc. Mem. ASME 

H. Manor 
Visiting Associate Professor. 

Department of Mechanical Engineering, 
Northeastern University, 

Boston, Mass. 02115 

Steady Motion of an Elastic Beam 
Across a Rigid Step 

-fAn infinite elastic beam moves at constant speed across a frictionless rigid step. Steady-
sTate~solutions are obtained in closed form using both Euler-Bernoulli and Tim.oshen.feo 
beam models. With step height and speed as parameters, the noncontact regions, mode 
shapes, and foundation reactions are determined. The results show interesting qualita­
tive as well as quantitative differences between the behavior of the Euler-Bernoulli and 
Timoshenko beam~s~~\ 

Introduction 
Problems involving moving loads on elastic beams and strips have 

been the subject of many investigations. No attempt will be made to 
list and categorize all of them. Recently the behavior of such systems 
with unilateral constraints has been studied. In [1], Adams and Bogy 
determine the steady response of an elastic beam resting on a smooth 
rigid foundation and subject to a steadily moving load. Alternatively, 
that problem could be considered one of an elastic beam moving 
steadily along a rigid foundation and subjected to a stationary load. 
They determined the noncontact lengths, mode shapes, and foun­
dation reactions as a function of load and speed. Related problems 
involving moving loads on elastic strips with one-sided constraints 
were studied by Adams [2, 3]. 

An elastic foundation which acts in compression only can be con­
sidered a generalization of a unilateral constraint (rigid foundation). 
In [4], Choros and Adams solve the problem of an infinite elastic beam 
resting on a tensionless Winkler foundation and subjected to a steadily 
moving load. They determine the minimum required loads in order 
to initiate separation of the beam from the foundation, as well as the 
liftoff regions and deflection curves. The solution of related problems 
involving elastic strips pressed against elastic half planes can be found 
in [5, 6]. 

In the present investigation, we determine the physical response 
of an infinitely long beam moving along a rigid foundation which has 
a step discontinuity. Such situations are encountered when an elastic 
medium, such as a computer tape, is pulled at high speed along a base 
with such a discontinuous configuration. Both Euler-Bernoulli and 
Timoshenko beam models are considered and solutions are obtained 
for both steady state and static cases. The method of solution is es-
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sentially to determine the solution of the appropriate differential 
equations of motion in terms of local coordinate systems, one for each 
contact and noncontact region. Then boundary and continuity con­
ditions are applied separately to each noncontact region (pair of 
noncontact and contact regions for the Timoshenko beam). This leads 
to simplified forms for the displacement equations (displacement and 
rotation equations for the Timoshenko beam) which are finally 
matched together by continuity conditions at the step corner. Then 
by choosing one of the noncontact region lengths as if it were known 
and taking the step height as unknown, we obtain the desired solu­
tions. This leads to a considerable reduction in algebraic complexity 
over the method of [1], especially for the Timoshenko beam. The re­
sults will be the noncontact regions, mode shapes and foundation 
reactions for a range of step height and speed. 

Euler-Bernoulli Beam 
(A) Problem Formulation. We consider an infinitely long 

elastic beam, resting under its own weight on a rigid step of height h, 
and moving to the right with constant speed c (Fig. 1). Beginning with 
the partial differential equations of motion of an Euler-Bernoulli 
beam and transferring to a dimensionless coordinate system (x, y) 
fixed with respect to the stationary step, we obtain the following 
equations of motion: 

y""+w2y" = -l, xeQ 

y = 0 , r(x) = 1, xeR-ti 

(1) 

(2) 

where 

y(x) = Ey(x + ct)/pgK2, x = (x + ct)/n, 

r = f/pgA, K = JTjA, o> = cl^Efp, h = Eh/pgK2, (3) 

in which y is the transverse beam deflection, r is the foundation 
contact pressure, / is the second moment of the cross-sectional area 
(A), and p,E,g are the mass density, Young's modulus, and acceler­
ation of gravity, respectively. R denotes the real line (—<=, °°) and 0 
the noncontact region(s). The corresponding dimensionless shear and 
moment are determined by 
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Fig. 1 An infinite elastic beam moving with constant speed across a rigid step 

y s ( 0 ) = 0 , y'3(0) = 0, y3(0). (8) 

5 10 . . 15 20 

Fig. 2 Step height versus noncontact lengths for an Euler-Bernoulll beam 

Q = fypgAK=y'", M = MlpgAK2 = y" (4) 

No initial restrictions are placed upon the number of noncontact 
regions which may exist, or on their location with respect to the step. 
However, it was shown in [1] that multiple regions of noncontact must 
be "free mode" solutions which are decoupled from the noncontact 
regions surrounding the load. Their existence thus depends upon the 
history of loading and is not part of the steady problem. With this in 
mind we look for solutions with no more than one noncontact region 
on each side of the step. Referring to Fig. 1, region 4 extends to infi­
nitely whereas regions 5 and 6 do not exist. 

(B) Method of Solution. Although the equations of motion (1) 
and (2), subject to appropriate boundary and continuity conditions, 
could be solved directly, we will use the method of [4] which results 
in a considerable reduction in algebraic complexity. Writing the so­
lution of (1) in terms of local coordinate systems, we obtain 

^4y2(x2) = Ao + A\U>X2 + A2 COS 0)X2 

+ A3 sin wx2 - h>2x\, 0 < x2 < h, (5) 

^ysixz) — BQ + Bio)*3 + B2 cos 00x3 + S3 sin a>xs 

-Wxl -l3<x3<0, (6) 

where l2 and £3 are the lengths of the two noncontact regions. The 
boundary conditions express the continuity of displacement, slope 
and moment and are given by 

The continuity conditions between the two noncontact regions at the 
step are 

y'iih) = y 3 ( - W , y\(h) = y"3(-h) (9) 

y2(k)=h, y3(-h) = 0 (10) 

Applying conditions (7), (8) to (5), (6), respectively, we obtain 

w4y2(^2> = Ai(wx2 - sin ux2) + 1 

— cos wx2 — ?fi)2x\, Q<x2<l2, (11) 

w4y3(x3) = -81(^*3 - sin o)x3) + 1 

- cos oix3 — h)2xl, —Is < X3 < 0. (12) 

We now use (10)2 obtaining 

S i = (1 - cos (xil3 — Ia>2£jj)/M3 — sin co/3), (13) 

which expresses the unknown B\ independently of both the step 
height h and the parameters of region 2. Applying (9)2 and (9)i we 
find 

A\ = (cos C0Z3 — cos o>l2 — Bi sin to^ / s in o>l2, (14) 

Ai ( l - cos o)l2) + sin 01I3 + sin oil2 = B i ( l - cos w/3) + u(l2 + l3). 

(15) 

Equation (15) with (13), (14) represents a single transcendental 
equation which relates the two unknown lengths l2 and (3, and is in­
dependent of h. For each value of Z3 we solve for l2 using standard it­
erative methods. The corresponding step height h can then be cal­
culated by using (10)i which results in 

to4h = Ai(oil2 - sin to^) + 1 — cos u>l2 — \jfil\ (16) 

y2(0) = 0, y'2(0)=0, y2(0)=0, (7) 

A plot of co4/i versus 01̂ 2 and cols is given in Fig. 2, which is valid for 
any dimensionless speed co. 

We can also consider the possibility of a single noncontact region 
occurring by taking the limit as Z3 -*• 0 in (13)-(15). This leads to 

S i = 0, Ai = tan (w/2/2), tan M 2 / 2 ) = Ms/2) , 

y2(*2) = {ool2/2)(oox2 — sin u>x2) + 1 - cos tx>x2 - h>2xl, 

which is the free mode solution [1] with h = 0. Thus all solutions with 
h > 0 have at least one noncontact region on each side of the step. 

Having determined h, l2t and h, we can now determine the corre­
sponding beam deflections anywhere in the noncontact regions from 
(11)-(14). Typical configurations for each mode (l)-(3) are shown in 
Fig. 3 (A-E). In order for a solution to be physically admissible, it 
must have positive displacement everywhere in the noncontact re­
gions. This is true of all the solutions given in Figs. 2 and 3. 

The distributed foundation contact pressure is equal to unity in 
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C) 
Mode 2 

Mode 3 

Fig. 3 (A-E) Typical Euler-Bernoulli beam deflection shapes, normalized in the vertical direction with respect to h and in the horizontal 
direction with respect to f2 

the contact region. However, concentrated reactions exist at the 
boundary of the noncontact regions and are found by determining the 
discontinuity in the internal shear force. The results are 

oifli = Ai, (11R4 = —B\, wRh = S i cos 00I3 

—A\ cos ah + sin 1A1 — sin wla, (17) 

where fli, R4, and Rh are the concentrated reactions at X2 - 0, X3 = 
0, and X2 = h, respectively. The results are shown in Pig. 4. In order 
for the solutions of Figs. 2 and 3 to be typically admissible it is nec­
essary for R-i, R4, and Rh to be positive, as shown in Fig. 4. 

(C) Solution Choice and Discussion. We have shown only the 
first three solution types in Fig. 2; many others exist. The question 
then arises as to which solution is actually physically realized for a 
given value of a)%. The solution choice will be based upon an energy 
criterion. The energy functional V for the Euler-Bernoulli beam is 
given by 

V = i f [(y»)2-<»Hy')2+2y]dx (18) 

in that stationary values of (18) yield (1). In (18) the first term rep­
resents the strain energy due to bending, the second term is from the 
kinetic energy and the last is the potential energy due to gravity. The 
solution of (18) is given by 

2abV = J(l - A?) sin 2wl2 + i ( l - B\) sin 2oila - 4[Ai(l - cos u>l2) 

— Bi( l — cos wis)] + 2Ai sin co^Ai + sin u/2 — <>>h) 

— 2Bi sin cousin C0Z3 — oj/3 — Si ) — 2(sin co/3 + sin co/2) 

- 2o)(/a cos o>l3 + l2 cos ix>h) + 2oi2(AiZi - Bill) 

- 2co3(Z| + l\)/Z + co;2(3 - A\) + o>h(Z - B\) (19) 

Due to the dependence of the gravitational potential energy, which 
is measured with respect to y2

 = h/2, on the step height h, the ex­
pressions (18), (19) can only be used to compare the energies of con­
figurations having the same value of b>4h. 

Without investigating the stability of the solutions, we take the 
actual solution as the one which, for given w4h, produces an absolute 
minimum in V. These solutions are the ones drawn in heavy lines (Fig. 
2). It is not intended to reject other solutions, as multiple local mini-
mums of the energy may exist. If so, the correct steady solution would 
have to be determined as an appropriate limit of the initial value 
problem. 

Although physically we would specify step height, it is more con­
venient to discuss the results (Figs. 2-4) in terms of the length {3. 
Mode 1 shows that as (3 increases from zero, h increases from zero 
until it attains its maximum value for this mode and then decreases 
again to zero (Fig. 2). The length (2 also increases from zero to a 
maximum value and then decreases to zero. It realizes its maximum 
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Fig. 4 Concentrated foundation reactions versus noncontact length o>/3 for 
an Euler-Bernoulli beam 

at a lower value of (3 than that for which h was a maximum. So Mode 
1 begins with h, i2, and h equal to zero and ends with h and /2 equal 
to zero. The corresponding final value of £3 is then the first free mode 
solution [1]. Mode 2 begins with the free mode solution and as it in­
creases both h and h increase with /2 again reaching its maximum 
value first. They then decrease to zero with Mode 2 ending at the 
second free mode solution. Similarly Mode 3 begins with the second 
free mode solution and ends at the third free mode solution with h 
and h varying as before. 

The corresponding deflection shapes (Figs. 3, (A-E)) show that in 
all cases the transverse displacement increases monotonically from 
zero to h within region 2. In region 3 there are one, two and three local 
maximums for Modes 1,2, and 3, respectively. The absolute maximum 
deflection as well as the overall deflection shape increases monoton­
ically with Z3. The foundation reaction R4 increases monotonically 
with the length la (Fig. 4). However, for Mode 1, Rh increases from 
zero to a local maximum and then decreases to zero. In Modes 2 and 
3, Rh begins at a finite value, increases, and then decreases to zero. 
The behavior of Rx is as shown. Note that Ri and Rh are both dis­
continuous at values of (3 corresponding to the free mode solutions. 
This is because at these values the length I2 approaches zero and Ri 
becomes indistinguishable from Rh- The sum of R\ and Rh is con­
tinuous at these points. 

(D) Static Solutions. Solutions for a stationary beam can be 
easily obtained by setting OJ = 0 in (1). The method of solution is ex­
actly the same as for the steady case and will be omitted for brevity. 
The results are 

, y2U2) = *f(2*3 - *2)/24, 0 < x2 < h 

y3(*s) = -xUh + x3)/24, -h < x3 < 0 

h=(VH- Dk, h = (2V3 - 3)/4
2/24, 

Ri = h/2, fl4 = /3 /4, Rh = h + yi- (20) 

Solutions of this type are, of course, unique. The lengths Z2 and la 
increase monotonically with the step height h. 

Timoshenko Beam 
(A) Problem Formulation. We now consider the same physical 

problem using Timoshenko beam theory which includes the effects 
of shear deformation and rotational inertia [7]. Writing the corre­
sponding pair of partial differential equations of motion in terms of 
a dimensionless coordinate system (Fig. 1) fixed in space we obtain 

(1 - to2)(l - co2)0'" + u2,4 

y' = 0 - (1 - w2)0" 

and 

' = - 1 
x e fl (21) 

where 

y(x) = a*Ey(x + ct)/pgn2, x - a(x + C£)/K, 

4>{x) = a3E${x + ct)/pgK, OJS = c/y/G/p, 

a = y/G/E = co/ws, « = \[TfA, (23) 

in which 0 is the rotation and G is the effective shear modulus. The 
dimensionless shear and bending moment are 

M = oMlpgAn2 = 0', Q = aQ/pgAn = (1 - a>2)0". (24) 

(B) Method of Solution, (i) Two Noncontact and Two 
Contact Regions. In order to avoid the considerable algebraic com­
plexity encountered in [1], we will apply a modification of the method 
of [4] to a Timoshenko beam. We obtain the solution of (21) in terms 
of local coordinates for each of the two noncontact regions (i = 
2,3) 

<pi(xi) = Ai sin pxi + Bi cos pxt + C,- - x;/co2, 

yibi) = Di + CM - xftta* 

+ [—At cos pxi + Bi sin px;]/p(l — OJ2), 

and for each of the two contact regions (i = 1, 4) 

4>i(xi) = Aie-i"' + Biew, y ; fc) = 0, 

n(xi) = 1 + q(-Aie-"x' + Bie"x0 

(25) 

(26) 

where 

p = wsql^/l 1/VT 

(1 - cu2)0" - 0 = 0, y = 0 

r(x) = 1 + 0' 
, l e R - f l (22) 

The boundary conditions to be applied at infinity are 

lim <fo(xi) = 0, lim 04(x4) = 0, (27) 

and those at the contact points of the noncontact region are 

y 2 ( 0 ) = 0 , y 3 ( 0 ) = 0 . (28) 

The following continuity conditions are now used: 

0i(O) = 02(O), 0i(O) = 0'2(O), <Ai(0) = 02(0), (29) 

03(O) = 04(O), 03(O) = 04(O), 03(0) = 04(O). (30) 

By applying (27)-(30) we can determine the unknown constants 
pertaining to the regions to the left and to the right of the step in terms 
of Bi and A4, respectively. 

There remains two unknown constants S i , A4 and two unknown 
lengths h and Z3, which will be determined using the following four 
continuity conditions at the step: 

yz(h) = h, y 3 ( - W = 0, 02(/2) = 03(-Z3), 02(/2) = 03(-*3). 

(3D 

Applying (31)2,4,3 we obtain Ait Bi and a transcendental equation for 
1% I3. Varying /3 we can calculate corresponding values of I2 by stan­
dard methods. For a given l2 and l3 the associated value Of h is ob­
tained from (31)i. 

The displacement and rotation at any point on the beam can now 
be obtained directly from (25). The corresponding foundation reac­
tions are the distributed pressures given by 

ri(xi) = 1 + qBiei^; r4(*4) = 1 - qA^e'"** (32) 

and the corresponding concentrated reaction 

Rh = [0 3 ( -y - 02a2)]/<?2 

= Ai(q cos pla - p sin ph)/q 

+ Bi(p sin pl2 - q cos ph)lq 

+ p(sin pl2 + sin p^3)/co2g2. (33) 

Due to the inclusion of shear deformation the concentrated reaction 
at the step causes a discontinuous slope at that point. 

(») One Noncontact and Two Contact Regions, At this point 
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Fig. 5 Maximum step height and noncontact length versus dimenslonless 
speed (or a Timoshenko beam with a = I/1/3 (rectangular cross section and 
Poisson's ratio ot 0.25) 

we consider the possibility of a single noncontact region occurring with 
complete contact to the right of the step. This can be accomplished 
by eliminating regions 3, 5, and 6 in Fig. 1. Boundary and continuity 
conditions (27), (28)i, (29), (31)i are still applicable and must be 
supplemented with 

Uh) = 04(0), 02( '2)=*4«)) (34) 

The resulting displacements, rotations, and step height are the same 
as before, with different expressions for B\ and A4. These are valid 
for any length l2 provided that the conditions of positive displacement 
in the noncontact region and positive foundation reactions in the 
contact regions are satisfied. As h increases so does (2 and the con­
centrated reaction at the step corner increases as expected. However 
the distributed pressure (32)2 decreases because A4 increases. 
Therefore, the maximum permissable step height h occurs when A4 
= 1/q. A graph showing the maximum value of h and the corre­
sponding value of l2 for which only a single noncontact region exists 
is shown as a function of dimensionless speed in Fig. 5. These limiting 
values agree with those obtained by taking an asymptotic expansions 
for small £3. Note that the maximum value of h decreases with in­
creasing speed. 

Note that in the limit as ois —• 1, the results in Fig. 5 show that l2 

-*• 0, but h approaches a finite value. This can be verified directly by 
taking the limit as cus - • 1 obtaining l2 = 0 and h = 2(1 — a2). The 
reason is that as the shear wave speed is approached, the discontin­
uous slope at the step corner, which results from shear deformation, 
increases without bound. 

(Hi) Two Noncontact and Three Contact Regions. Now let us 
consider the existence of a finite length contact region immediately 
to the right of the step corner (Fig. 1 without region 3). By applying 
the following conditions: 

<t>i(U) = 0B(O), 04(W = 06(O) 0l(/4) = 05(0), 
foih) = 0e(O), 0'6G6) = 0e(O), 06fe) = 0e(O), 
yB(0) = 0, y5(h) = 0, (35) 

we obtain the solution for regions 4, 5, 6, where the length h is given 
by 

(p/5/2) cot (p/5/2) = (1 + qui hl2)l(l - 0%). (36) 

There are an infinite number of solutions of (36); these are the free 
mode solutions encountered in [1]. Note that the behavior of the beam 
in the regions to the right of the step corner depends on only one pa­
rameter "h." The solutions for regions 1 and 2 are as before and are 
given strictly in terms of h and Bi. Applying continuity of rotation 
and bending moment at the step corner 

5.0 10.0 15.0 20.0 

I 

Fig. 6 Step height versus noncontact lengths at fixed speed o> = 0.4 (a = 
1/V3) 

0 2 ( ' 2 ) = 0 3 ( - « 02 «2) = 03 M a ) (37) 

we eventually obtain S i , U, and h. 
The displacement and rotation of the beam at any point can now 

be determined from (25). The concentrated reaction at the step corner 
is given by 

Rh = (h/2)e~t>,i — Bi(q cos pl2 - p sinpl2)/q 

+ (p/?
2o),!) sin ph (38) 

and the distributed reactions are 

n(x{) = 1 + qBie"x\ ri(xi) = 1 + (qU/2)e^"*-l*>, 

r6(x6) = 1 - (qh/2)e-«*'. (39) 

(iv) Three Noncontact and Three Contact Regions. Finally, 
we consider the possibility of all six regions occurring (Fig. 1). The 
solution can be obtained in a manner similar to the foregoing by 
applying appropriate boundary and continuity conditions. For brevity 
we have omitted all of the details. The essential effect of the extra 
noncontact region is to alter region 4 from one in which the rotation 
is exponentially decreasing to one in which it is exponentially in­
creasing. This allows for new solutions in regions 1, 2, 3. 

(C) Solution Choice and Discussion. In Fig. 6, we show a plot 
of step height h versus noncontact lengths as defined by l2, lg for the 
case of two noncontact regions and l2,13 + h and l3 + I4 + l6 for the 
case of three noncontact regions. These results are valid at a fixed 
speed of a; = 0.4 for a beam with a rectangular cross section and 
Poisson's ratio equal to 0.25. Mode 1 begins with a finite value of h 
at (3 = 0 due to the inclusion of shear deformation which allows only 
one noncontact region to exist for small values of h. As Z3 increases, 
h increases to a maximum and then decreases to zero leaving the first 
free mode solution. Typical displacement configurations for Mode 

1 are shown in Fig. 7 (A, B). Unlike the Euler-Bernoulli beam, Mode 
2 for the Timoshenko beam begins with three noncontact regions (Fig. 
1) in which the noncontact region i = 5 is the first free mode. However 
as h approaches its minimum value, the distance I4 approaches in­
finity. As h increases h decreases to zero. At this point, two of the 
noncontact regions (i = 3, 5) coalesce forming a single noncontact 
region (i = 3) as the point x% - 0 is gently lifted off the smooth rigid 
foundation. Then h increases to a maximum value and decreases to 
zero leaving Mode 2 in the second free mode solution. A typical dis­
placement configuration is shown in Fig. 7 (D). Mode 3 also begins 
with three noncontact regions, however, region 5 is the second free 
mode solution which is an infinite distance from the step corner. Note 
that both modes 2 and 3 begin with the same values of h, 1% and £3. 
This can be seen by taking the limit as I4 -* » , obtaining B3 - • 0. 
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Fig. 8 Foundation reactions versus noncontact length W/3 + /4 + /5, for three 
noncontact regions) at fixed speed a) = 0.4 (a = 1 v'3) 
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Fig. 7 ( 4 -D ) Displacement configurations for first three modes with oi : 

0.4, a = 1/-\/3^ normalized with respect to h and /2 

Hence the displacement configurations in regions 1, 2, 3 are identical 
in the beginning stages of mode 2 or 3. The subsequent behavior of 
mode 3 is similar to that of mode 2 with the two noncontact regions 
(i = 3, 5) joining together and eventually ending with h• = 0 and the 
third free mode solution. A representative deflection shape is shown 
in Fig. 7 (C). As with the Euler-Bernoulli beam, modes 1, 2, 3 corre­
spond to one, two, and three local maximums, respectively, in the 
displacement shape. 

We have also considered the possibility of a finite length contact 
region immediately to the right of the step. However, no solutions exist 
for the range of the parameters plotted in Fig. 6. 

The results of Fig. 6 show that at fixed speed ii> and step height h, 
many solutions exist. Following the same reasoning used for the 
Euler-Bernoulli beam, we form the energy functional 

V •• i J _ ° [(1 - a>2)(4/)2 + (1 - w 2 ) 2 ^") 2 - a>2(/)2 + 2y]dx, 

(40) 

in which the first term represents the strain energy of bending and 
kinetic energy of rotation, the second term is strain energy due to 
shear deformation, the third term is the kinetic energy due to 
transverse motion, and the last term is due to gravity. This integral 
has been evaluated in closed form; however, the results are very 
lengthy and will not be given here. Those modes which result in an 
absolute minimum for V are shown in heavy lines in Fig. 6. Again we 
emphasize that many solutions exist; we have shown only the first 
three modes. 

The foundation reactions A/,, ri(O), r$(0) are plotted as a function 
of noncontact length £3 in Fig. 8. 

(D) Static Solutions. The solution for a stationary beam may 
be obtained either by taking an asymptotic expansion for small speeds, 
or by resolving the problem with OJ = 0 in (21), (22). For brevity we 
simply list the results 

0 i ( x 1 ) = B 1 e « , yi(*i) = 0, r(Xl) = 1 + Bie*i 

Mxz) = B i d + *2 + *l/2) - zjj/6, 

y-Axi) = (Si + D x | / 2 + Bi*jj/6 - x| /24, 

•feda) = Ai(l -xs + %3
2/2) - * | /6 

yada) = (1 - A4)z§/2 + A4xl/6 - 4 / 2 4 

04d4) = A4e~Xi, yi(xi) — 0, r (X4) = 1 — A4e~Xi 

in which 

A4 = (12 - Z|)/4(3 + l3), 

Bi = - [A 4 ( l + h) + dl - /I)/2]/(l + h), 
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Fig. 9 Comparison of co4h versus o>/3 for first mode at different dimensionless 
speeds 

h = Zf[(3 + h)Bx + 3 - ll/4]/6, 

1 + Z2 + /f/2 _ _ Aj(l + h + Ijm + (7f + /l)/6 

l + h ~ AtQ. + h) + Ul-lD/2 ' 

Rh = Ai-Bi + h + h, 

where the foregoing is valid for two noncontact regions. For one 
noncontact region we have 

Si = l\ (h + 3)/12(l + h + 11/4), 

A* = iyt - Bi(l + l2), 

Rh=Ai-B1 + l2 

and the requirement of positive foundation reactions leads to A4 < 
1 and consequently l\ + 4Z| - 24^2 - 24 = 0, which has a real positive 
root (2 = 2.3284 and h = 3.9604. 

Comparison of Results and General Discussion 
In Fig. 9, we show a plot of o)4h versus o}l3 for Mode 1 at different 

dimensionless speeds o>. Also shown are the corresponding results for 
the Euler-Bernoulli beam which are valid at any speed. Notice that 
the dimensionless variables x and y have been defined somewhat 
differently for the two beam theories (3), (23) which is why the 
Euler-Bernoulli results of Fig. 9 may appear to be different from those 

of Fig. 2. The results of the two theories agree to within graphing ac­
curacy for co = 0.1 but begin to differ much more significantly at higher 
speeds. This behavior is not unexpected. 

Using Euler-Bernoulli beam theory we always have two noncontact 
regions. Additional free mode noncontact regions can occur but are 
decoupled from the other regions. Using a Timoshenko beam, the 
results are more complex as has already been discussed. Free mode 
solutions can occur but are coupled to the other regions. 

The nonuniqueness of the solution is characteristic of this as well 
as other problems [1-6]. This is due to the nonlinearity associated with 
the existence of noncontact regions, which allows different sets of 
initial conditions to result in different steady solutions. This type of 
nonuniqueness is different from that associated with, for example, 
a steadily moving lead on an infinite beam which is not supported by 
any foundation. In that case, different initial conditions can give rise 
to different steady solutions. However, the different steady solutions 
have different behaviors at infinity and hence each solution can be 
viewed as the solution of a different problem in which particular 
boundary conditions have been applied at infinity. 

Also characteristic of this problem as well as [1-6] is that the re­
sponse of these systems is not always continuous with increasing step 
height (load in [1-6]). At any finite speed there exists values of h for 
which there is a sudden change from one deflection configuration to 
another (e.g., the sudden change from Mode 1 to Mode 2 at a;4/i = 
10.681, Fig. 2). 
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Response of Periodic Systems to a 
Moving Load 

I The motion of a beam or a plate resting on an elastic foundation and subjected to a mov­
ing load has been studied by numerous authors. But the extension of these studies to the 

case of periodic structures is difficult. In this paper, a method allowing the calculation 
at low numerical cost of periodically supported beams subjected to a moving force, is pro­
posed. The interpretation of this method on the basis of the free-wave propagation equa­
tions in periodic structures has led to the definition of the predominant, so-called "pri­
mary," critical speeds. Individual examples were used to test the method. It was also pos­
sible to define the limits of a Winkler continuous model in representing the support reac-
tions\ 

Introduction 
Initial research into a steadily moving load on an infinite continuum 

was carried out by Schwedler [1] and Hovey [2]. These authors studied 
the steady-state response of an Euler-Bernoulli beam on a Winkler 
foundation. In recent years considerable attention has been paid to 
the problem of beams and plates subjected to moving loads [3-16]. 
The models of structural elements and foundations employed are 
increasingly complex but in all these studies the method of resolution 
adopted is identical. The deformation pattern is time invariant rel­
ative to a coordinate system moving with the load. By transforming 
the equilibrium equations to the moving coordinate and further by 
applying the Fourier transformation the solution is obtained. The 
inversion of the Fourier transform in conjunction with the integral 
contour is made problematic by the existence of real poles in the un­
damped cases. Double real poles are linked with a critical velocity for 
which displacement is unbounded. In their study of moving loads on 
an elastic plate strip, Adler and Reismann [11] present two methods 
for calculating response when the poles are real. The first is by in­
troducing damping and the second is based on an application of the 
principle of causality by which the phase velocity is compared with 
the group velocity on the basis of the dispersion relations for free 
flexural waves. 

The present work aims to study a traveling load on an infinite pe­
riodic system. Motions of vehicles on flexible guideways have been 
studied by Doran and Mingori [17], then by Chung and Genin [18] in 
the case of independent spans. This hypothesis eliminates the influ­
ence of wave propagation along the beam. For the calculation of the 
response of continuous, periodically supported beams to traveling 
loads, Smith and Wormley have proposed two methods [19]. The first, 
based on the Floquet principle, consists in calculating the Fourier 
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transform of the displacement and the second only considers a finite 
number of spans before and after the moving load. Recently, Genin 
andChung [20] have proposed a numerical algorithm to analyze the 
dynamic response of the continuous guideway structure subjected to 
a moving vehicle. But all these numerical methods do not greatly 
advance the study of the solution near critical speeds where the waves 
are propagated at a great distance from the load. The introduction 
of damping facilitates the calculation but greatly influences the so­
lution for high speeds and continuous guideways often have very low 
damping. 

The method proposed in the first part of this study is analytical and 
takes into account the real phenomena of propagation. Critical speeds 
can thus be obtained as in the case of nonperiodical systems [1-16]. 
In the second part this method is discussed in the light of recent 
studies on free wave propagation in periodical structures. In particular 
the existence of bands of propagation and wave groups which result 
from reflections on the supports has been clearly demonstrated in 
references [21-30]. Mead has calculated the bounding frequencies of 
the propagation zones in terms of the receptance matrices of single 
elements [27, 28]. The work by this author on the response of a peri­
odic beam to a uniform convected harmonic pressure field [25, 29] 
permits the justification of our method and the definition of the so-
called "primary critical speeds." In the third part the conditions which 
permit the assimilation of the periodical supports to a foundation 
continuous model are specified. Individual examples are used in the 
last part to test the method. 

Method Exposition 
An Euler-Bernoulli infinite beam resting on elastic supports is 

taken as an example to demonstrate the method—Fig. 1. The stringers 
have a rotational stiffness Kr and a transverse elastic stiffness Kt and 
are spaced at an equal distance / apart. A concentrated force / is 
moving with a constant speed v in the positive x -direction. The origin 
of the fixed coordinate system coincides with one end of a span. The 
stringer situated at the point x = Nl is subjected to a force FN and a 
moment CJV, solely function of the speed v and the distance between 
the load and the support in steady state. 

Journal of Applied Mechanics SEPTEMBER 1981, VOL 48 / 613 

Copyright © 1981 by ASME
Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^ 
K Kr 

Vt 

-Gxl s*. 
W 

J^ X J^_ 

Fig. 1 Beam-type periodic structure subjected to a moving force 

FN = F(Nl - vt, v) CN = C(Nl - vt, v) (la,b) 

The equilibrium equation for the bending theory of an Euler-Ber-
noulli beam is 

d2y 
EI^=~M (2) 

In this notation E represents the elastic modulus, / is the moment of 
inertia of the beam, and y is the beam's deflection. 

The derivative with respect to space of the bending moment M, 
considered as a generalized function, can be written 

dM 

dx 
Q + Il(x)C(x-vt,v) (3) 

The transverse shear force Q is a generalized function. II is a row of 
equal Dirac's delta functions 

n ( x ) = £ 5 ( x - M ) (4) 

The derivative of the generalized function defined in equation (3) 
is 

d 2M 

dx2 
; = r + n w 

dC 
F(x - vt, v) H (x — vt, v) 

dx 

d l l 
+ C(x - vt, v) (5) 

dx 

The distributed load r is constituted by the moving force / and 
transverse inertial forces 

d2y 
r = -m — - + f8(x - vt) 

dt 2 (6) 

Equations (2), (5), and (6) give the differential equation for the 
bending of an infinite supported beam 

d4y d2v 
EI—^ + m —i = fb(x - vt) 

dx4 d t 2 

+ IL(x) (F(x - vt, v)+ — (x- vt, v) 
dx 

+ C(x - vt, v) (7) 
dx 

In this last equation the flexural rigidity EI is taken to be constant. 
The equation for the displacement y in a coordinate system that 
moves with the load, is obtained by using a Galilean transforma­
tion. 

(8) 
X = x - vt 

Y = y 

Supplementary terms appear in the equilibrium equation coming 
from the derivative with respect to time. 

d4Y d 2 y d2Y d2Y 
EI + m 2mv + mv2 = f8(X) 

dX4 dt2 <>Xdt dX2 

+ n 
dC 

F(X, v) + — (X, v) 
dX 

+ — C(X,v) (9) 

In a steady state the displacement at the coordinate X is a periodic 
time function. The period T depends on the speed of the moving load: 
T = l/v. 

The solution Y(X, t) can be found in the form of a Fourier se­
ries: 

Y = A0 + E [Aj cos (2JTV(X + vt)/l) 

+ Bj sin (2jir(X + vt)/l)] (10) 

The Fourier coefficients Aj and Bj are functions of v and X. 

Aj = Aj(X, v) Bj = Bj(X, v) ( l lo,6) 

The generalized function given in equation (4) and its derivative are 
periodic with period / and can be developed in a Fourier series: 

n = - + - £; cos (2/7r(x + vt)/i) 
I I ; = 1 

a n 4 T -
— = - 77 £ ;' sin (2jir(X + vt)/l) 

(12) 

(13) 

By incorporating equations (10), (12), and (13) in equation (9) and 
identifying the coefficients of the Fourier series, the following equa­
tions may be obtained 

(F + C')/l + f5(X) = EIAQ"" + mv2A0" (14) 

(F + C')2/l = EI(Aj"" + 4Bj'"Pj - GAj"pj2 - 4B ; 'p ;-
3 

+ Ajpj4) - Uj2mAj + mv2(Aj" + W/pj - Ajpj2) 

— 2mv(wjBj' — AjPjtOj) (15) 

- 4TTJC/12 = EI(Bj"" - 4Aj'"Pj - %Bj"pj2 + 4Aj'Pj
3 

+ Bjpj4) - o>j2mBj + mv\Bj" - 2A/p ; - B]Pj2) 

+ 2mv(wjAj' + BJPJWJ) (16) 

with 

where 

Glj = 2-KJv/l Pj = 2-KJ/l j > 1 

( )' = d( )/dX 

(lla,b) 

The two supplementary equations which will enable us to determine 
the reactions C and F are obtained by imposing the force conditions 
at the supports 

with 

FN = F(X,v) = -Kty(X,t) 

CN = C(X, v) = -Kr — (X, t) 
dX 

X = Nl-vt 

(18) 

(19) 

(20) 

By using equation (10) and these last three relationships we ob­
tain 

F(X, v) = -Kt EAj(X,v) 
L/=o 

C(X, v) = -Kr E Aj'(X, v) + E PjBjiX, v) 
L/=o j=\ 

(21) 

(22). 

Equations (14)-(16), (21), and (22) can be solved by using the Fourier 
transformation with respect to X defined as 

8- f + ° g(X)e-ihxdX 

A system of linear equations is obtained 

!i0A0 = f+(F + ikC)/l 

UJAJ - WjBj = 2(F + ikC)/l ;' > 1 

WjAj + UJBJ = -4TTJC/12 j > 1 

(23) 

(24) 

(25) 

(26) 
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C = -Kr T. ikAj + L PjBj 
1=0 ; = 1 

with 

u0 = Elk4 - mu2k2 

UJ = EI{k4 + 6pj%2 + py4) - mv2k2 j > 1 

= ikpjAEKk2 + py2) ; > 1 

(27) 

(28) 

(29) 

(30) 

(31) 

An approximate solution is obtained if only a finite number of terms, 
re, is taken in equation (10). 

The influence of this truncation will be studied in the following 
paragraph. After omitting the details one finally obtains the unknown 
functions Ao, Aj, and By as a solution of a linear system of order 
In + 1 

[%] 

Ao 
M 
Bi 

An 

Bn 

(32) 

with 

[Hij] 

2u 
U\ — W\ 

un 

U>n 

-U>n 

Un 

+ \Cti, (33) 

aH = T KKt - Krk
2)ciCj - pipmKrdidj 

+ ikKriPmCidj - picjdi)] (34) 

where 

I = (2i - l)/2 m = (2; - l) /2 (35o,6) 

ci = 1 d i = 0 (36a,6) 

and for j > 1 

cy = (1 + ( -1 )0 /2 dy = (1 - (-1-0/2 (37a,6) 

The solutions are obtained by inversion of the matrix [H] 

A0 

M 
S i 

An 
Bn_ 

[H-

2/ 
o 
o 

(38) 

Functions Aj and Bj are rational algebraic fractions 

GAj GBj 

' A ' A 
(39o,6) 

The symbol A stands for the determinant of the matrix [H]. It is a 
polynomial in fez whose real or complex roots are called fe; 

A(k2i) = 0 1 < / < 4(2re + 1) (40) 

These roots can be obtained as the solution of a nonlinear eigenvalue 
problem 

(41) l[E0] + [Et]k + [E2]k2 + [E3]k3 + [E^k^Z = 0 

Z is an eigenvector of order 2re + 1. The matrices [Ej] are constant 
and 

If j is even: 

If j is odd: 
m = m 

m = -m 

(42a) 

(426) 

The various methods of resolution are studied in reference [31, 32]. 
If the poles hi are not real, functions Aj and Bj are obtained by 

contour integration using Cauchy's residue theorem in conjunction 
with Jordan's lemma [33]. For instance we have 

(43) 
' J — ' -iSAj-, X > 0 

Where SAj+ and SAj~ denote the sum of the residues of Ay at its poles 
fej in the upper and lower half plane, respectively. If the roots in 
equation (40) are real, an energy dissipation mechanism can be in­
troduced into the equilibrium equation (7) or into the support reac­
tions (18) and (19). The poles hi have in this case an imaginary part 
and the undamped case is considered as a limit when the damping 
terms are made to vanish. In reference [11] a method of perturbation 
is proposed in order to define the half space concerned in the integral 
contour. When the polynomial A(k2) has a double real root, the in­
tegral in equation (43) does not exist, not even in the sense of a Cauchy 
principal value. This case corresponds to an unbounded solution as­
sociated with a critical speed for the load. The introduction of 
damping makes it possible to obtain a physically acceptable solu­
tion. 

When functions A, and Bi are known, the displacement Y at any 
point can be calculated with equation (34). With the help of equations 
(8), (21), and (22) the support reactions can be calculated. 

Justification of the Method in Terms of Wave Groups 
To obtain the dispersion relations for free flexural waves propa­

gating in the positive x-direction with frequency to and wave number 
k, we assume 

Aj = ajei{-kx-vt) Bj = bje^kx-ut) {44a,b) 

This displacement is obtained by replacing v by ix>/k in equation (10). 
By making cos and sin explicit, the wave group defined in references 
[24, 29] is obtained 

y(x,t)= £ [~.ei((*+2irj//)i-ut) + ^.ei((A-2ij7l)*-<nO] 
j-o 

(45) 

By substituting ay, by, for Ay,-By and when f = 0 equation (32) corre­
sponds to the free wave equation when a finite number of components, 
In + 1, in the wave group is considered. The exact dispersion relations 
in periodic systems reveal the zones of propagation, references [21-30]. 
In Fig. 2 a plot of nondimensional wave number K = kl/ir versus 
frequency parameter Q is shown over the first and second bands of 
free propagation in the case where Kt = °> and Kr = 0. The nondi­
mensional frequency Q is defined with respect to the first resonance 
frequency in a simply supported span fl = co/coo- For a speed v of the 
moving load the response of the beam is the superimposition of the 
wave groups seen in equation (45) where k/v is substituted for a>. The 
solution corresponds to the intersection of the curves in Fig. 2 and a 
straight line of slope 1/V. The nondimensional speed V is defined with 
respect to the Timoshenko critical speed 
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APPROXIMATE CURVE 
EXACT CURVE 

Fig. 2 The multivalued propagation constant curve versus frequency pa­
rameter (K, = oo, Kr - 0) 
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Fig. 3 Phase velocity versus wave number for Kt = co and K, = 0 

1.5 

> 1 

0.5 

^1. 
\ 

0 0.5 1 1.5 2 2.5 

K 
Fig. 4 Approximate dispersion curve for n = 1(K, = m, K, - 0) 
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Fig. 5 Approximate dispersion curve for R - 0.2 
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A plot of V versus K is shown in Fig. 3. Each continuous curve cor­
responds to a propagation zone. For a value of v there is an infinite 
number of k solutions, each being associated with a wave group. In 
the case of free propagation and coincidence effect with a convected 
pressure, Mead has shown that the greatest amount of flexural energy 
is transmitted by a component of the wave group, the wave number 
of which is considered as the "primary value" for a given frequency 
[25, 29]. Thus, for a load speed v, the predominant wave groups will 
be those which correspond to a fe-value close to a "primary value." The 
minimum and maximum values of the curves in Fig. 3 are associated 
with critical load speeds defined in the preceding section. The primary 
value of nondimensional wave number K associated with each prop­
agation band belongs to the interval [N, N + 1] preceding the smallest 
value of the wave number K giving a minimum phase velocity. This 
minimum value corresponds to the so-called "primary critical speed" 
(points Mi and M2 in Fig. 3). The "nonprimary critical speeds" can 
be discounted as long as a low damping is introduced, since energy 
is difficult to transmit for such wave numbers. In the proposed method 
the number of components in a wave group is limited to In + 1. 
Equation (40) is thus an approximate implicit relationship between 
the phase velocity v and real wave number k for free flexural waves 
propagating in the positive x-direction. The approximate solution 
is thus only valid for values of K even lower than n. Thus, if the so­
lution in equation (10) is truncated at order n, only the primary critical 

speeds associated with the n first propagation bands can be approx­
imated. Thus, in Fig. 4, in the case where n = 1, Kr = 0, Kt = <», the 
approximate dispersion relation is close to the exact curve traced in 
Fig. 3 for low wave numbers. As the primary critical speeds increase 
with the critical wave number, the low values of n correspond to the 
low load speeds v. 

Transfer to a Continuous Foundation Model 
Where n = 1 and Kr = 0, the characteristic equation (40) can be 

written in the following way: 

with 

$ (S , V) + RV(S, V) = 0 

R = KtPKEIir*) S = K2 

(46) 

(47a,6) 

$ and ty are sixth and fourth-degree polynomials in the S. The cal­
culation of the positive real poles in S gives the dispersion relationship 
of the free waves. For R = 0.2 the dispersion curves shown in Fig. 5 
reveal three minimum phase speed values Vi, Vi, and Vs. The form 
of the curves varies according to the values of stiffness parameter R. 
For instance, the minimum value Vi disappears for R > 0.33. When 
K ->• <*> the point P i associated with V\ tends toward the point M\ in 
Fig. 3. In the case where the stiffness Ktl

2 and Kr are less than the 
flexural rigidity EI, the reactions of the elastic supports can be ex­
pressed by a Winkler foundation model. In the proposed method this 
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Fig. 7 Nondimensional beam deflection at midspan versus load distance 
for R = c° 

Fig. 6 Wave number K2 and test function t versus stiffness parameter R 

assumption is equivalent to discounting amplitude Aj and -B, for; > 
1. The equilibrium equation is therefore reduced to the first diagonal 
term of the matrix equation (32) 

[k2(mv2 - KM + EIk4 + Kt/l]Ao = f (48) 

This equation is identical to that obtained in the case of an Euler-
Bernoulli beam resting on a Winkler foundation with a distributed 
vertical load Kt/l and a distributed moment reaction Kr/l. The latter 
term has been proposed by Kerr to improve the stress analysis of 
railroad tracks [34]. The dotted curve in Fig. 5 corresponds to the 
dispersion curve for the Winkler continuous model with Kr = 0. For 
low values of K the phase speed Vi is close to the critical speed of the 
Winkler model. The influence of periodical support spacing can be 
characterized by the ratio of A\ and B\ to the steady term AQ associ­
ated with the wave group whose wave number is close to the critical 
value K2 

e = ((Ax2 + B1
2)/A„2)1/2 (49) 

e increases rapidly beyond the value R = 0.1. In fact for such values 
of R, the critical wave number K2 approaches 1—cf. Fig. 6—the 
stiffness parameter R = 0.1 appears to be the limit to the validity of 
the Winkler continuous model. 

R e s u l t s 
In order to test the method we shall study the example of a simply 

supported beam on rigid svipports (Kr = 0, Kt = =>) and the Fourier 
series in equation (10) will be limited to the first order (n = 1). 

The nondimensional beam deflection D = y/yo calculated at the 
center of a span for different values of nondimensional speed V are 
shown in Fig. 7—yo is the midspan deflection of a simple pinned end 
beam subjected to a static force / at midspan: yo = ft3/(48 EI). In the 
static case (V = 0) the calculated value Dc is close to the exact value 
De: 

De = 0.52452 Dc = 0.53424 

The equation (46) for V = 0 and R = °° has four complex roots 

Si,2 = (Ki>2)
2 = 0.829 ± i 0.833 

S3,4 = ( K M ) 2 = 6.16 ± i 4.87 

Since the zeros K^^ have a high value, their participation in the 
solution may be discounted for points at a distance from the load. The 
other zeros give a decreasing ratio for the support reaction 8C which 
is practically real and very close to the exact value 6e obtained by the 
three moment theorem 

6e <= FN+i/FN = -0.26795 

8c = -0.27065 (1 + i 0.00394) 

Fig. 4 shows that the calculated critical speed Vc is very close to the 
exact first primary critical speed Ve (Point Mi in Fig. 3). 

Ve = 0.92319 Vc = 0.92519 

The same is true for the nondimensional critical wave number K 

Ke = 1.17322 Kc = 1.16721 

C o n c l u s i o n s 
The proposed method has allowed us to calculate the critical speeds 

of a moving force on a periodic structure. The form of the solution and 
the convergence of the method have been justified on the basis of the 
free wave propagation equations. The motion could be interpreted 
as a superposition of wave groups and the "primary" critical speeds 
were defined. In the case of rigid supports, the static deflection and 
the first primary critical speed were calculated with high accuracy and 
low computer cost. The limitation to a finite number of wave-group 
components is analogous to modal truncation used in the Rayleigh-
Ritz method. But the latter can only be applied in the case of finite 
structures. This study could be applied to more complex cases. For 
instance, it should allow the study of vehicles in motion on flexible 
guideways. 
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Structures 

•3D. fA simple yet efficient active control method is presented for reducing the oscillations of 
"dJstributed parameter systems subjected to arbitrary dynamic environments. Following 

determination that some specified response threshold has been exceeded, an open-loop 
control pulse is applied. The optimum pulse characteristics are determined analytically 
so as to minimize a non-negative cost function related to the structure energy. The pro­
posed control method is shown to be reliable in consistently mitigating the response of re­
alistic multidegree-of-freedom systems, whether linear or nonlinear, subject to arbitrary 
stochastic or deterministic excitation. 

1 Introduction 
Numerous studies have been conducted to investigate the use of 

passive vibration control techniques in structural systems (e.g., [ 1 -
10]), and in some cases actual hardware has been installed in repre­
sentative building systems. However, while these devices are effective 
vibration controllers under certain conditions, they suffer from a 
limitation that is often inherent in most passive damping devices—the 
impracticality of applying the vibration control concept to existing 
structures. In many cases, these devices also suffer from the inability 
to substantially control the response of dynamic systems to nonsta-
tionary stochastic environments (such as those generated by winds 
or earthquakes) whose transient nature greatly reduces the efficiency 
of passive methods as compared to their efficiency under periodic 
excitation. 

Analytical and experimental studies of impact vibration dampers 
[4] indicated that these nonlinear devices, which rely on the mecha­
nism of momentum transfer and energy dissipation to accomplish 
their work, offer distinct advantages over conventional linear auxiliary 
mass dampers in attenuating the response of earthquake-excited 
structures [5]. 

However, due to the transient nature of the earthquake ground 
motion, the impulsive forces imparted by the impact damper to the 
primary structure do not always occur at the optimum time from the 
motion reduction point of view. A preliminary study indicated that 
the performance of the damper can be enhanced considerably by ac­
tively controlling the damper parameters to apply the generated 
impulsive forces at a time coinciding with the optimum phase rela-
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tionship with respect to the excitation. The concept of using an aux­
iliary mass to generate an impact-induced impulsive force to coun­
teract the motion of the primary structure (to which the damper is 
attached) can be extended to the direct use of external energy sources, 
as opposed to collision between two masses, to generate the needed 
impulsive actions. 

A relatively recent method to simulate dynamic environments on 
test structures involves the use of a metal-cutting mandrel to generate 
prescribed pulse trains [11,12]. In the course of a current study [13] 
to validate the concept of using pulse techniques to simulate the re­
sponse of structures to arbitrary dynamic environments, a gas pulse 
generator is being built. This generator employs digital servo-con­
troller and hydraulic actuators in conjunction with a gas storage 
system and a nozzle with a metered flow to furnish the needed 
thrust. 

In view of the preceding discussion, an alternative approach to the 
exclusive reliance on passive methods to control the response of 
structures in dynamic environments such as earthquakes is to utilize 
active damping techniques. This paper is concerned with exploring 
the feasibility of using the soon-to-be-available portable gas pulse 
generators to actively control the response of structures during epi­
sodes of strong dynamic excitation. 

1.1 Limitations of Active Control Techniques. The discipline 
of feedback control is an extremely active area of research and ap­
plications, as evidenced by the numerous books and technical journals 
devoted to the treatment of this subject. A recent survey [14] of just 
the optimal control of distributed-parameter systems contains over 
260 references. While active control has been widely applied in many 
engineering areas and while some pioneering work has been done by 
Leipholz, Yao, and others [15-20] in the structural engineering area, 
they have yet to have meaningful applications in the active control 
of civil engineering structural systems to earthquake-like excita­
tions. 

Among the major difficulties encountered in the application of 
modern control techniques to building structural systems are the 
following: 
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1 Active control requires the ability to generate and apply large 
controlled forces to the structure. 

2 Modern control theory often leads to feedback control laws, thus 
requiring on-line measurement (or estimation) of all the system state 
variables. 

3 On-line control requires that both measurement and control 
be performed in real time. 

4 Standard methods of control do not lend themselves readily to 
restricting the class of control signals to relatively narrow, high-energy 
pulses of the type suitable for active control of buildings and similar 
structures. 

1.2 Proposed Active Control Strategy. Preliminary analytical 
and experimental studies by the authors [21] yielded promising results 
regarding the on-line pulse-control of building response under the 
action of nonstationary random excitations resembling typical 
earthquake ground motion. 

The proposed control algorithm in [21] is designed to overcome the 
limitations of the existing controller design techniques. The algorithm 
requires a continuous monitoring of the state variables and the esti­
mation of the energy content of the earthquake ground motion record. 
Following determination that some specified threshold has been ex­
ceeded, an open-loop pulse control is applied. The determination of 
the optimum pulse magnitude is based on a performance criterion 
which depends in a nonlinear way on both the deterministic and 
stochastic components of the response. 

2 Pulse Control Method 
2.1 Introduction. The proposed control method is applicable 

to arbitrary distributed systems with dynamic excitations which are 
directly applied or supplied through base motion. However, for the 
sake of clarity in explaining the procedure and illustrating its appli­
cation, a base-excited building-like model of the type shown in Fig. 
1 will be used. 

The main idea behind the method is that the gradual rhythmic 
buildup of the structural response can be destroyed by applying pulses 
of suitable magnitude and proper direction at several locations dis­
tributed throughout the structure. Thus the control force need not 
be very large to completely counteract the massive amount of energy 
being applied to the structure; only a relatively small amount of 
control force is sufficient to interfere with orderly resonance phe­
nomena which require many system periods to reach peak response 
levels. 

Furthermore, in order to minimize the amount of control energy 
utilized, the control should be applied only when the structural re­
sponse exceeds a certain threshold related to the resistance of the 
structure. Thus the control strategy requires that 

1 The system be pulsed every time its response, which is moni­
tored at several selected locations, crosses a threshold. 

2 The minimum spacing between pulses be kept of the order T\, 
the fundamental period of the structure. 

3 The amplitudes of the pulses furnished by the controllers, which 
are placed at specific locations within the structure, are to be chosen 
so as to minimize an appropriate cost function. 

2.2 Formulation. Consider the linear structure shown in Fig. 
1, which is subjected to arbitrary base motion S(t). The absolute 
displacement of location i is xi(t) and its relative motion with respect 
to the base is given by 

yi(t) = Xi(t) - S(t), i = 1, 2 , . . (1) 

In the context of earthquake engineering, the problem is to mitigate 
the damage to the structure resulting from excessive deformations 
yi(t), relative to the foundation which is undergoing an earthquake 
ground motion S{t). 

Assume that, on the basis of design considerations, threshold levels 
yn (i = 1, 2, . . . , n) have been established for the locations whose 
motions are to be monitored. These levels will be used in conjunction 
with the control logic (to be discussed later) to trigger the control­
lers. 

/\-*> 

"n © ~ ^ n ^ 

.(n) 

2 ( t ) 

(2) 

z 3 = x 3 - x2 

Z 2 = X 2 • X l 

- * - Y , ( m l ) - * * F , { t ) 

z , - x , - 5 

S ( t ) 

SYSTEM MODEL 

Fig. 1 System model 

In the absence of control forces, the equation of motion of the sys­
tem shown in Fig. 1 is 

H » + [ c ] y + [ % = - [ !»]• S(t) (2) 

• , yn); [m], [c], and [k] are mass, damping, 
a unit vector of order n = ( 1 , 1 , . . . , 1), and 

where y(t) = col (yi, y% . . 
and stiffness matrices, e = 
S = ground acceleration. 

Assume that at time to (Fig. 2), a decision has been made to trigger 
an array of pulse controllers located at selected points in the structure. 
The problem now is to select the optimum pulse characteristics so as 
to minimize an appropriate cost function. The control pulses to be 
used are constrained to satisfy the condition 

Pi(t) = PiPoit), 1, 2 , . . . , (3) 

where p; is the amplitude of the pulse at location i, and p0(t) is an 
arbitrary time history. Note that equation (1) implies that (a) all the 
pulses are initiated at the same time and (6) they maintain a constant 
amplitude ratio, with respect to each other, every time a pulse is ini­
tiated. 

In order to optimize (minimize) the motion of the system over a 
relatively short time segment Top t , it will be assumed that the system 
motion consists of a stochastic component superimposed on top of 
a deterministic component. The pulse amplitudes are to be selected 
to minimize the deterministic (expected value) component of the 
motion. 

Let 

: PPo(t) (4) P(t) 
where p = col (pj, p 2 , . . . , p„). 

In order to account for the cases where controllers are to be applied 
only at certain locations NP, the reduced-order vector Pr is related 
top by 
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Fig. 2 Control algorithm parameters 

P = M^r (5) 

where [w2] is a constant matrix of order n X ATP, and Pr is a vector of 
order NP, containing the amplitude of the operating pulsers. 

Neglecting the mean value of the earthquake excitation during the 
period to to To = (to + Topt), the system response is then given by the 
solution of 

[U]> [V]> and [H] are diagonal matrices with elements 

unit) = exp (-fiojjt) — sin &);7),t + cos carat 

vu(t) = exp ( - f,<o;t) 

hii(t)= — vu(t) 
Mi 

mm 
- s in o!,-7);t 

Ci Ct 

2V^A^ 

(EL 
Mi 

[M] = M r [m][0] 

[C] = a[M] + fi[K\ = imcJM 

[K] = W[kM 
[4>] = eigenvector matrix associated with [m] 1[fe]. 

In view of the assumption that the ground excitation S(t) can be 
treated during period Topt as a zero-mean random process, then the 
expected value of y (t) as given by equation (8) will not depend on S. 
Hence 

E[y(t)) = [Gi(t)]y0 + [G2(t)]y0 + [GB(0]p (9) 

Let the cost function to be minimized be 

•To 
«/(p) = C'\T(t)[wMt)dt 

J to 
(10) 

[m]y + [c]y + [k]y = p(t) = pp0(t), 

subject to the«iitial conditions 

y(to)3yo> y(*o) = yo-

(6) 

(7) 

where [w-i] is an arbitrary weighting matrix. If the strain or kinetic 
energy of the system is to be minimized, [u>i] can be chosen as [wi] = 
[m)ande(t) = E[y{t)]. 

Making use of equations (5) and (8), equation (10) becomes 

J(Pr)= CT°\G1(t) + 2Glo
T(t)Pr+Pj[Gu(t)]Pr}dt (11) 

J't0 

where 

G6(t) = [Gi(t)]yo + [G2(t)]y0 - [G4(t)][m]e 

G7(t) = Q 6 > i ] Q e ( t ) 

08(t) = [G6(t)FK]G6(t) 

[G9(t)] = [GB(t)]Tk1][G5(t)] 

Gio(t)^k2]T[G5(t)]K]G6(t) 

[Gu(t)] = H H G 9 ( t ) ] [ H 

For J(Pr) to have an extremum value, 

dJ 

dPr, 
0, k = 1, 2 NP. (12) 

Under the assumption that the damping matrix is proportional to 
[m] and [k], the modal approach will yield 

y(« = [Gi(t)]y(to) + [G2(t)]y(t0) - [G4(t)][m]e + [GB(t)]p (8) 

where 

[Gi(i)]M*][tf(t-to)][Qi] 

[G2(0] sM[V(t-to)][Qil 

[G3(i)] = [*][H(t)]foF 

[G4(t)]^ f ' [G3( t-T)]S(T)dr 
./to 

[GB(f)]^ r '[Ga(t-T)]p0(T)dT 
Jto 

Application of equation (12) to (11) results in the optimum values 
of P r: 

where 

Pr = - [G13]-1 G12 

J-To 
Gi0(t)dt 

to 

J'To 
[Gn(t)]dt 

to 

J'To 
Gn(t)dt 

to 

(13) 

Gl4 = 

Note that, due to the assumption that the base excitation has a zero 
mean, the expected value of matrix [G4(t)] is zero. 

For the special case of a single-degree-of-freedom system, equation 
(13) reduces to 
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Pr = 

where 

X To l - i 

xp
2(t)dt\ 

{ rp 

C \p{t) \u(t - t0)y0 + v(t - t0)yo]dt 

J * To 
h(t - T)po(r)dT. 

to 

(14) 

(15) 

2.3 Computational Considerations. In view of the fact that 
on-line application of the control algorithm requires fast computation 
time, certain steps can be taken to reduce the computational tasks. 
For example, the matrices appearing in equation (13) contain many 
terms that depend only on the nominal pulse time history. Thus these 
terms can be evaluated just once and then stored for reuse whenever 
a pulse application is called for. 

These ideas can be clarified by referring to equation (14) which 
applies to a SDOF system only. From this it is seen that once the 
nominal pulse shape po(t) is selected (on the basis of physical con­
siderations and limitations), the response term xp(t) appearing in 
equation (15) can be analytically evaluated and later used whenever 
needed. 

Note from equation (14) that the optimum pulse amplitude is a 
function of two groups of terms: (a) the term xp(t), which depends 
on the particular choice of controller force po(t), and (b) the bracketed 
group of terms, which depend on the system memory as reflected by 
terms u(t) and v(t), and on the "initial" conditions yo and yo at the 
pulse initiation time to-

As a further simplification, the dynamic response of the structure 
due to the pulses with finite duration Td can be accurately estimated 
on the basis of the impulsive response of the structure when subjected 
to an impulse of magnitude foTd po(T)dr. 

3 S i m u l a t i o n of Contro l S t r a t e g y 
Consider a model in the form of Fig. 1 of a three-story building 

frame that has been extensively analyzed, both analytically and ex­
perimentally [22, 23] at the University of California, Berkeley 
(UCB). 

If this linear model of the UCB frame (henceforth referred to as 
model UCB-1) is subjected to a representative sample (earthquake 
Bl) of a widely used set of artificial earthquakes [24] the relative 
displacement response of model UCB-1 without control will be as 
shown in Fig. 3(a-c). The three natural frequencies of model UCB-1 
are ~2, 6, and 10 Hz. Thus the time history segment shown in Fig. 3 
corresponds to about 50 fundamental periods T\ of the system. 

Applying the control strategy just discussed to this structure with 
a threshold crossing level of y ^ = ±0.44, yref2 = ±0.88, and yref3 = 
±1.0, the controlled response shown in Fig. 3(d-f) is obtained. This 
particular choice of yref corresponds to yref = da<l>m where 0(1) = {0.64, 
0.88,1.0) is the system eigenvector corresponding to the first mode, 
and d3 (equal 1.0 in this example) is the scale factor corresponding 
to the absolute threshold level at the third (top) story. The pulse shape 
function p0(t) is rectangular and its duration is chosen equal to 0.01 
sec, approximately equal to 2 percent of Ti, and the optimization time 
segment is taken as T"0pt = 0.5 sec « TV There is a sensor and a con­
troller at each of the three mass locations. 

It can be observed from Fig. 3 that the relative displacement at each 
location is closely bounded by the selected threshold levels, and that 
approximately the same percentage reduction is achieved at each 
location (each of the controlled locations has a peak response «35 
percent of the corresponding uncontrolled response). Fig. 4 shows the 
relative velocity of the same structure with and without control under 
the same conditions shown in Fig. 3. The optimum pulse trains to be 
applied at the three locations are shown in Fig. 5. 

Inspection of the results shown in Fig. 4 indicates that the peak 
relative velocity of each of the controlled locations is «*40 percent of 
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the corresponding uncontrolled response. Also, it is seen from Figs. 
3 and 4 that the percentage reduction in the rms level of the different 
response quantities is approximately the same as the corresponding 
reduction in peak levels. 

It is seen from Fig. 5 that the amplitude ratios of the control pulses 
at the three locations are approximately equal to the corresponding 
ratios of the fundamental mode of vibration $(1). In fact, the average 
of the ratios for the 33 pulses applied in this case at each of the loca­
tions is (0.58,0.84,1.0), which is fairly close to the ratios associated with 
$(1). In other words, the optimization scheme indicates that it is more 
efficient to apply the larger control forces at locations which can exert 
more control action by virtue of the amplification effects associated 
with the effective "moment arm" of each controller location. 

The results of Figs. 6 and 7 illustrate the effects of adjusting the 
threshold level on the controlled response and the required pulse 
trains of model UCB-1, using the same excitation (E.Q. Bl) and the 
same values for the rest of the control parameters shown in Figs. 
3-5. 

In the limiting case of ds = 0, the number of pulses used will be 
determined by the available control energy and can be constrained 
not to exceed a certain number of specifying Tmjn , the minimum 
spacing of the pulses. At the other extreme, if ds = °°, the response 
will not be constrained and, consequently, no control action is called 
for. In between those two limits, the controlled response is seen to be 
held fairly closely to the governing threshold levels. Of course as the 
control limits are relaxed, there is less demand to take corrective ac­
tion, thus less control force is needed. This fact is confirmed in the 
representative results shown in Fig. 7. 

Since energy requirements are crucial for the feasibility of the 
proposed control method, determining the optimum pulse controller 
location for minimizing the needed control energy is an important 
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Fig. 6 Effects of threshold level on the controlled response of the UCB structure 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 623 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S = E.Q. Bl LOCATION - { 1 , 1 , 1) 

1 , - d , (0.61*. 0 .88 , 1.0) T . » 0 .0 ! T - 0 . 5 
- rer 3 d °p t 

- P 2 
* — P , 

/MtWS/Mv/ 

EL 

- i» -3 x 10 

d - 2.0 

TIME 
(a) 

TIME 
0>> 

T T T 

— , , , — , , , .-—.— •> 

TIHE 

(0 
TIHE 

(d) 

Fig. 7 Effects of threshold level on control pulse magnitude 

task. The results shown in Fig. 8 indicate the effects that can be ob­
tained by using a single controller (instead of the three used previ­
ously). In Fig. 8(a) the controller is applied at the top floor (7713); in 
Fig. 8(6) the controller is at the middle floor (1)12); and in Fig. 8(c) the 
controller is acting at the first floor (mi). 

Comparing the controlled response of the top floor in each of the 
three cases shown in Fig. 8 with its uncontrolled level, it is seen that 
approximately the same level of control can be achieved regardless 
of where the controller is applied. However, from the control energy 
point of view, there is a substantial difference in the requirements. 
The total impulse 7 applied by the controller used in Fig. 8(a-c) is I3 
= 7.14 X 103 lb-sec, h = 10.2 X 103 lb-sec, and h = 12.5 X 103 lb-sec. 
These values compare with J = 9.24 X 103 lb-sec used by the three 
controllers when applied simultaneously to the case shown in Figs. 
3-5. 

Thus it is clear that for this example structure, the optimum con­
troller location is at m^, and it is more energy-efficient to use one in­
stead of three controllers. However, from the structural design point 
of view, it is more efficient to distribute the required control action 
over a large area of the structure. 

Since the practical use of this method depends on determining some 
design parameters for the controller that can be derived from simu­
lation studies, it is useful to investigate the response of model UCB-1 
if its various control parameters are kept identical to those used in 
Fig. 3, and if it is then subjected to a variety of test excitations in­
cluding stochastic as well as deterministic types. 

The test excitation, comparison of the motion of m^ with and 
without control, and the optimum pulse train at m^ are given in ref­
erence [25] for each of the following cases: 

1 Artificial earthquake A\ [24]. 
2 Artificial earthquake Di [24]. 
3 Recorded ground motion corresponding to 1940 El Centro 

earthquake. 
4 Stationary random excitation. 
5 Swept-sine excitation. 

The results shown in reference [25] together with Fig. 3 are indic­
ative of the reliability of the proposed active control method in suc­
cessfully limiting the structural response to predetermined levels, 
under a wide selection of text excitations. 
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Fig. 10 Nonlinear system characteristics 

In order to illustrate the application of this method to more com­
plicated structures, consider an example of 25 DOF building model 
which is representative of modern tall buildings [26]. 

Using earthquake D\ as a hypothetical disturbance and placing 
threshold level detectors and controllers at locations 8,13,18, and 23, 
the control results shown in Fig. 9 are obtained. Note that substantial 
reduction is obtained in the response throughout the structure and 
the peak response levels are kept very close to the selected bounds. 
The optimum pulse trains shown in Figs. 9(i-l) confirm the expec­
tation that it is more efficient to apply control forces at points that 
are farthest away from the point of fixity of the structure. 

As a final example, consider a modified version of UCB-1 where it 
is assumed that the first restoring force element has a hardening-
spring characteristic, the second element is hysteretic in nature, and 
the third element has a softening-spring nonlinearity. A plot of the 
restoring forces of the various elements of this structure versus their 
respective interstory displacement result in the nonlinear curves 
shown in Fig. 10. This structure will be referred to as UCB-2. 

Subjecting structure UCB-2 to artificial earthquake D\ and using 
equivalent linear properties to determine the optimum controller 
forces, results in the response shown in Fig. 11. It is clear that even 
though the control algorithm is devised for a linear distributed system, 
it is also successful in controlling the structural response of nonlinear 
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Fig. 11 Response of nonlinear 3-DOF System under earthquake D1 

systems provided reasonable equivalent linear properties are used 
to represent the nonlinear structure. 

4 Summary and Conclusions 
A simple yet efficient active control method is presented for re­

ducing the oscillations Of distributed parameter systems subjected 
to arbitrary deterministic or stochastic excitations. 

This algorithm requires a continuous monitoring of the system state 
variables. Following the determination that some specified threshold 
has been exceeded, an open-loop control pulse is applied. The opti­
mum pulse characteristics are determined analytically so as to min­
imize a non-negative cost function related to the structure strain 
energy and kinetic energy. The performance index is evaluated, and 
a control signal is calculated and applied for succeeding time inter­
vals. 

The determination of the optimum pulse magnitudes as well as the 
optimum spatial location of the controllers is based on a performance 
criterion which is linearly dependent on the deterministic (temporal 
mean) components of the response. The analytical solution for the 
optimum pulse characteristics uses the modal approach, and is shown 
to be computationally efficient and suitable for on-line implemen­
tation in controlling realistic structural systems. 

Results of this investigation are applied to three example struc­
tures: 

1 A linear model of a three-story frame that has been extensively 
investigated both experimentally and analytically by other re­
searchers. 

2 A linear mathematical model of a 25-story building which is 
representative of modern tall buildings. 

3 A nonlinear three-degree-of-freedom system with components 
found in typical structures. 

The test excitations used included several artificial earthquakes, an 
actual earthquake ground motion, stationary random excitation, and 
swept-sine signals. 

It is shown that the proposed control method is reliable in consis-
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tently mitigating the response of realistic structures subject to arbi­
trary dynamic environments. 
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Nonlinear Harmonic Oscillations of 
Gyroscopic Structural Systems and 
the Case of a Rotating Ring 

I Two related problems are investigated in order to study via a simple example the influ­
ence of gyroscopic forces on nonlinear harmonic oscillations of rotationally symmetric 
shell structures. First, the amplitude frequency equations are calculated forj:ircumferen-
tially traveling waves in a circular ring rotating about its geometrical axis\ The results 
show that in the range of rotational speeds considered the backward traveling waves ex­
hibit hardening type of response, whereas for the forward traveling waves there is a tran- J 
sition from hardening to softening type of behavior as the rotational speed increases 1 The 
second part of the paper is devoted to an analysis of interaction between the two traveling 
waves which is expected at low angular speeds] The results, valid for arbitrary shells of 
revolution, reveal the existence of secondafy~bifurcation points on the branches corre­
sponding to the traveling waves, and the response on the secondary branches is found to 
be close to standing waves which do not appear at all as solutions of the linear free-vibra­
tion problem for the rotating shell. 

Introduction 
Due to Coriolis acceleration the linear problems of free vibrations 

of shells of revolution rotating about their geometrical axis admit only 
circumferentially traveling wave type of solutions. Motivated by the 
need for an elucidation of this phenomenon of disappearance of 
standing wave solutions of the linear problem even for arbitrarily 
small but nonvanishing speeds of rotation, this paper is devoted to 
an investigation of the effect of gyroscopic forces on steady nonlinear 
harmonic oscillations of elastic structures. Although the methods 
developed herein for our purposes are quite general, we have utilized 
them for analysis of an inextensible circular ring due to obvious rea­
sons of simplicity. 

The earliest investigation of the influence of rotation on vibration 
of a shell is apparently due to Bryan [1] who was interested in the beat 
phenomenon that occurs due to small difference between the 
frequencies of forward and backward traveling waves in a shell ro­
tating at relatively small angular speeds. Although Carrier's study [2] 
is the most comprehensive one on the linear vibration of a rotating 
ring, there are some other treatments which include illuminating 
accounts of technical applications such as aircraft engine shells [3] 
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AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 
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Department. Manuscript received by ASME Applied Mechanics Division, June, 
1980; final revision, February, 1981. Paper No. 81-WA/APM-2. 

and electromagnetic shields for superconducting electrical machines 
for power generation [4] wherein the influence of gyroscopic forces 
on vibration of shells is an important consideration for engineering 
design. 

In this paper we first derive the amplitude frequency equations for 
the traveling waves in a rotating ring on the basis of a perturbation 
technique which is an application of the Lyapunov-Schmidt method 
[5]. For the limiting case of vanishing rotational speed our results 
complement the earlier analyses [6, 7] of standing waves in an elastic 
ring. Insofar as the amplitude frequency equation is concerned, our 
results indicate that for the stationary ring the traveling wave solu­
tions are significantly different from the standing wave solution, and 
for the rotating ring the forward and backward traveling waves exhibit 
markedly different nonlinear charcteristics. 

Another aspect of the problem that we have addressed in the sequel 
is the interaction that occurs between the two traveling waves at low 
speeds of rotation of the ring. Application of the Lyapunov-Schmidt 
method to the interaction problem for rotationally symmetric 
structures yields results which are quite general and, even for the case 
of stationary shells, have been obtained hirtherto in the context of 
specific examples only [e.g., 8]. The picture that emerges from our 
analysis—and which, retrospectively, is not quite unexpected—is the 
following. For the undamped free-vibration problems of rotationally 
symmetric stationary shells there are four solution branches, two 
corresponding to traveling waves, and the rest to the standing waves. 
Due to Coriolis acceleration, mode-splitting occurs in rotating shells 
and only traveling waves occur as solutions of the linear problem. 
However, when nonlinearities are taken into account, secondary bi­
furcation points appear on one of the branches corresponding to the 
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traveling waves, and the solution branches that emanate from the 
secondary bifurcation points approach asymptotically the standing 
wave solutions for large values of amplitude of oscillation. 

F o r m u l a t i o n 
We use the theory of an inextensible1 circular ring derived by 

Budiansky [9] and write the governing equations by first defining a 
functional 

V(q) = V2(q) + V*{q) + V4(q) (1) 

where 

1 r2* 
V2(q) = ~ [(v'-w")2 + 2Hw + v')]dd, (2) 

2 Jo 

Vs(q)=- j v[(w + u')2 + («/ - v)2]d0, (3) 
2 J o 

Vdq) = - ( 0 / - w"Y (v - w')2d8, (4) 
2 Jo 

which represent the strain energy of the ring appropriately augmented 
to account for the inextensibility condition. In (2)-(4), w and v denote, 
respectively, the radial and circumferential displacements, both 
nondimensionalized by the ring radius R; v is the Lagrange multiplier 
associated with the inextensibility condition, q represents the triple 
(u, w, v)T and superposed primes denote differentials with respect 
to 8. With the definitions just given the equilibrium equations for a 
ring rotating at a steady speed Q and oscillating at a frequency £> can 
be written in a coordinate frame rotating with the ring in a variational 
form as 

where 

8V(q) + f * [ar8w + a05v]d6 = 0, 

or = oo2w — Q2 (1 + w) — 2ioQi>, 

a# = o>2i> — Q2v + 2wUw, 

(5) 

(6) 

(V) 

are the acceleration components. The dots in (6), (7) denote deriva­
tives with respect to the time coordinate nondimensionalized by using 
the frequency of oscillation, and 

(fi, co) = (fi, S>)phRi/D, (8) 

where p, h, and D denote, respectively, the density ring thickness, ring 
thickness, and the bending stiffness, and 5V(q) is the first variation 
of the functional with respect to q. 

It is easily shown that the equation (5) has a time-independent 
solution 

vo • Q2, vo = WQ = 0. (9) 

We shall now investigate nonlinear steady harmonic oscillations about 
the steady solution (9). For this purpose we write 

q =qo + q* (10) 

where q0 denotes the triple (w0, v0, v0)
T, etc. The equations governing 

q* are obtained by substituting (9), (10) into (5) and the result of this 
procedure can be written succintly (in Koiter's notation [10] for ho­
mogeneous functionals and their derivatives) in the form 

R(q, dq) = Pniq, 8q) + P21(q, 8q) + Psl(q, 8q) 

+ a)Gn((?, 5<j) + u2Mu(q, 8q) = 0 (11) 

where superposed star has been dropped from q* for notational 
convenience, and 

1 The introduction of the inextensibility condition introduces errors of the 
order of the square of the thickness to radius ratio, as is shown in [7]. 

Pu(q, Sq) = 6V2(q) 

+ - Q28 f * l(w + v')2 + (w' - v)2]d6 
2 Jo 

- Q2 C * [w8w + v5v]d6, (12) 

P2i(q,Sq) = SV3(q), P3l(q,8q) = SV4(q), (13) 

Gn(q,Sq)= C * 2Q[-v8w + w8v]d8, (14) 

Mn(q, 8q)= f ' [w8w + 68v]d8. (15) 

It is evident that of the bilinear functionals introduced above, P u and 
M n are symmetric, whereas Gn is antisymmetric with respect to the 
arguments. Moreover, although (11) has been derived in the context 
of a specific example, insofar as it requires that the first variation of 
the transitional strain energy be balanced by the acceleration of the 
structure, it is applicable, with appropriate definitions of q and various 
functionals, to the general problem of oscillation of a rotating struc­
ture. We shall first describe, for the solution of the general problem, 
a procedure that results from the application of the Lyapunov-
Schmidt method and which is only a slight modification of the de­
velopment given in an earlier paper [6]. The technique will then be 
utilized for the precise problem which has motivated the analysis 
presented in the next section. 

Asymptotic Analysis for the General Case 
Since we seek time periodic solutions of (11), the equation has to 

be complemented by the periodicity conditions 

Q(0) = Q(2TT), q(0) = q(2Tr), (16) 

where the spatial dependence of q has been suppressed for brevity 
of notation. Thus, in the time domain, we have a two-point nonlinear 
boundary-value problem in which the frequency of oscillation co ap­
pears as a parameter. Equations (11), (16) have the trivial solution 
for all values of o> and the condition for the existence of bifurcation 
points on the trivial solution branch yields the equations for the 
natural frequencies and free vibration modes of the structure, to 
wit 

coo2Mn(u, Sq) + co0Gn(u, 8q) + Plx(u, 8q) = 0, (17a) 

u{0) = u(2vr), ii(0) = U(2TT). (176) 

which is the linear part of the original equations (11), (16). Equation 
(17) has the solutions (with overbar denoting the complex conju­
gate) 

u = y e" (18) 

where y, whose components are functions of spatial coordinates only, 
is the free-vibration mode. It satisfies the quadratic eigenvalue 
problem 

-co0
2Mn(y, 8q) + Jco0Gn(y, 8q) + Pu(y, 8q) = 0, (19a) 

Tii(y,y) = l, (196) 

The condition (196) is basically a normalization condition in terms 
of the first variation T\\ of a functional T2. As in [10], choice of T2 is 
arbitrary except that it is required to be positive-definite. 

Since the subsequent analysis is similar to one presented in [6], with 
the modifications arising due to the presence of gyroscopic terms, we 
shall only outline the steps leading to the amplitude frequency 
equation near any natural frequency a>o which is such that (£) the 
associated eigenmode is unique within a sign and (ii) none of the other 
natural frequencies is an integral multiple of con-

The solution of (11) is first written in the form 

X 2» 
e-uTn(z,y)dt = 0, (20) 

where a is the (complex) amplitude of oscillation and "c.c." denotes 
the complex conjugate of the term immediately preceding it. When 
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(20) is substituted into (11), the resulting equation can be written in 
terms of two equivalent ones: 

«o2Afn(z, (5<j) + co0Gn(z, 8q) + Pu(z, 8q) = R (q, 8q) 

1 r2* . _ 
e'tTuiy.Sq) e-'

lR(q,y) dt + c 
2ir Jo 

e-uR(q,y)dt = 0, 
o 

where 

-R{q, 8q) = (co2 - ox^Wuiq, Sq) + (co - co0)Gii((j, 6?) 

+ P2i(g,Sg)+P3i(<3,Sq), 

(21a) 

(216) 

(22) 

with q given by (20). Equation (20) is merely a decomposition of the 
solution in terms of the natural mode of oscillation and its orthogonal 
component, whereas (21) reflects the same decomposition for the 
equation itself, following the Lyapunov-Schmidt method [5]. It is 
evident that when (11) is decomposed in the form of (21), secular 
terms are automatically eliminated from (21a). Thus the latter 
equation can be solved in an asymptotic series in the amplitude of 
oscillation and (co - co0). This solution when substituted into (21b) 
yields the desired amplitude frequency equation. The lowest order 
solution of (21a) which allows one to obtain the essential character 
of the nonlinear solution near coo is given by 

z = (a2e2ifz<2> + c.c.) + otiz®K (23) 

In (23), z(2) and z (0) are obtained from the solution of the linear 
time-independent problems 

-4co0
2Mu(z<2>, 8q) + 2J-O>0GII(Z<2>, Sq) 

+ Pn(z<2>,6a) + P2 i(y,6q) = 0, (24) 

Pn(Z<°>, 8q) + PinCy, y,bq) = 0. (25) 

These equations (23), (25) are simply obtained by expanding the 
quadratically nonlinear term (21a), (22). Substitution of (23) into 
(216) yields the desired result 

where 

-(a)2 - a>o2) ma + (co - a>o)ga + Jia2a = 0, (26) 

m = Mu(y,y), (27a) 

S = iGu(y,y), (276) 

7 i = 2P2 1(y,z<2>)+Pm(y,y,z< 0>) 

+ P 2 n ( y , y , y ) . (27c) 

The aforementioned analysis could be carried through without any 
significant changes even if damping and a time periodic forcing 
function were present. In such a case equation (11) is modified to 

R(q, 5q) + nCu(q, Sq) = &Fn(f, 8q)eu + c.c] (28) 

where n and £ are scalar measures of damping and applied force, re­
spectively, with both the measures assumed to be small. The lowest 
order result which contains all the significant terms turns out to be 

-(co2 - a>o2)ma + (co - a>o)ga + i/ica + yia2a = f, (29) 

where 

c = Cn(y ,y) , f = £ P i i ( / , y ) . (30) 

In summary, in order to obtain the response of a rotating structure 
one has to solve the eigenvalue problem (19) and linear boundary-
value problems (24), (25). These solutions can be used to obtain the 
numerical coefficients in the response equation (29) by utilizing (27), 
(30). This procedure shall now be illustrated by an analysis of the 
rotating circular ring problem formulated in an earlier section. 

A m p l i t u d e F r e q u e n c y E q u a t i o n for T r a v e l i n g Waves 
in a R o t a t i n g R i n g 

We first calculate the natural modes of a rotating ring by using (12), 
(14), (15), and (19), which yield 

L(co0, d0; fi)y = 0, 

where L is the matrix differential operator defined by 

(31) 

[L] = -coo2 

1 0 0 

0 1 0 

0 0 0 

+ icooQ 

0 - 2 0 

2 0 0 

0 0 0 

do4 <V - 1 

a„ 3 d e
2 i>6 

1 -do 0 

+ n2 
-do 2 2d„ 0 

-2de - d 0
2 0 

0 0 0 

(32) 

On substitution of 

y = ( l , iBi , C^e'"0 

= Yein0, n = 2,3..., 
equation (31) yields the matrix eigenvalue problem 

L(o>0,m;Q)Y = 0. 

The solution of (34) is found to be 

2nQ 
m '• -±o>. 

I fi2 

'V 1 + ^ rc2+l "•" V n2 + l 

Br = 1/re, 

Ci = co0
2 + n2 - n4 + (2 - n2W - 2co0Wn, 

(33) 

(34) 

(35a) 

(356) 

(35c) 

where cosn is the natural frequency of the stationary ring associated 
with a given circumferential wave number and is given by 

n
2 = n2(n2-l)2l(n2 + l). (35d) 

It is evident from (20), (33), (35) that due to rotational effects there 
are two different natural frequencies, one positive and other negative, 
corresponding to a given value of circumferential wave number n, and 
these frequencies correspond to traveling waves, since, in terms of the 
dimensional variables, 

w = e'(""+"of) e tc . (36) 

This result is in contrast to the stationary case wherein both the 
traveling waves have the same frequencies. 

Further computations require the calculation of the forcing terms 
in (24), (25). On using (3), (13), (33), (35) these turn out to be 

J>2» 
[8wG1 + i8vG2+dvG3]e2int>d0, (37a) 

o 
where 

Gi = 2nCx{n - Si ) , 

G2 = - C 1 ( n - f l 1 ) , 

G3 = - ( n - Bx)2/2, 

and 

Pin(y,y,5q)= C * (n - Bx)
2 bvdd. 

Jo 

From (24), (36) and (25), (37) it follows that 

z<2) = (A2, iB2, C2)
Te2ine = Z<2» e2 '"8 ' 

z<°> = (Ao,;Bo,Co)7' = Z«», 

where 

(376) 

(37c) 

(37d) 

(37e) 

(38) 

(39) 
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I6C 

3 n 2 

FORWARD 
TRAVELING WAVE" 

Xl/<Dsn 

Fig. 1 The coefficient of the nonlinear term in the amplitude frequency 
equation (44) for a rotating ring; circumferential wave number n = 2 

L(2co0, 2m; $2) Z<2> + (Gh iG2, G 3 ) r = 0, 

L(0, 0; Q) Z<°> + (0, 0, {n - Btf)T = 0, 

(40) 

(41) 

and L(coo, do; Q) is defined by (32). Equations (40), (41) are linear al­
gebraic equations which can be solved readily. The solutions of these 
equations together with (4), (13), (27), (36)-(39) yield 

— = 2(A2G1 + B2G2 + C2G3) + 2(n2- l)4/n2. (42) 
2TT 

The other constants in the amplitude frequency equation (26) 

m 

2vr 
( 1 + B i 2 ) , — = 4 0 5 ! , 

27T 
(43) 

which are obtained from (27), (33), (35). It is convenient to put the 
final result in the form 

= 1 
2(A2G! + B2G2 + C2Gz) + 2(n2 - l)4/n2 

wo 40)01405! - 2<o0(l + Bi2)] 

= 1 + C A2 

which follows from (26). Furthermore, in (44) we have set 

A2 = Acta 

(44) 

(45) 

which is the square of the amplitude of oscillation. 
We have used the sequence of linear algebraic equations leading 

to (44) to compute the coefficient C which determines the essential 
effect of including the nonlinearity. Typical results for n = 2 are given 
in Fig. 1. Numerical results were also obtained for other values of 
cricumferential wave number (2 < n < 10) in the range of rotational 
speeds 0 < Q < 2ois„. The results are qualitatively similar in that for 
the forward traveling wave the nonlinearity coefficient C defined by 
(44) is positive at zero and low rotational speeds and then changes sign 
as the speed increases, whereas for the backward traveling wave the 
nonlinearity is always of the hardening type. (Note that o>o < 0 for 
forward traveling wave and o>o > 0 for backward traveling wave, cf. 
(36).) These numerical results also indicate that for a stationary ring 
C a (3/16) n2 for large values of the circumferential wave number (see 
Table 1) which is the reason why the quantity 16C/(3n2) has been 
plotted in Fig. 1. 

The result for traveling waves in stationary ring is in sharp contrast 
to what was obtained earlier [6,7] for standing wave pattern, for which 
the coefficient 'in amplitude frequency equation (36) was found to be 
approximately given by C =* — n4/8 for large values of n. It is evident, 
therefore, that the interaction between the two traveling waves which 
gives rise to the significantly different nonlinear character of the 
standing wave pattern plays an important role in the determination 
of nonlinear dynamic response of the ring and, generally, of geomet-

Table 1 The coefficient in the amplitude frequency equation (44) for traveling 
waves in a stationary ring 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

16 C/3n2 

.550 

.776 

.868 

.914 

.940 

.955 

.966 

.973 

.978 

rical similar rotationally symmetric shells of revolution. Further, it 
is also expected that the interaction would give rise to qualitatively 
interesting behavior in such structures even when they are rotating 
about their axis of symmetry. The aforementioned considerations 
have motivated the analysis of the next section. 

A Mode Interaction Analysis for Slowly Rotating 
Shells of Revolution 

In what follows we consider the general equation of motion (11) 
under the restriction that the rotational speed fl which is implicitly 
contained in the functional associated with the gryoscopic forces and 
in the strain-energy functionals is sufficiently small. Moreover, we 
restrict our attention to rotationally symmetric shells for which all 
the functionals in (11) are of the type 

x2 
F{q)d0 

where F represents any of the functionals and q is dependent on d,t 
and one other spatial coordinate subsequently referred to as the axial 
coordinate, and all the components of q are periodic with respect to 
6. Since (11) is a variational statement, it implicitly includes any 
natural boundary conditions at the ends of the shell and requires that 
all the admissible variations satisfy the imposed kinematic conditions. 
As a result, at U - 0, the equations for natural frequencies and natural 
modes for (11), 

wo2 Mn(u , hq) + Pn(u, 8q) = 0, 

X 2TT 

T2(u)dt jt 0 

(46a) 

(466) 

have for the same value of o>0 the following four linearly independent 
solutions 

where components of y are independent of both 6 and t but are 
functions of the axial coordinate. These functions satisfy the linear 
eigenvalue problem 

-MO2 Mn{y, bq) + P n ( y , bq) = 0, 

Tn(y ,y ) = i, 

(47a) 

(476) 

where y = y e±in0. To obtain the solution of the nonlinear problem 
we write 
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q = (ayeu + c.c.) + (0yeu + c.c.) + z, 

.fo 'e-i'Tn(z,y)dt = j'2re-itTu(z,y)dt = 0. 

(48a) 

(486) 

The decomposition (48a) is similar to (20) except that the multi­
plicity of solutions of (47) has been taken into account. Further, just 
as in (21), (22), we decompose (11) into three equivalent equations 

wo2 Mn(z', aq) + P n ( z , bq) 

1 
•R(q,Sq)-

_ J_ 
2TT 

2TT 
" T n ( y , Sq) f\-un(q,y)dt + c.c.J 

uTn(y,8q) C ' e-
uR(q,y)dt + c.c. (49a) 

J2V"J?(<j,50d£ = O, (496) 

J. 2 x 
e-'tR(q,y)dt = 0, (49c) 

o 
where 

-R(q, Sq) = (a)2 - a>o2)Mn(<j, Sq) + wGn(q, Sq) 

+ P2i(q, Sq) + P3 i(a, Sq), (50) 

and the difference between (49a), (50) on the one hand and (21a), (22) 
on the other arises due to the fact that now we are seeking a pertur­
bation solution about fi = 0 as well. Once again it is easily shown that 
(49a) does not contain any secular terms so that its solution z can be 
obtained as an asymptotic series in the amplitudes of the two traveling 
waves, (a> — a>o) and Q. The solution adequate for the purpose of ex­
tracting the essential nonlinear behavior is given by 

z = ( a 2 z n ( 2 ) e2 l t + c.c.) + aaz i i ( 0 > 

+ (/J2 z22
(2) e2it + c.c.) + /?/? z22<°> 

+ (aPz12
m e2it + c.c.) + (oJ3 zi2

(0 ) + c.c), (51) 

where various time independent quantities are given by solutions 
of 

-4co0
2M„(z11(2), Sq) + Pn(zu<2>, Sq) + P21(y, Sq) = 0, (52a) 

Pu(z i i ( 0 ) , Sq) + PinCy.y, Sq) = 0, (526) 

-4wo2Mii(z22<2>, Sq) + Pn(z2 2
( 2 ) , Sq) + P21(y, Sq) = 0, (53a) 

Pu(z22i0), Sq) + J°iii(y, y, Sq) = 0, (536) 

-4a)0
2M1(z12<2 ', Sq) + Pn(zi2<2>, Sq) + Pmiy.y, S,q) = 0, (54a) 

Pn(zi2(0), Sq) + PinCy, y, Sq) = 0. (546) 

Further simplification is achieved on noting that 

y =: y gln® 

so that on examination of nonhomogeneous terms in (52)-(54) one 
finds that 

and 

Z l 2 ( 2 ) = 2 l 2 ( 2 ) > Z l 2 ( 0 ) = 2»12(0) e2m«_ (556) 

In (55) the terms with superposed caret are independent of 8 and t, 
but are functions of the axial coordinate. We now substitute (48a) in 
(496 ,c), and use (55) with the fact that in evaluation of the functional 
in (496,c) one has to integrate in the domain 0 < 8 < 2-K. These con­
siderations lead to the remarkably simple result 

-m(u>2 - o)o2)a + uga + yiofix + yiftfia = 0, (56a) 

-m(co2 - a>o2)|8 - ugP + T i W + 72aS/3 = 0, (566) 

where 

m=Mn(y,y), g = iGn(y,y), (57a,6) 

71 = -Piu(z n(2),y.50 + PmUum,y,y) + Pmiy.y.y) (58a) 

72 = Pm(zu<0), y, y) + Piu(zi2i2), y,y) 
+ Pni(zi2m,y,y) + 2P2ub>,y,y)- (586) 

Equations (56a,6) are the desired coupled amplitude frequency 
equations for the (complex) amplitudes a and /3 of the two traveling 
waves which have the same frequency when 12 = 0 and when non-
linearities are not taken into account. To compute the constants in 
these equations one has to solve the four linear boundary value 
problems (52), (54). Since these problems as previously stated are in 
terms of vanishing of first variations of functionals, their solutions 
depend upon the imposed boundary conditions which are implicitly 
contained in the variational statements (52), (54). It is worthwhile to 
note here that for the case of a stationary shell if one sets 

a = a + ibe1*, fi = a - ibe'* 

one can obtain from (56) the amplitude frequency equations of the 
type derived by Ginsberg [8] for the special case of a circular cylin­
drical shell. Moreover, addition of damping and forcing terms in the 
original equation (11) changes the final form of the amplitude fre­
quency equation only to the extent that two more easily computable 
terms have to be added to each of (56a,6) just as in (29). Though these 
terms are expected to endow interesting qualitative features to the 
dynamic response curves as in [8] we restrict our discussion to the case 
of undamped free vibration only. 

Solutions of the Amplitude Frequency Equations. We first 
dispose of the case of the stationary shell wherein g = 0. It is seen from 
(56) that there are only four solution 

co2 = a>o2 + 7 i aa/m, /3 = 0, (59a) 

(596) 

(59c) 

a>2 = a)0
2 + 71 /3/3/m, a = 0, 

w2 = ai2o + (71 + 72) aa /m, /3 = ± a , 

the first two of which correspond to traveling waves and the rest to 
standing wave patterns. As is generally true for free-vibration prob­
lems the phase of these solutions is arbitrary. 

For the slowly rotating shell (g 7^ 0) two solutions of (56) are im­
mediately obvious 

co2 = «o2 H •" 7 i aa/m, /? = 0, 
m 

OlQg 
+ 71 fl(S/m, a = Q, 

(60a) 

(606) 

which represent traveling waves whose frequencies at zero amplitudes 
differ due to gyroscopic forces, as expected. Another set of solutions 
of (56) occurs when both a and /3 are nonzero in which case the solu­
tions satisfy 

Z22<2) = zii(2> = zi1<2>e-2-", z22<°> = zn<°> = zn<°>, (55a) w h e r e 

IA2 B^ 
-2(co2 - a>o2)m + (71 + y2) \— + — = 0, 

( A2 B2\ ———J = o , 

aa 
A2 

" 4 ' 

- B2 

4 

(61a) 

(616) 

(62) 

If g is positive, it follows from (616) that real solutions of (61) exist 

for 

or for 

(0. 

(») 

B 2 2coqg 
— > , ( 7 i - T 2 > 0 ) , 
4 7 1 - 7 2 

A2 2coog 
• > • , (71 - 72 < 0). 

(63a) 

(636) 

Journal of Applied Mechanics 

4 7 2 - 7 1 

Thus, in Case (i) there is a secondary bifurcation point on the branch 
given by (60b), occurring at 
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2o>og B 2 

4 7 i - 72 

9 , 7 l + 72g<0Q 7 - . . . 
; coo H , A = 0. (64a) 

7 i - 72 m 
In Case (ii) the secondary bifurcation point occurs on the branch (60a) 
at2 

4 

2coog 7 i + 72g<oo 
B = 0. (64b) 

7 2 ~ 7 i 7 2 ~ 7 i m 

A similar analysis for g < 0 reveals that secondary bifurcation point 
occurs at one and only one of the two traveling wave solution branches. 
Of course, the secondary branches are given by simultaneous solutions 
of (61a,6). From (616) it is concluded that along the secondary 
branches, for g > 0, 

(») 

(«) 

A 

2 ~ 

B 

2 ~ 

B 
i ± -

2 

A 
i ± -

2 

1 -

1 

4<oog 

(71 - 72)B2J 

4o>og 

(72 - Ji)A2 

(65a) 

(65b) 

so that for large amplitudes these branches asymptotically approach 
the standing wave solutions along which A = ±B. 

We conclude this section by noting that, based on (56), a number 
of qualitatively different free-vibration response curves in the A, B, 
01 space can be drawn with the differences depending on the relative 
magnitudes and signs of the coefficients 71 and 72- For the sake of 
brevity, however, we shall present the result only for the case of a 
rotating ring. 

M o d e I n t e r a c t i o n i n a S l o w l y R o t a t i n g R i n g 
The analysis of mode interaction in a rotating ring on the basis of 

the procedure derived in the last section begins with the solution of 
the eigenvalue problem (47) specialized to the functionals given by 
(12), (15). The solution is similar to that of (31), i.e., 

y = 0.,iBw,C10)
T<inl> 

1^0 : o>m 

(66a) 

(666) 

where Bio, Cw, and too are given by (35) with fl = 0. 
Similarly, the solution of the higher-order problems corresponding 

to (52), (54) are of the form (55), with 

i n ( 2 ) = (An<2\ iBu
m, Cn ( 2 ) ) T , etc., (67) 

The quantities iu<2>, zu<°>, 2i2
(2>, and ii2<°> in (55) satisfy 

L(2o>o, 2in; 0) zu<
2> + (C10, i G20, GS0)

T = 0, (68a) 

L(0, 0; 0) 2ui0) + (0, 0, [n - B10\
2)T = 0, (68b) 

L(2co0, 0; 0) i12<
2> + (0, 0, {n - Bio|2)T = 0, (69a) 

L(0, 2m; 0) zi2<°> + 2(G10) iGw, Gm)T = 0, (69b) 

where Gi0, i = 1,2,3 are given by (37b-d) with Ci and Bi replaced by 
Cio and Bio a n d the matrix L is defined by (32). Finally, equations 
(57), (58) furnish 

^ i = 2 ( B i 0 - n ) 2 ( - « B i o + n 2 ) 2 

27T 

+ 2 (Gi0An<2> + G20Bn<2» + G30Cii<2>), (70a) 

f 2 = _4(„ _ fll0)4 W()2 + 2 (Gi0Ai2(°) + G20Bi2(°) + G3oCii<0>) 
27T 

+ 4 ( B i o - n ) 2 ( - n B i 0 + n2)2 , (70b) 

and m and g in (56) are given by (43). In (70) we have used the explicit 
solutions of (686) and (69a) butAn< 2 ) , Bn ( 2 ) , etc. in these equations 
are given by (68a) and (69b). Thus the coefficients 71 and 7 2 can be 

2 It can be verified that (A, B, S) defined by (64a) satisfy both (60b) and (61) 
and similar result holds for Case (ii). 

BACKWARD 
TRAVELING WAVE 

^SECONDARY 
BRANCH 

Fig. 2 Free-vibration response curves for a rotating ring (n = 2), [A = (w/oio 
- 1)/(fl/<»>o), ( 4 * , B') = (A, B)/B, with Bdeilned by (64)] 

Table 2 The coefficients in the amplitude frequency equation (56) for the 
mode interaction problem for a circular ring 

n 

2 

3 

4 

5 

6 

7 

a 

9 

10 

Y1/2u0n 

1.650 

5.240 

10.420 

17.134 

25.363 

35.100 

46.341 

59.086 

73.331 

V2"^ 
-0.0432 x 102 

-0.7B1 x 102 

-3.457 x 102 

-9.764 x 102 

-2.187 x 103 

-4.241 x 103 

-7.451 x 103 

-1.218 x 10* 

-1.883 x 104 

obtained through a sequence of linear algebraic calculations which 
are best done numerically. The results are given in Table 2. A typical 
free-vibration response curve, which exhibits the type of character­
istics described in the last section has been shown in Fig. 2. In this 
figure the coordinates have been chosen so that the plots are inde­
pendent of speed of rotation and valid for small nonvanishing values 
of Q. 

C o n c l u d i n g R e m a r k s 
Perturbation procedures based on the Lyapunov-Schmidt method 

have been presented in this paper for the analysis of nonlinear har­
monic oscillations of structural systems with gyroscopic forces and 
the techniques have been illustrated by analyses of the simple, yet 
nontrivial, problem of a rotating ring. The procedure for mode-in­
teraction analysis of rotationally symmetric structures appears to be 
particularly useful for further applications to shells of revolution as 
it can provide a basis for efficient computational schemes for solution 
of a class of problems which have not been treated before in a general 
framework. 
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A Generalized Theory of Cell-to-Cell 
Mapping for Nonlinear Dynamical < 
Systems (S 
The simple theory of cell mapping and the associated algorithm presented in [1, 2] have 
been found to form a very effective tool for the global analysis of nonlinear systemsffn~ihis 
paper we^generaltgp'trTe theory\by allowing the mapping of a cell to have multiple image 
cells with appropriate individual mapping probabilities. This generalized theory will be 
able to deal with very fine and complicated global behavior patterns, if they exist, in a 
more attractive way without having to utilize extremely small cell sizesjllt is found that 
such a generalized cell mapping can be identified with a Markov chain and the well-devel­
oped mathematical theory of Markov chains can be immediately applied. Similar to the 
simple theory of [1], the generalized cell mapping theory is also eminently suited as a the­
oretic base for computer alogorithms which will be needed when dealing with systems in­
volving a very large number of cells. 

1 I n t r o d u c t i o n 
In [1] a primitive theory of cell-to-cell mapping has been introduced. 

In essence, the cell-to-cell mapping of that theory is described by 

Z(n+ 1) = C(Z(re)) (1) 

where, without any loss of generality, the cell vector Z can be taken 
to be integer-valued, and C is an integer-valued vector cell mapping. 
By confining the total number of cells to be treated finite, a very 
simple algorithm has been devised for studying the global properties 
of nonlinear systems [2]. The algorithm is easy to implement and has 
been found to be very effective. 

The theory offered in [1] is a simple one. However, it is also a coarse 
one. When it is applied to point mapping systems or to systems gov­
erned by ordinary differential equations, it could not disclose the fine 
structural details of the global behavior if they exist, unless the cell 
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7) 
size is taken to be very small. In this paper we offer a generalized cell 
.mapping theory by bringing into the theory certain new ingredients. 
J When compared with the simple theory of [1] the new theory is much 
I more complex, but, on the other hand, it will have the capability of 
I describing any intricate global behavior in a more satisfying manner. 
Just like the theory in [1] the new theory also lendgijself well as a 

L theoretical base for comguteHmpJ^ejnjin^ /_ l / J {/'•",/' 

T h e theory offered here is believed to use an entirely new approach 
to the global analysis of nonlinear systems. In this regard, it is indeed 
unusually fortunate that the analytical techniques required to de­
velop this theory are found readily availabl^ejrij^ejna^ematicsjit-_.j 
erature in the form of Markov chains. After/presenting the basic ideas 
of the generalized cell mapping theory^ve«mmarize^pme results on 

larkov chains^Thereafter, we discuss_a few simple examples in­
volving very few cells in order to illustrate the idea and application 
(of the theoryiOur ultimate afirTislxfbourse to analyze systems with 
/ very large number of cells. This will require a special algorithm similar > 

to the one presentedjn [2]. / c2><-J> ^ ; v 

2 N e w I n g r e d i e n t s : M u l t i p l e M a p p i n g I m a g e Ce l l s 
a n d T h e i r P r o b a b i l i t i e s 

The basic idea of the cell mapping theory presented in [1,2] is that 
a cell Z(rc) is mapped by the mapping C into a single image cell Z(n 
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+ 1). In the generalized theory we remove this restriction. Instead, 
we allow the mapping of a cell Z(n) to have several possible image cells, 
each image cell having a definite fraction of the total possibility. In 
other words, if the system is at cell Z(n) when t = n, the state at the 
next evolution step t = n + 1 can be at Z(1)(ra + 1) with probability p ( 1 ) , 
at Z(2)(rc + 1) with probability p ( 2 ) , and so forth. Of course, we must 
have 2,p(l> = 1 where the sum covers all the possible image cells. With 
these new ingredients it is no longer adequate to specify the state of 
the system to be at a certain cell Z(n) &tt = n. Rather, the state of the 
system should be described by the probabilities according to which 
the state of the system may be found in various cells. 

Now let us formalize the foregoing notion in mathematical terms. 
Let S be a closed set of cells of interest. In application of the theory 
we shall always deal with a finite number of cells. However, for the 
general discussion in this section, we take S to be a denumerable set. 
Moreover, we assume that the cells are labeled 1 1,2 , . . . ,N according 
to an appropriate procedure, with N possibly being infinite. 

Cell Probability Vector. Let f; (ra) denote the probability of the 
state of the system being in cell i at t = n. The vector f(rc) with com­
ponents ft(rc), i = l,2,...,N, will be called the cell probability vector 
or simply probability vector. 

Transition Probability Matrix. Let p;, denote the probability 
of cell j being mapped to cell i in one mapping step. The matrix P with 
components pij will be called the transition probability matrix, or 
mapping probability matrix, or simply mapping matrix. 

In general, P may depend upon n, the time of the mapping step. In 
this paper we consider, however, only cell mappings whose transition 
probability matrices are independent of n. These may be appro­
priately called stationary cell mappings. 

It is evident that f ;( i) and p;y have the following properties: 

f ; ( n ) £ 0 , 

L tiM = 1, 

Pij £ 0, 

£ Pu = i. 
ieS 

(2) 

(3) 

(4) 

(5) 

We can now describe the generalized cell mapping by the following 
evolution equation: 

f (n + 1) = Pf (zt). (6) 

For a specific evolution we need to have the initial cell probability 
vector f (0). Once f(0) is given the subsequent evolution is simply given 
by 

f(n) = P"f(0) (7) 

Thus one sees that the mapping matrix P completely controls the 
whole evolution process. For this reason it is helpful to examine P more 
closely. Besides the properties (4) and (5), one notes that there can 
be no zero columns in P. There can however be zero rows. A zero tth 
row means that cell i is not accessible from any cell of S; therefore, 
fi(re) = 0 for n = 1, 2 , . . . . For any column, say the ,/th, the nonzero 
elements represent the possible image cells of cell j under the map­
ping. Because of (4) and (5) P is a so-called non-negative matrix and 
the largest value any of its elements can take is 1. There are special 
properties for matrices of this kind; they will be discussed further 
later. 

It is now of interest to examine the simple theory presented in [1, 
2] within the framework of the generalized one. It can readily be seen 
that the simple theory is nothing but a special case of the new one with 
two special features. One is that the transition probability matrix has 

only one nonzero element in each column and the other is that the cell 
probability vector has also only one nonzero element. These nonzero 
elements always have the magnitude 1. 

3 A S i m p l e E x a m p l e 
Before proceeding further it might be instructive to look at a con­

crete simple example of such generalized cell mapping systems in 
order to gain some acquaintance with them. One of the basic purposes 
of developing the theory of cell mapping is to use it to study the global 
behavior of nonlinear point mapping systems or systems governed 
by ordinary differential equations. As an example, let us consider the 
one-dimensional point mapping 

x{n + 1) = sx(n) 
x(n) 

4 
(8) 

and see how a corresponding generalized cell mapping system can be 
created. The point mapping (8) has been used in the study of popu­
lation dynamics. It has very complex behavior despite the simple 
nature of its nonlinearity [3, 4]. 

For definiteness of discussion let us take the cell size h to be 0.04. 
Let us further assume that we are only interested in the system be­
havior when the state variable x remains in the range —0.02 s x < 
4.02. Following the idea given in [2] we introduce a "sink cell," to be 
labeled number 0, to cover x < -0.02 and x a 4.02. For the "regular 
cells," [2], covering the range of interest, the labeling of the cells will 
be as follows. Cell i will cover 

I i - - X 0.04 £ x < li - - X 0.04. (9) 

Thus there will be 101 regular cells covering (—0.02,4.02). Altogether 
we will deal with 102 cells labeled 0 ,1 , 2 , . . . , 101. 

The transition probability matrix for this cell mapping can now be 
determined in the following manner. First, consider the sink cell, cell 
# 0 . Since once the system gets into the sink cell we are no longer in­
terested in the further evolution of the system, the sink cell is assumed 
to be mapped into itself, i.e., cell # 0 is mapped into cell # 0 with 100 
percent probability. For cell # 1 its end points x = —0.02 and x = 0.02 
are mapped by (8) to x = —0.0201s and x .= 0.0199s. Again, for the 
sake of definiteness, let us take a specific value of s, say s = 2.7. Then 
the terminal points of cell ft 1 are mapped into x = —0.05427 and x 
= 0.05373. It is seen that this image range of cell # 1 covers a part of 
the sink cell (-0.05427, -0.02), cell # 1 itself (-0.02,0.02), and a part 
of cell # 2 (0.02,0.05373). Thus cell # 1 has three image cells, namely, 
0 ,1 , 2. To aportion the probabilities of mapping among these cells, 
different schemes may be used. The simplest one, and also the one 
to be used in this example, is to approximate the mapping in this small 
interval by a linear one determined by the end points of the cell and 
to aportion2 the probabilities according to the percentages of the total 
image range which are occupied by the image cells. This leads to the 
following: 

Cell # 1 to Cell # 0 : 

Cell # 1 to Cell # 1 : 

Cell # 1 to Cell # 2 : 

-0.02 - (-0.05427) 
Po,i = - , = 0.3173 

Pi,i = 

P2,l : 

0.05373 + 0.05427 

0.02 - (-0.02) 

0.05373 + 0.05427 

0.05373 - 0.02 

0.05373 + 0.05427 

0.3704 

• = 0.3123 

In this manner the image cells of the other regular cells and the cor­
responding mapping probabilities can be determined, leading to the 
following matrix P. 

1 In some instances we may elect to label the cells 0 ,1 , 2 N — 1. 

2 This method of aportioning the probabilities will be referred to in the future 
as the "linear interpolation method." 
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i = 
; = o 

1 
2 
3 
4 
5 

68 

101 

0 

1 
0 
0 
0 
0 
0 

0 

0 

1 

0.3173 
0.3704 
0.3123 
0 
0 
0 

0 

0 

2 

0 
0 

0.0593 
0.3779 
0.3779 
0.1849 

0 

0 

50 

0 
0 
0 
0 
0 
0 

1 

0 

51 

0 
0 
0 
0 
0 
0 

1 

0 

100 

0 
0 

0.0593 
0.3779 
0.3779 
0.1849 

0 

0. 

101 

0.3173 
0.3704 
0.3123 
0 
0 
0 

0 

0 

(10) 

By this process the point mapping (8) is recast into a generalized cell 
mapping and the solution of (8) is to be reinterpreted in the form of 
(7) with P given by the previous table. 

4 Markov Chains 
For a generalized cell mapping the dynamical properties of the 

system are entirely contained in the transition probability matrix P. 
Our task is therefore to examine P and to discover in what manner P 
controls the global behavior. In this connection it is indeed remarkable 
and fortunate to find that there is already a body of mathematical 
development which can be used directly for this purpose. This is the 
theory of Markov chains.3 There are many excellent reference books 
on this subject; here we cite [5-7]. It is easily seen that mathematically 
our generalized cell mappings can be identified with Markov chains. 
In what follows we shall summarize, without citing any proofs, some 
of the known results of Markov chains which are found useful for our 
purpose. The summary is provided here because it is believed that 
this is the first time the theory of Markov chains is being employed 
in the global analysis of nonlinear oscillation problems and that some 
of the readers might not be familiar with this subject matter. In order 
not to complicate the discussion unnecessarily, we restrict the treat­
ment in the remainder of this paper to finite Markov chains. The total 
number of the cells in S is now assumed to be finite. 

First, let us dispose of a preliminary item of terminology. For 
Markov chains the state space S is a denumerable set of discrete states 
and one sees in the literature the usage of "from state i to state ;'." 
However, in our application of the theory of Markov chains to dy­
namical systems, we often need refer to certain originating systems 
for which the state space is a continuum of state. In order not to use 
the same word "state" in two different contexts in one problem, we 
shall use the name cells as the elements of the space for Markov 
chains, hence the usage like "from cell i to cell;'." 

A Dilemma. In reporting and applying the results of Markov 
chains we do face a serious dilemma with regard to the usage of a key 
notation. In most of the mathematics books on Markov chains the 
transition probability p;; is defined as the probability of transition 
from cell i to cell;', and the cell probability vector is taken to be a row 
vector a(«). With this notation a Markov chain is represented by 

a(n+ 1) = a(ra)P. (ID 

i.e., a step of evolution is equivalent to a post multiplication by P. 
However, in the theory of oscillations one usually takes the state 
vector to be a column vector, and invariably uses premultiplication 
when applying an operator, leading to a form like (6). To follow that 
convention it is necessary to define p;; as the probability of mapping 
from cell;' to cell i, as is given in Section 2. We have adopted this 
notation because this paper is intended to serve in the field of vibra­
tion and dynamical systems and, therefore, it is desirable to have a 
notation consistent with the common usage in that field. The reader 
is alerted to exchange the roles of the rows and the columns in the 
transition probability matrix when he compares the results cited in 

this paper with those given in the mathematical literature of Markov 
chains. 

n-Step Transition Probabilities. The rc-step transition proba­
bility p If is defined as the probability of being in cell i after n steps, 
starting from cell j . It can be shown that p[f is the (i, j)ih element 
of P". Evidently, we have 

Pi] (12) 

Here, p\f is taken to be Sy, the Kronecker symbol. In the theory of 
Markov chains a matrix having the properties (4) and (5) is called a 
stochastic matrix. One can easily see that if A and B are two stochastic 
matrices then AB is also one. Hence, all P" with non-negative integer 
power n are stochastic matrices. 

Following Chung [5], we say cell; leads to cell i, symbolically; -> 
i, if and only if there exists a positive m such that p {j1' > 0. The cells 
i and; are said to communicate if and only if; -*i and i -*j; this will 
be denoted by i -<->-;. The property of communicativeness can be used 
to divide the cells into disjoint subsets called classes. Two cells belong 
to the same class if and only if they communicate. A cell which does 
not communicate with any other cells is said to form a class by itself. 
The notation C(i) is used to denote the class containing the cell i. We 
now describe the classification of the cells. Again we rely on [5-7]. 

Essential and Inessential Cells. A cell that communicates with 
every cell it leads to is called essential; otherwise inessential, [5]. It 
can be shown that an essential cell cannot lead to an inessential cell. 
The property of being essential or inessential is a class property. 

Period. If j —• i, the greatest common divisor of the set of positive 
n such that p/f' > 0 is called the period of i and denoted by d,-, [5]. For 
cells which do not lead to themselves the period is not defined. The 
property of having a period equal to d is a class property, i.e., all the 
cells in one class have the same period. 

Definitions of f\f> and /y. Given that the system starts from cell 
j , the probability that it will be in cell i for the first time at the nth 
step is denoted by f\f. Given that the system starts from cell;', the 
probability that it will be in cell i at least once is denoted by f*j. Evi­
dently, 

1ij Z* lij • (13) 

We also have the following results relating p\f to /{"' and f*f 

p\f = £ pirwf\f d4) 

f'j = Km 
N 

V/ii ,(»> (15) 

3 The theory of Markov chains is, of course, related to the theory of 
graphs. 

Persistent and Transcient Cells, [6]. A cell i is called persistent 
or transcient according as /*, = 1 or <1. The properties of being es­
sential or inessential and of being persistent and transcient are based 
upon different notions, but they are related. Thus one can show that 
an inessential cell is transcient and persistent cells are essential. 

Expected Return Time. For a persistent cell;' we define its ex­
pected return time as 
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W = £ nf}f (16) 

Decomposition Into Groups. As stated before, the property of 
communicating can be used to divide the cells into groups. All the 
essential cells can be formed into isolated groups (or classes) Bi, B2, 
. . . ,Bk such that the cells in one and the same group communicate 
but those belonging to different groups do not. These isolated groups 
will be called persistent groups. The inessential cells can also be 
formed into groups Bfc+1, B/,+2,. . . , Bk+m according to the procedure 
that the system can go from the group Bk+h, h = 1, 2, . . . , m, to one 
of the groups Bi, B2, . . . , Bk+h, but cannot go to the groups with a 
higher subscript designation such as Bk+h+i, • • •, Bk+m- These groups 
composed of inessential cells will be called transcient groups. Cor­
responding to this decomposition into persistent and transcient 
groups is the possibility of interchanging rows and columns in the 
transition probability matrix so that it will take the form 

P = 

Pi 
0 

0 
0 

0 

0 
p2 

0 
0 

0 

0 Ti,*+i 
0 T2 ,A + 1 

P* Tfc,fc+i 

0 Qk+i 

0 0 0 

Tl,fe+m 

T2,ft+m 

Tk,k+m 

Tk+l,k+n 

Qk+m 

(17) 

where Pi, P2,. . . , P&, Qfc+i,. • • , Qk+m are square matrices and Ti^+i, 
• • • , Tk+m-ijt+m are, in general, rectangular. Once the system is in a 
persistent group, say By, j = 1, 2,. . . , k, it remains in that group for­
ever. Thus a persistent group Bj is by itself a Markov chain and its 
transition probability matrix given by Py is a stochastic matrix having 
the properties (4) and (5). Qk+j,j = 1, 2 , . . . , m, is associated with the 
transcient group B^+y. These are not stochastic matrices because, 
although they satisfy (4), they satisfy 

T.Vij£l (18) 

instead of (5). These matrices are sometimes referred to as substo-
chastic matrices. The matrices T;y, £ = 1,.. . ,k;j = k + I,. . . ,k + 
m, describe the manner by which the transcient groups are mapped 
into the persistent groups. In a similar manner, the matrices T;y, £ = 
k + 1,. . . , k + m — 1; j = k + 2,. . . ,k + m, describe the transition 
from transcient groups to transcient groups of lower subscript des­
ignation. These T matrices will be called transit matrices. Sometimes 
when there is no advantage to have distinct transcient groups B&+1, 
Bfc+2,.. . , Bk+m, we shall lump them together and call it the transcient 
group Bfc+i with a substochastic matrix Qfc+i. In that case the number 
of transit matrices will be simply k; they will be denoted by Ti^+i, 
T2,fc+i, • • •, Tfc^+i. In actual application of Markov chains to the global 
analysis of nonlinear systems we usually will be dealing with a very 
large number of cells and there would be no attempt to put the tran­
sition probability matrix in the form of (17). However, to describe and 
to discuss the properties of Markov chains this representation is of 
immense help. Therefore, for easy reference we shall call (17) the 
normal form of the transition probability matrix. We also note here 
that the cells within each persistent group communicate; therefore, 
each persistent group cannot be further decomposed and is sometimes 
referred to as irreducible or indecomposable. 

If the mapping matrix P is in its normal form, then the general 
global behavior of the cell mapping is quite clear. If the system starts 
in a persistent group By, i.e., f;(0) = 0 for £#By, then the system re­
mains forever in By. If the system starts from a transcient group By, 
then the system eventually gets out of that group completely. It will 
settle into the persistent groups as the evolution proceeds. The final 
probability distribution of the system among the various persistent 
groups occupied by the system depends upon the matrices Q's and T's 
and the initial probability vector f(0). 

In essence, given P the global property of a Markov chain is found 
by studying lim p\f as n -*- •». The probability distribution pjj"' among 

the i cells gives us the long term behavior of the system with cell j as 
the starting cell. In this connection two simple results are imme­
diate. 

Theorem 1, [5]. If £ is a transcient cell, then for every j 

lim p\f = 0. (19) 

Theorem 2, [5]. If i and / are two persistent cells but belong to 
two different persistent groups, then 

n W 
fl] 

; 0, Pjl 0 for every n. (20) 

In the next three sections we examine lim pff1 as n —• •» for other cases 
where £ is a persistent cell and j is either a persistent or a transcient 
cell. 

5 A b s o r b i n g Cel l s a n d A c y c l i c Groups 
A cell £ for which pa = 1 form a persistent group by itself. It will be 

called an absorbing cell. 
Next, we consider persistent groups composed of more than one 

cell. Each persistent group B has a period d. In this section we study 
persistent groups of period 1. These groups will be called acyclic4, 

groups and the cells in these groups acyclic cells. Persistent groups 
of period d a 2 will be discussed in the next section; they will be called 
periodic groups and their cells periodic cells. As stated in the last 
section, a persistent group may be taken as a finite Markov chain by 
itself. We shall state below certain properties of an acyclic group in 
this context. 

Theorem 3, [6]. Let P be the transition probability matrix for an 
irreducible persistent acyclic finite Markov chain with a cell space 
S. Then for each £ e S, lim p{"> as n -* °° approaches a limit which is 
independent of.;'. 

Let the limit be called the limiting probability distribution and 
be denoted by p;. Then it can be shown that 

Pi = lim p\f = — > 0 (21) 

where j«; is the expected return time for cell i. This most important 
result can also be discussed from the point of view of eigenvalues and 
eigenvectors of P. First, let us call an eigenvalue of a matrix the 
dominant one if it is of multiplicity one and it is larger than any other 
eigenvalue in absolute value. 

Theorem 4, [6]. The transition probability matrix P for an irre­
ducible persistent acyclic finite Markov chain has an eigenvalue equal 
to 1 and, moreover, this eigenvalue is dominant. The normalized 
right-eigenvector associated with this eigenvalue is equal to the lim­
iting probability distribution p = |p;j. Thus 

p = Pp or pi 

Pi > 0 for all £ 

= L PijPj 
/ - 1 
N 

;=i 

(22) 

(23) 

where the second equation of (23) is the normalization condition. 
With these two theorems at hand we can elaborate further the 

properties of an irreducible acyclic Markov chain. Theorem 3 states 
that 

lim P" = 

"Pi P i 

P2 Pi 

_PN PN 

i.e., the limit of P™ as n —• <» is a matrix 

P i ' 

P2 
(24) 

PN_ 

with identical columns. 

4 In [6] these are called aperiodic groups. However, since we have in mind to 
apply the theory of Markov chains to dynamical systems we believe it is more 
desirable to avoid the word aperiodic and adopt the name acyclic as is done in 
[7]. 
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Moreover, all components are positive. With P" possessing this 
property (7) implies immediately that no matter what is the initial 
probability vector f(0), the probability vector f(n) eventually ap­
proaches the limiting probability distribution p as n -» ». Before 
concluding this section we mention here another result which is in­
structive in understanding the persistent groups. 

Theorem 5, [6]. The multiplicity of the eigenvalue 1 of the tran­
sition probability matrix of a finite Markov chain is equal to the 
number of the irreducible persistent groups (acyclic and periodic) of 
the chain. 

6 Per iod i c P e r s i s t e n t Groups 
Next, we consider periodic groups. Each periodic group, being a 

persistent group, may be taken as a Markov chain. 
Theorem 6, [5,6]. Let./ be a member of a periodic group B of pe­

riod d. Then to every member i e B there corresponds a unique resi­
due class r modulo d such that p ^ ' > 0 implies that n = r (modulo 
d). 

In other words, the member cells of an irreducible periodic group 
B of period d can be divided into d disjointed subgroups Bi, B 2 , . . . , 
Bd such that from B/,, h = 1 ,2 , . . . , d - 1, the system goes to Bj,+i and 
from Bd it goes back to Bi. Let the number of cells in B/, be Nh- Then 
the foregoing result implies that the transition probability matrix for 
this periodic group may be put in the form 

0 

P2,l 

0 

L 0 

0 
0 

P3,2 

0 

0 
0 
0 

Pd,d-1 

Pl ,d 

0 
0 

0 . 

(25) 

The properties of periodic groups are also intimately governed by 
the eigenvalues of P. We cite here the following two theorems. 

Theorem 10, [6]. The dth roots of unity are eigenvalues of the 
transition probability matrix of an irreducible periodic Markov chain. 
Moreover, each of these eigenvalues is of multiplicity one and there 
are no other eigenvalues of modulus one. 

Theorem 11, [6]. Let P be the transition probability matrix of a 
Markov chain. Then any eigenvalue of P of modulus 1 is a root of unity. 
The dth root of unity are eigenvalues of P if and only if P has a per­
sistent group of period d. The multiplicity of each collection of dth 
roots of unity is the number of persistent groups of period d. 

7 Evo lu t ion F r o m T r a n s c i e n t Cel l s 
In the last two sections we have seen how to evaluate lim pf"1 as n 

—- °° when i and j are persistent cells. In this section we examine the 
case where j is a transcient cell. Before doing so, it is however helpful 
to introduce some new quantities. Let the period of cell i be d. For 
every integer r, /;y(r) is defined as, [5], 

Evidently, one has 

fair) = L f\j 
n=l 

n=r(mod d) 

£ f'ijir) = fa 
r=l 

(31) 

(32) 

Theorem 12, [5]. If i is a persistent cell with period d; and ex­
pected return time in and if j is a transcient cell, then for every r 

l i m p t o * + " - / , y ( ' - ) - (33) 

where all the diagonal block matrices are zero square matrices, P2,i 
a matrix of order N2XNi, P3,2 a matrix of order N3XN2 , and 
Pi,d of order Ni X Nd-

This cyclic behavior means that R = Pd (with components r;;) maps 
each subgroup into itself. Therefore, R is the transition probability 
matrix of a Markov chain for which the subgroups Bi, B 2 , . . . , Bd be­
come now d irreducible acyclic groups. Based upon this one can show 
the following. 

Theorem 7, [6]. Let P be the transition probability matrix of an 
irreducible periodic persistent Markov chain with period d. Let R = 
Pd. Then 

where 

lim r\f if i and j belong to the same subgroup Bk, (26) 

lim rjf = 0 otherwise. (27) 

where m is expected return time for cell i using P. 
A slightly more general result which is also useful for our purpose 

is the following. Let Cr (j
r) be the residue class r discussed in Theorem 

6. 
Theorem 8, [5]. If j is a persistent cell with period d and expected 

return time \xi and if j belongs to the same irreducible persistent group 
as i so that i e Cr(j), then 

and 

Pi] 

lim p\f+r) = — 
n - — Hi 

•• 0 if n ^ r (modulo d). 

(28) 

(29) 

We note here that for an irreducible periodic Markov chain, unlike 
for the acyclic groups, lim p\f as n -* <*> does not converge. It con­
verges only along a properly chosen subsequence. This leads to con­
sider the limit of the Cesaro average of p\f, [5,6]. 

Theorem 9, [5]. Let P be the transition probability matrix of an 
irreducible persistent finite Markov chain. Then 

lim - £ p»> 
n-»-> n k = l 

_ 1_ 
(30) 

/*,(/•) gO and E / y W ^ l . 
r = l 

(34) 

Again, instead of using a subsequence of p j " ' , we can consider the 
Cesaro limit of the full sequence and in fact obtain a general result. 

Theorem 13, [5]. The Cesaro limit 

1 " 
lim - •£ pf = Tij 

exists for every i and j and 

Mi 

(35) 

(36) 

provided that we define //.; = " in case cell i is transcient. 
One may also study the evolution from a transcient cell by making 

use of the transit matrix T and the matrix Q in the following normal 
form of the transition probability matrix P. 

P = 

Pi 

0 

0 
0 

0 
Pa 

0 
0 

0 
0 

Pfe 
0 

TTI 
LTJ 
Q 

(37) 

Theorem 14, [6]. Let N = (I — Q)_1. Then the sum of the elements 
of the jth column of N gives the expected adsorption time of the ;'th 
transcient cell to be absorbed into the persistent groups. 

Theorem 15, [6], Let N = (I - Q)"1. Then the (i, ;')th element of 
TN is the probability of being absorbed into the persistent cell i from 
the transcient cell j . 

As a matter of notation, we denote by Vj the expected absorption 
time of a transcient cell j being absorbed into the persistent groups. 
The absorption probability from a transcient cell j into a persistent 
cell i will be denoted by aij. 

8 A n a l y s i s of S i m p l e E x a m p l e s 
We are now ready to apply the theory of Markov chains to the 

generalized cell mapping. In this paper we present only the studies 
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of mappings involving very small numbers of cells so that the ideas 
and the results of the evolution of the systems can be perceived di­
rectly and easily without the aid of a computer. Our main purpose is 
to demonstrate the use of Markov chains as tools for global analysis 
of our cell mapping systems. Five problems will be analyzed using the 
same point mapping system (8). The range of interest of the state 
variable x is taken to be from —0.2 to 4.2. Eleven regular cells, labeled 
1 to 11, will be used; the cell size is therefore 0.4. The 0th cell is the sink 
cell covering x < —0.2 and x a 4.2. In the five problems the parameter 
s will be varied, but all the generalized cell mappings will be created 
by using the linear interpolation method. 

Problem 1. We take s = 2.5. The transition probability matrix of 
the mapping is easily found and it will have an appearance similar to 
(10) except with only 12 cells. This matrix P can be put in a normal 
form as shown by the table (38) below where all the unfilled elements 
below the diagonal are zero. One readily finds that besides the obvious 
absorbing cell at cell 0, cell 7 is also an absorbing cell. These two are 
the only persistent cells. The remaining 10 cells are all transcient. 
Starting from any of the transcient cells the system moves eventually 
toward one or both of the absorbing cells 0 and 7. Using Theorem 15, 
one can find all the absorbing probabilities ay: 

stable P — 1 point of the point mapping is replaced now for the cell 
mapping by an absorbing cell. 

(ii). For equation (8) all points in the range 0 < x < 4 are known 
to converge eventually to the P — 1 point at x* = 2.4. Here we find 
correspondingly that all cells 2-6, 8-10 are absorbed into cell 7. 
Concerning the absorption time, consider cell 2. According to (8), of 
all the points on the segment (0.2,0.6) occupied by cell 2 those in the 
lower 16.24 percent part take 4 steps to get into cell 7 while those in 
the upper 83.76 percent take only 3 steps, resulting in an average of 
3.162 steps. The present cell mapping gives V2 = 3.208, only 1.5 percent 
off despite the coarse cells used. 

(Hi). Cell 1 occupies (—0.2,0.2). According to (8), half of the points 
in this range will move to x* = 2.4 while the other half toward x = — <», 
which is in the sink cell. Here the cell mapping calculation gives ao,i 
= 0.542 and 07,1 = 0.458. The deviations of these values from 0.5 and 
0.5 as required by the point mapping can be shown to be due to the 
large cell size used here. 

Problem 2. For this problem we take s = 2.95. The mapping ma­
trix P can again be put in a normal form as shown in (41). Here we find 

Normal form of P: 
Row 
c e l l # 

0 
7 
6 
5 
4 
3 
2 
1 

11 
10 
9 
8 

0 

1 

7 

0 
1 

6 

0 
1 
0 

5 

0 
1 
0 
0 

4 

0 
0.188 
0.812 

0 
0 

3 

0 
0 

0.125 
0.667 
0.208 

0 

Column Cell Number 
2 

0 
0 
0 
0 

0.344 
0.500 
0.156 

1 

0.325 
0 
0 
0 
0 
0 

0.275 
0.400 

11 

0.325 
0 
0 
0 
0 
0 

0.275 
0.400 

0 

10 

0 
0 
0 
0 

0.344 
0.500 
0.156 

0 
0 
0 

9 

0 
0 

0.125 
0.667 
0.208 

0 
0 
0 
0 
0 
0 

8 

0 
0.188 
0.812 

0 
0 
0 
0 
0 
0 
0 
0 
0 

(38) 

*ij 

i = 0 
7 

; = i 

0.542 
0.458 

2 

0 
1 

3 

0 
1 

4 

0 
1 

5 

0 
1 

6 

0 
1 

8 

0 
1 

9 

0 
1 

10 

0 
1 

11 

0.542 
0.458 

(39) 

These values indicate that starting from any of the transcient cells 
2,3,4,5,6,8,9,10 the system moves eventually to cell 7. Starting from 
cell 1 or 11 the system will eventually go to the sink cell 0 with a 
probability 0.542 and to cell 7 with a probability 0.458. One can also 
use Theorem 14 to compute the expected absorption times VJ for each 
transcient cell j . 

that cell 0 is an absorbing cell as it should be. Cells 7 and 8 now form 
an acyclic persistent group and the limiting probability distribution 
is given by 

p 7 = 0.451, p 8 = 0.549. (42) 

;' = 

"; = 

1 

3.137 

2 

3.208 

3 

2.169 

4 

1.812 

5 

1 

6 

1 

8 

1.812 

9 

2.169 

10 

3.208 

11 

3.137 
(40) 

The interpretation of v\ and i>n are not immediate because cells 1 and 
11 are absorbed into two different absorbing cells. The meaning of 
the other VJ'S is simple; for example, the expected (or mean) absorp­
tion time from cell 2 into cell 7 is 3.208 steps. 

Next, we may try to see how these results from this cell mapping 
reflect the properties of the point mapping (8) with s = 2.5. 

(i). Equation (8) is known to have an asymptotically stable P — 
1 point5 at x* = 2.4 which is located in cell 7. Thus an asymptotically 

6 For this terminology the reader is referred to [1 or 4]. 

Normal form of P: 
Column Cell Number 

Row 
cell number 

0 
7 
8 

Transcient 
cells 

0 
1 
0 
0 

0 

7 
0 
0 
1 

0 

8 
0 

0.821 
0.179 

0 

Transcient 
cells 

/ \ 
T ) 

\ / 
Q 

(41) 

The other cells are all transcient cells. Their absorption probabilities 
and expected absorption times are as follows: 
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an 
£ = 0 

7 
8 

i = i 
0.539 
0.171 
0.290 

2 
0 

0.371 
0.629 

3 
0 

0.018 
0.982 

4 
0 

0.821 
0.179 

5 
0 
0 
1 

6 
0 
0 
1 

9 
0 

0.018 
0.982 

10 
0 

0.371 
0.629 

11 
0.539 
0.171 
0.290 

(43) 

i = 
"j = 

l 
2.657 

2 
2.478 

3 
1.982 

4 
1 

5 
1 

6 
1 

9 
1.982 

10 
2.478 

11 
2.657 (44) 

Again let us compare the result with those of the point mapping 
analysis. (8) has an asymptotically stable P — 1 point at x* - 2.644. 
This point is located in cell 8 covering (2.6, 3.0) but it is also very near 
to cell 7 covering (2.2,2.6). Thus the asymptotically stable P — 1 point 
for the point mapping is replaced for the cell mapping by an acyclic 
group.6 As a matter of fact, the limiting probability distribution for 
this group as given by (42) is a very good reflection of the location of 
x* in the combined range of cells 7 and 8. Of all the transcient cells, 
cells 1 and 11 are eventually absorbed into the sink cell and the acyclic 
group, but all the other transcient cells are absorbed only into the 
acyclic group. 

' pi 
Pe 

Pi 

Lp9J 

"0.148" 

0.505 

0.347 

L o J 

for even steps. 

(46) 
(Cont.) 

For the case starting from cell 9 the limiting behavior is again given 
by (46) except that the conditions of odd steps and even steps should 
be exchanged. The cells 1-4,8,10,11 are transcient. Their absorption 
probabilities and expected absorption times are as follows: 

an 
£ = 0 

5 
6 
7 
9 

7 = 1 
0.535 
0.144 
0.093 
0.225 
0.003 

2 
0 

0.320 
0.178 
0.494 
0.008 

3 
0 

0.148 
0.505 
0.347 

0 

4 
0 
0 
0 

0.979 
0.121 

8 
0 
0 
0 

0.979 
0.021 

10 
0 

0.320 
0.178 
0.494 
0.008 

11 
0.535 
0.144 
0.093 
0.225 
0.003 

(47) 

7 = 
Vj = 

1 
2.734 

2 
2.919 

3 
1 

4 
4.132 

8 
4.132 

10 
2.919 

11 
2.734 (48) 

Problem 3. Here we take s = 3.3. The normal form of P is given 

by 

Row 
cell number 

0 
5 
6 
7 
9 

Transcient 
cells 

0 
1 
0 
0 
0 
0 

0 

5 
0 
0 
0 
0 
1 

0 

Column Cell Number 

6 
0 
0 
0 
0 
1 

0 

7 
0 
0 
0 
0 
1 

0 

Transcient 
9 
0 

0.148 
0.505 
0.347 

0 

0 

cells 

/ \ 
\ \ 

T 

V / \ / 
O 

(45) 

Besides the sink cell as a persistent group of a single cell, there is a 
periodic persistent group of period 2 composed of cells 5,6,7, and 9. 
The limiting behavior of the system starting from cell 5,6 or 7, or any 
combination of them is as follows: 

'pi 
Pe 

Pi 

Lpsd 

= 

" 0 " 

0 

0 

LiJ 

for odd steps, (46) 

6 Here, the reader may wish to refer to the discussion on pseudo periodic cells 
given in [1]. 

Having aij of (47) and the "limiting" probability distribution of (46) 
at our disposal, the long term probability distribution of the system 
among the persistent cells can be ascertained easily if the starting 
transcient cell is known. 

With s = 3.3 the point mapping (8) has an asymptotically stable 
P - 2 solution consisting of x*{l) = 1.918 and x*{2) = 3.294, which 
are located in cells 6 and 9, respectively. Thus an asymptotically stable 
P — 2 solution of the point mapping is replaced by a periodic persis­
tent group of period 2 for the cell mapping. Globally for the point 
mapping every point in 0 < x < 4 is eventually mapped into the P -
2 solution. For the cell mapping we have the same general result. The 
transcient cells 2-4, 8 and 10 are mapped eventually to the periodic 
group while cells 1 and 11 are mapped into the sink cell 0 and the 
periodic persistent group. 

Problem 4. In this problem we take again s = 3.3 as in Problem 
3, but in creating the generalized cell mapping we use G2, instead of 
simply G of the mapping (8). The matrix P can be put in the following 
form: 

Column Cell Number 

(49) 

Here, we find three absorbing cells 0, 6, and 9. All the other cells are 
transcient. Their absorption probabilities and expected absorption 
times are as follows: 

Row 
cell number 

0 
6 
9 

Transcient 
cells 

0 

1 
0 
0 

0 

6 

0 
1 
0 

0 

9 

0 
0 
1 

0 

Transcient 
cells 

/ \ 
T 

V / 
Q 
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an 
i = 0 

6 
9 

.7 = 1 
0.617 
0.211 
0.172 

2 
0 

0.727 
0.273 

3 
0 
0 
1 

4 
0 

0.533 
0.467 

5 
0 
1 
0 

7 
0 
1 
0 

8 
0 

0.533 
0.467 

10 
0 

0.727 
0.273 

11 
0.617 
0.211 
0.172 

(50) 

j = 
Vj = 

1 
2.035 

2 
2.720 

3 
1 

4 
3.813 

5 
2.203 

7 
2.203 

8 
3.813 

10 
2.720 

11 
2.035 (51) 

For the point mapping the P — 2 points for G are, of course, P — 1 
points for G2. Thus it is interesting and satisfying to see that the cells 
in which the two P — 2 points of G lie become two absorbing cells of 
the cell mapping generated by using G2. The ay and Vj data from 
Problems 3 and 4 cannot be compared against each other because the 
data in Problem 4 ignore the history of evolution (or location of the 
system in the cell space S) at all the odd number steps. 

Problem 5. Here we take s = 3.58. The normal form of P is 
given by 

ties of generalized cell mappings can best be described. We also discuss 
the relations between the properties of point mappings and the cell 
mappings derived from them. Let B/, be a persistent group and j any 
cell in S. We denote by a{Bh, j) the group absorption probability of 
j intoBh. Evidently, if; does not lead to any member of B/,, a(Bh,j) 
~ 0. If j is a member of B/,, a(B/,,;) = 1. We also have 

Column Cell Number 
Row 

cell number 
0 
3 
4 
5 
6 
7 
8 
9 

10 
Transcient 

cells 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 

3 
0 
0 
0 
0 

0.436 
0.466 
0.098 

0 
0 

0 

4 
0 
0 
0 
0 
0 
0 

0.550 
0.450 

0 

0 

5 
0 
0 
0 
0 
0 
0 
0 

0.497 
0.503 

0 

6 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 

7 
0 
0 
0 
0 
0 
0 
0 

0.497 
0.503 

0 

8 
0 
0 
0 
0 
0 
0 

0.550 
0.450 

0 

0 

9 
0 
0 
0 
0 

0.436 
0.466 
0.098 

0 
0 

0 

10 
0 

0.279 
0.349 
0.349 
0.023 

0 
0 
0 
0 

0 

Transcient 
cells 

T 

Q 

(52) 

In this case we find that beside the sink cell as a persistent group of 
a single cell, there is a huge acyclic persistent group consisting of cells 
from # 3 to # 1 0 . These cells cover the range 0.6 £ x < 3.8, which is 
80 percent of the important range 0 £ x < 4. This acyclic persistent 
group has the following limiting probability distribution: 

a(Bh,j) = L aij 
ieBh 

(56) 

i = 

Pi = 
3 

0.060 
4 

0.074 
5 

0.074 
6 

0.116 
7 

0.119 
8 

0.147 
9 

0.196 
10 

0.214 

For each persistent group Bh we can define its domain of attraction, 

(53) 

There are only 3 transcient cells, # 1, # 2, and # 1 1 . Their absorption 
probabilities and expected absorption times are as follows: 

(54) 

an 
1 = 0 

3 
4 
5 
6 
7 
8 
9 

10 

J - l 
0.534 
0.187 
0.135 
0.135 
0.009 

0 
0 
0 
0 

2 
0 

0.279 
0.349 
0.349 
0.023 

0 
0 
0 
0 

11 
0.534 
0.187 
0.135 
0.135 
0.009 

0 
0 
0 
0 

11 
1.774 1.774 (55) 

Again let us compare the results of this crude cell mapping ap­
proximation with those of the point mapping analysis. According to 
[3], with s = 3.58 the system (8) seems to have a "chaotic" behavior. 
Corresponding to that, we have here a very large acyclic persistent 
group. Interestingly, this generalized cell mapping technique gives 
readily the limiting probability distribution of the group which in­
dicates, on a long term basis, the probability by which the system 
occupies a particular cell in that acyclic persistent group. This kind 
of information seems to be difficult to obtain otherwise. 

9 Global P r o p e r t i e s of Genera l i zed Cel l M a p p i n g s 
In this section, we discuss the manner by which the global proper­

ty, , as the set of all cell j such that a (Bh, j) > 0. If there are k persistent 
groups then there will be k domains of attraction, D/,, h = 1, 2 , . . . , 
k. However, we must note here that since a transcient cell may even­
tually be absorbed into several persistent groups, it may belong to 
several domains of attraction. In other words, the domains of at­
traction may not be disjointed. For this reason the concept of domains 
of attraction may not be as useful for cell mappings as in the classical 
study of nonlinear oscillations. It is our current thinking that for cell 
mappings it is more sensible simply to use the group absorption 
probability distribution a(Bh,j), h — l,2,...,k and ; all transcient 
cells, to describe the global behavior of the system. For a given starting 
cell, j , a(Bh,j), h = 1, 2 , . . . , k, give the absorption probability dis­
tribution of the system among the persistent groups. We have, of 

course, 

£ a(B h , ; ) = l 
h=l 

(57) 

This paper being introductory in nature for the generalized cell 
mappings, we are not in a position to offer here a set of rigorous and 
general mathematical results relating the behavior of a point mapping 
to the behavior of the derived cell mapping. Nevertheless, we could 
make some plausible general inferences. One might expect the fol­
lowing when the cells are sufficiently small: 

1 An asymptotically stable P — 1 point of the point mapping will, 
in general, be replaced by an absorbing cell containing that point or 
replaced by an acyclic group of persistent cells in the neighborhood 
of that P — 1 point. 

Journal of Applied Mechanics SEPTEMBER 1981, VOL. 48 / 641 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 An asy m ptotically stable P-K solution of the point mapping 
will, in general, be replaced by a periodic group of persistent cells of 
period K for the cell mapping. These periodic cells either contain or 
are in the neighborhoods of the P — K points of that P — K solu­
tion. 

3 Let L, k, and K be positive integers such that L = kK. Let G 
denote the point mapping. Let the cell mapping be created by using 
G*. Then, an asymptotically stable P — L solution for the point 
mapping G will, in general, be replaced by k periodic groups of per­
sistent cells of period K. If the period K has the value of 1, then the 
groups are either absorbing cells or acyclic groups. 

4 In general, an unstable P — K solution for the point mapping 
will not have its counterpart in the cell mapping. Because of the dif­
fusive nature of the evolution of the probability distribution near the 
P — K points of that solution, all the cells containing these P — K 
points can be expected to become transcient cells. 

5 For a point mapping system which seems to have a "chaotic" 
motion covering a part of the state space, the corresponding gener­
alized cell mapping is likely to have a large persistent group covering 
the same part of the space. Depending upon the nature of the chaotic 
motion, the persistent group could be acyclic or periodic. 

6 For a point mapping the domains of attraction for its asymp­
totically stable periodic solutions are disjointed. However, they can 
intertwine around each other in a very fine and complicated way. 
Consider a cell j . If several domains of attraction of the point mapping 
traverse this cell ;', then for the derived cell mapping the system, 
starting from cell;', is likely to be absorbed into the corresponding 
periodic groups. The absorption probability distribution among these 
groups is likely to reflect the extents by which the cell; is covered by 
these various traversing domains of attraction. Here lies the attrac­
tiveness of the cell mapping approach. By using a(Bh, j) to describe 
the global behavior, one obliviates the need to search for ever finer 
structure of the global behavior of the point mapping in a seemingly 
never ending process. 

7 When using a derived cell mapping to ascertain the properties 

of a point mapping, the accuracy can be expected to increase with 
smaller cell sizes and with the use of higher-order interpolation for­
mulas in computing the transition probability matrix. 

10 C o n c l u d i n g R e m a r k s 
In the paper we have presented the basic ideas of a generalized 

theory of cell mappings. In the development the theory of Markov 
chains is used as the basic tool of analysis. Our main aim is to use this 
generalized theory of cell mapping to study the global behavior of 
nonlinear systems governed by point mappings or by ordinary dif­
ferential equations. For that purpose we envision to employ a huge 
number of cells and the methods used to analyze the problems in 
Section 8 will no longer be viable. More effective algorithms akin to 
that presented in [2] will be needed. That topic is, however, outside 
the scope of this introductory paper. 
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Buckling of Polar Or thot ropic Annular Plates 
Under Uniform Inplane Compressive 
Forces / 

I G. K. Ramaiah1 

_i iThejproblem of buckling of polar orthotropic annular plates under 
various types of inplane compressive forces along the radial edges 
has been analyzed in detail by the Rayleigh-Ritz method for eight 
different combinations of clamped, simply supported, and free 
boundary conditions. Accurate estimates of critical buckling loads 
have been obtained for various values of hole ratios and for various 
values of rigidity ratios. The numerical results are presented in the 
form of data sheets for direct use by the design engineers\ 

Nomenclature 

a,b = radii of inner and outer edges, respec­
tively 

C, S, F = clamped, simply supported, and 
free edge conditions, respectively 

D = Eh3/12(l - v2) 
Dr = Erh

3/I2(l - vrve) 

D, = Egh3/12(l - vrve) 

DrB = Gh3/12 

D\ = VgDr = VrDg 

Er, Eg = Young's moduli in radial and tan­
gential directions, respectively 

G = shear modulus 
h = thickness of plate 
k = (E,/ErV'2 = (D»/A-)1/2 

n = number of nodal diameters 
Pi, Po = uniform inplane radial forces along 

the inner and outer edges, respectively 
r, d = polar coordinates of a point in midplane 

of the plate 

T = potential energy due to inplane forces 
during bending 

Ui, Vi = admissible functions 

V = strain energy due to bending 

W(r, 6) = lateral displacement 

vr, vg = Poisson's ratio in radial and tangen­
tial directions, respectively 

o>, og, arg = prebuckling membrane 
stresses 

Introduction 
In reference [1], Mansfield considered the buckling of an isotropic 

Po =® y a=Pi Pi=m 
1 

_J^r Po 

1 Institut fur Mechanik, Technische Hochschule Darmstadt, D-6100 
Darmstadt, West Germany. 
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Fig. 1 Annular plate under uniform compressive forces 

infinite plate supported along two concentric circles and subjected 
to an uniform radial compression or radial tension along the inner 
circle. He ingeneously interpreted these solutions for a finite isotropic 
annular plate—in which radial and hoop stresses vary inversely as the 
square of the distance from the center—with a member of requisite 
tensile stiffness supporting the outer circle. The class of problems 
considered by Mansfield [1] is unusual in the sense that exact solutions 
are available in terms of elementary functions despite the fact that 
the stresses are varying throughout the plate. It is difficult to obtain 
such exact solutions in a general case of loading conditions along the 
radial edges and the problem becomes even more complicated if the 
analysis is to be carried out for polar orthotropic annular plates. Such 
an analysis is of much practical utility and it assumes added signifi­
cance due to recent developments in composites [2]. 

In the present paper, the problem of buckling of polar orthotropic 
annular plates under various types of inplane compressive forces along 
the inner and/or outer edges has been analyzed in detail by the Ray­
leigh-Ritz method with simple polynomials as admissible functions. 
Accurate estimates of critical buckling loads have been obtained for 
various values of hole ratios, for various values of rigidity ratios and 
for different combinations of clamped, simply supported and free 
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boundary conditions. Some numerical investigations have also been 
carried out to study the influence of Poisson's ratio (=vo) on the 
critical buckling loads of the plate under internal compression. The 
entire numerical results are presented neatly in the form of data sheets 
for direct use by the 'design engineers. 

M a t h e m a t i c a l A n a l y s i s 
A thin annular plate of uniform thickness h subjected to uniform 

inplane compressive forces p , and po along the inner and outer edges 
of radii a and 6, respectively, is considered (see Fig. 1). The material 
of the plate is assumed to be homogeneous and polar orthotropic. The 
prebuckling membrane stresses in such a plate are given by [3] 

<rr = Ar*"1 + Br-h~x 

a0 = k(Ark-1-Br-k-1)\ 
(1) 

and 

o><? = 0 

in which k = (Do/Dr)
1/2 and A and B are constants to be determined 

from the stress conditions along the inner and outer edges. These 
constants are 

B 

p 0 6 * + i - P i a f t + i 

b2k _ a2k 

(Poa*-1 - Pifc*-1) (a6) fe+1 
(2) 

b2k-a2k 

It is assumed that the plate buckles in n circumferential waves and 
the lateral deflection W(r, 6) is expressed as 

W(r, 6) = Wn(r) cos (nd + e) (3) 

Within the limitations of small deflection thin plate theory, the ex­
pressions for the strain energy V of bending and the potential T due 
to midplane forces during bending are given by 

V = - (1 + 50„ 
2 >x "D,[^.l'+2a^!|^.-!L'w. 

dr2 

r2 \ dr r ) r r2\ dr 

•K \ r*b f 
r = - ( i + 50n)/i U 

2 I J a I 

dr2 \ dr 

_WAi 

r 
r dr 

-dV )+°'[7w-
r dr 

(4) 

(5) 

in which 5oo = 1 and 5on = 0 for re ^ 0 and other symbols are as defined 
earlier in the list of symbols. 

In order to apply the Rayleigh-Ritz method, the mode shape Wn{r) 
in radial direction is expressed as 

Wn(r) = L AiVi(r) 
>=i 

(6) 

in which vi(r) are chosen admissible functions satisfying the relevant 
geometric boundary conditions such that they are linearly indepen­
dent and form a complete set. Ai(i = 1,2,3,...) are linear parameters 
to be determined from the stationary condition 8(V + T) = 0 for ar­
bitrary variations of these parameters. This process leads to a set of 
homogeneous, linear, algebraic equations in the A,'s. For nontrivial 
solutions of this set of equations, one derives the necessary charac­
teristic equations for the determination of eigenloads. 

For large values of a/b and in particular when both the edges are 
clamped, the direct application of the Rayleigh-Ritz method with 
large number of simple polynomials as admissible functions has been 
found [4, 5] to lead to an ill-conditioned set of equations and round-off 
errors predominate in the numerical work. To overcome this difficulty 
in the computational work, the energy integrals V and T have been 
expressed in more convenient forms by using in succession the 
transformations proposed and effectively utilized earlier in references 
[4,5]. Upon obtaining the modified expressions for V and T, the mode 

Table 1 Admissible functions, W„(r) = v0(r) (A-, + A2r + A3r
2 + . . . ) ; w(y) 

= u0(y)(B, + B2y + B3y
2 + ...) 

Boundary 

Outer 

Free 

Simply supported 

Free 

Clamped 

Simply supported 

Simply supported 

Clanped 

Clanped 

condition 

Inner 

simply supported 

Free 

Clamped 

Free 

Simply supported 

Clamped 

Sinply supported 

Clamped 

Designation 

FS 

SF. 

FC 

CF 

ss 

sc 

cs 

cc 

v0 (r) 

(r-a) 

(b-r) 

(r-a)2 

(b-r)2 

(b-r) (r-a) 

(b-r) (r-a)2 

(b-r)2(r-a) 

(b-r)2(r-a)J 

Uo (y) 

y 

d-y) 

y2 

O - y ) 2 

y(1-y) 

y 2d-y) 

y d - y ) 2 

y2(1-y)2 

Note: w is related to the mode w through the transformations given earlier. 

shape w(y) is assumed as w(y) = 2" = 1 S;u,-(y) in which u,(y) are 
chosen admissible functions. The Rayleigh-Ritz method as described 
earlier is applied to obtain the characteristic equations for the accurate 
determination of eigenloads. It may be mentioned here that the 
analysis modified by using the transformation n > 2 also yields ac­
curate estimates for n = 0 and n = 1 for large values of hole ratios. 

n Fi rs t t r ans format ion Second t rans format ion 

0 
1 

> 2 

W(r) = w(r) 
Wi(r) = rw(r) 
Wn{r) = r*wir) 

y = ( r 2 - a 2 ) / ( f c s 

y = (r • 
y ~{r 

• a)/(b 
a)/(b 

•a) 

a) 

N u m e r i c a l R e s u l t s a n d C o n c l u s i o n s 
Admissible functions u;(r) in the direct analysis and ui(y) in the 

modified analysis were chosen to be simple least-order polynomials 
in r and y, respectively (see Table 1). Direct analysis was used for a/b 
< 0.5 and modified analysis for a/b > 0.5 by taking five terms in the 
Rayleigh-Ritz method. The Poisson's ratio vg and the parameter 
Dro/Dr were fixed at 0.3 and 0.35, respectively. The parameter a/b was 
varied from 0.1 to 0.9 in steps of 0.1 for values ofDg/Dr equal to 0.5, 
0.8, 1.0, 1.25, 2.0, and 5.0. All computations were carried out with 
double precision arithmetic (about 16 significant digits) on an IBM 
370/168 digital computer available at THD. 

It is to be noted that T is a function of two parameters po and p,-. 
By assuming a particular value for po or p ; or Po/pi, T becomes a 
function of a single parameter. In the present investigations, the fol­
lowing cases of loading have been considered: 

(£) P . = 0 . 
(ii) po = Pi = p. 
(Hi) pob2 = pia2. 
(iv) po = 0. 

The estimates of critical buckling load parameter (defined appro­
priately in the table heading) together with the corresponding number 
of circumferential waves (= n) in the critical buckling mode are pre­
sented in Tables 2-5. The numerical results are presented in such a 
way that they are complete and are self-explanatory. 

In view of the earlier experience [4, 5] with regard to convergence 
and accuracy of solutions by the present method of analysis, the nu­
merical results reported here are believed to be quite accurate. The 
accuracy of critical buckling loads [4, 5] in the isotropic case has re­
cently been established by several investigators [6-9] using different 
techniques. The present estimates of critical buckling loads for iso­
tropic plates are found to agree very well with the corresponding exact 
values reported by Yamaki [10] in the p 0 = pi = p case and by 
Mansfield [1] in the pob 2 = pia 2 case. To further assess the accuracy 
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Table 4 Continued 

( 5 ) SC c a s e : ( 6 ) CS c a s e : 

0.1 
0.2 
0.3 
0.4 
0.. J 

0.6 
0.7 
0 . 6 
0 , 7 

0.1 
0 .2 
0.3 
0.4 
O . j 
0.6 
0.7 
0 .8 
0 .7 

3.899 
S. 496 
1 j . 4 j 
26 . 65 

1 0 . U 7 

S3.38 
168.4 
422.0 
1 656 

( 7 ) 

1 .330 
3.066 
3 . 7 1 J 
10.76 
17.48 
36 .72 
76 .45 
1 7 7 . 1 
887.? 

4.6 j 3 
9.302 
16.27 
27.46 

t o . 07 
84.36 
16?. 2 
422.8 
1 856 

3 . 1 8 J 
9.652 
16.82 
26 .00 

4 / . 41. 
64.89 
169.7 
4 23.3 
1 837 

SS c a s e : 

1 .731 
3.476 
6.343 
11.21 
1 9. 94 
37.16 
76.92 
197.3 
888.4 

2.0 01 
3,757 
6.637 
11.51 
20.24 
37.30 
77.23 
197.8 
888.7 

0.S84 
10.33 
17.52 
26.6? 

46.0? 
85.34 
170.3 
423.9 
1838 

2.333 
4.118 
7.006 
11.88 
20.63 
37.86 
77.62 
198.2 
689.1 

8.191 
12.73 
1 ?. 66 
30.77 

50.12 
87.51 
172.2 
425.8 
i 65? 

3.496 
3.234 
8.1"48 
13.0 4 
21 .7 ? 
3 ?. 0 3 
78.80 
199.4 
8?0.3 

Notes: 
1 Value in ( ) denotes the number of circumferential 

sponds to critical buckling mode. 

20.1? 
22.75 
25.85 
39.43 

58.3? 
93. 47 
179.9 
433.3 
1 867 

8.8? 4 
10.40 
13.13 
17,91 
26.60 
4 3. S 2 
83.54 
204.1 
893.0 

waves (= n) 

1 .?3S 
4.342 
9.890 
13.77 

33.18 
6 8.3 2 
146.3 
386.0 
177? 

2.332 
3.313 
10.4 i-
19.33 

3 5.77 
63.93 
i41 .8 
386.7 
1780 

( 8 ) CC c a s e 
3.434 
12.74 
24.44 
44.04 
7?. 07 
148.1 
3 07.1 
78?. 6 
3 3 5 3 

6.338 
13.83 
23.63 
43.2? 
80.37 
1-19. 4 
308.4 
791.0 
3334 

2.640 
3.632 
10.76 
19.71 
36.17 
69.37 
147.2 
3S7.2 
1780 

: 
7.001 
14.37 
26.43 
46.13 
81.23 
150.3 
309.3 
791.9 
3333 

in the critical buckling mode; when 

3.012 
6.033 
11 .20 
20.18 

36.67 
6V. 89 
147.3 
337.7 
1731 

7.832 
13.51 
27.44 
47.19 
82.32 
131.4 
310.5 
793.0 
3337 

no value is 

4.19? 
7.293 
12.33 
2! .60 

33.1 7 
71.47 
149.4 
389.4 
1733 

10.31 
16.42 
30.32 
30.33 
85.60 
134.6 
313.8 
796.4 
3360 

given, n = 

9.61? 
12.74 
18.13 
2 7.43 

4 4.2 S 
77 .81 
136.0 
3 9 6 . 2 
175? 

23.61 
31 .25 
43.56 
63 .60 
98.96 

168.2 
327.4 
S10.O 
3374 

= 0 corre-

2 * n = 1 corresponds to the critical buckling mode. 
3 The corresponding data in the isotropic case have been reported by Mansfield [1] in all cases except in the two cases of SC and CS. 
4 Axisymmetric (n = 0) eigenloads in SF and FS cases are identical and in the isotropic case (pia^h/D) = (1 - v2) for all hole sizes 

[1]. For a/b —• 1, the axisymmetric buckling load for the orthotropic plates in these two cases can be approximately calculated from 
(Pia*hlDr) <x (DsIDr) - v<?. 

for orthotropic plates, the present estimates of critical buckling loads 
are compared with the corresponding estimates reported by Elishakoff 
and Charmats [6] and are found to agree very well. 

It can be seen from the data in Tables 2-5 that for all values of 
compressive force po/pi, hole ratios a/b and rigidity ratios Dg/Dr the 
axisymmetric mode always corresponds to the critical buckling mode 
in the SF case. This behavior is also exhibited by the data in the CF 
case for a/6 less than about 0.5. In the remaining cases, the plate 
buckles first either axisymmetrically or asymmetrically depending 
upon the value of po/pi, a/b, Dg/Dr and the boundary conditions. The 
number of circumferential waves (=n) in the critical buckling mode 
increases with increasing values of Pol Pi, alb as well as increasing 
order of geometric constraints at the edges. With regard to the in­
fluence of Dg/Dr, it is to be noted first that there is a limitation on the 
variation of Dg/Dr. For structural materials satisfying volume crite­
rion, analysis for pg > D#/Dr has no physical validity or physical sig­
nificance [4,11]. In the physical valid range of De/Dr it is found that 
an increase in the value of Dg/Dr generally leads to a decrease in the 
number of circumferential waves (=n) in the critical buckling mode 
in all cases except in the two cases of FS and FC (and that too up to 
certain values of alb). 

In Table 6, some additional data on tensile critical buckling load 
in the pofe2 = pia2 (radial tension) case of loading are presented in the 
four cases of SC, CS, SS, and CC. The corresponding estimates for 
isotropic plates were earlier obtained by Mansfield [1] in the two cases 
of SS and CC. It is found from these data and the data in the other 
four cases (not reported here) that the axisymmetric mode never 
corresponds to the critical buckling mode for plates under radial 
tension. On the other hand, the axisymmetric mode always corre­
sponds to the critical buckling mode for plates under internal com­
pression (po = 0) because the hoop stress is tensile all along the radial 
line. In a general case of compressive loading condition, it can be 
shown that the hoop stress 

\ b2k-a2k b2h-a2h 

is tensile everywhere if 

Ja \*+i / b2k \ 

Hence, for load ratios satisfying this condition one would expect the 
plate to buckle first axisymmetrically for all boundary conditions. The 
present extensive numerical investigations confirm, in general, the 
validity of the foregoing restriction for all boundary conditions except 
in the two cases of FS and FC. In these two cases for pob2 = pia2 

loading, the mode with one nodal diameter corresponds to the critical 
buckling mode for small hole sizes even in the isotropic case (k = 1, 
see Table 4). This behavior is not exhibited in the results reported by 
Mansfield [1]. It may, however, be mentioned here that there exists 
a corresponding behavior in the free flexural vibrations problem 
(unloaded plate) in the sense that the mode with one nodal diameter 
corresponds to the fundamental mode of vibration for hole ratios less 
than about 0.3 in these two cases of FS and FC. 

In order to understand the plate behavior properly, it is useful to 
have the information on the influence of pg on the critical buckling 
load. For this purpose, estimates of pta 2h/Dr for plates under internal 
compression have been obtained for vg = 0.2,0.3, and 0.4 and Dg/Dr 

= 0.5,1.0, and 2.0 (see Table 7). It is interesting to observe from this 
data that a decrease in pg increases the value of the critical buckling 
load for isotropic as well as orthotropic plates in all cases except in 
the two cases of inner edge clamped and the outer edge either simply 
supported or free. In the CC case, pg has no influence on the value of 
Pia2h/Dr but as Dr contains pg, the buckling load depends on pg. 

In the context of the present work, it is pertinent to mention the 
recent handbook of structural stability [13] brought out by the Col­
umn Research Committee of Japan. This work contains an excellent 

650 / VOL. 48, SEPTEMBER 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 5 Estimates of critical buckling load parameter ( = pta
2h/Dr) of polar orthotopic annular plates under uniform Inplane com­

pressive forces along the Inner edge (p0 = 0), vo = 0.3, DrSID, = 0.35 

a/b 
Value of DQ/D 

0,8 1.0 

Value of Dfi/D 

(1) SF case: (2) FS case: 

0 
0 
0 
0 
0 
0, 
0, 
0, 
0, 

0 
0 
0, 
0, 
0 
0, 
0, 
0 
0 

0 
0. 
0, 
0, 
0, 
0, 
0, 
0. 
0. 

0. 
0. 
0. 
0. 
0, 
0. 
0. 
0, 
0. 

.1 

.2 

.3 

.4 

.5 

.6 
_7 

.8 

.9 

. 1 
, 2 
.3 
.4 
.5 
,6 
,7 
.8 
.9 

. 1 
,2 

,3 
.4 
.5 
.6 
,7 
,8 
.9 

. 1 
, 2 
.3 
,4 
,3 
16 

, 7 
,8 
t? 

0.397 
0.465 
0.522 
0.574 
0.621 
0.665 
0.706 
0.746 
0.784 

0.758 
0.84? 
0.932 
1 .01 ! 
1.085 
1.157 
1.226 
1.293 
1.35? 

1.02B 
1.124 
1.218 
1.309 
1.39? 
1.488 
1.574 
1 .658 
1.740 

( 3 ) CF c a s e : 

0.606 
1 .055 
1.812 
3.157 
5.694 
10.94 
23.55 
63.23 
298.1 

0.961 
1.423 
2.1 96 
3.557 
6.110 
11.37 
23.9? 
63.69 
298.6 

( 5 ) SC c a s e 

4.548 
11.20 
22.76 
43.39 
82.31 
162.6 
354.9 
958.4 
4518 

5.449 
12.31 
24.04 
44.82 
83.86 
164.3 
356.6 
960.3 
4520 

( 7 ) SS c a s e 

1.446 
3,522 
7.277 
14.16 
27.37 
54.95 
121.6 
OO^.J 

1 583 

1 .852 
3.984 
7.792 
14.73 
27.98 
55.61 
122.3 
333.0 
1584 

1.21? 
1 .683 
2.461 
3.82? 
6.390 
11.66 
24.29 
63.99 
298.9 

6.086 
13.06 
24.90 
45.77 
84.90 
1 60.4 
357.8 
961.6. 
4522 

: 
2.137 
4.301 
8.140 
15.10 
26.39 
56.05 
122.8 
JO J . J 

1585 

1.393 
1.486 
1.587 
1 ..691 
1.797 
1.904 
2.010 
2.115 
2.218 

1.565 
2.022 
2.801 
4.175 
6.744 
12.02 
24.66 
64.37 
299.3 

6.?22 
14.03 
25.99 
46.97 
86.20 
166.8 
359.3 
963.1 
4523 

2.508 
4.706 
6.580 
15.58 
28.90 
56.60 
123.3 
334.1 
1585 

2.622 
2.678 
2.771 
2.868 
3.Q24 
3.172 
3.328 
3.490 
3.654 

2.732 
3.127 
3.882 
5.251 
7.829 
13.13 
25.76 
65.53 
300.5 

9.684 
17.06 
29.34 
50.63 
90.14 
171.0 
363.7 
967.8 
4528 

3,706 
5.971 
9.932 
17.03 
30.46 
58.26 
125.1 
336.0 
1587 

6.347 
8.307 
8.270 
8.270 
8.342 
8.498 
8.735 
9.044 
9.411 

6.332 
8.441 
6.898 
1 0.05 
12.4? 
17.72 
30.38 
70.17 
305.2 

24.09 
30.73 
43.80 
65. 96 
106.3 
183.1 
381 .6 
986.8 
4548 

" .22'a 
11.58 
15.72 
23.07 
36.81 
64.96 
132.2 

1 595 

A X I S } f r ame t r 

i d e n t i c a l 

i c e i c 

i n SF 

( 4 ) FC c a s e : 

1 .301 
2.548 
4.527 
7.896 
14.06 
26. 53 
55.96 
147.4 
682.9 

1.910 
3.233 
5.282 
8.717 
14.95 
27.46 
56.?7 
148.5 
684.0 

2.385 
3.732 
5.813 
?.262 
15.55 
28.12 
57.66 
14?. 2 
684.8 

( 6 ) CS c a s e : 

2.024 
5.281 
11.26 
22.2? 
43.52 
87.93 
1 95. 4 
535. 4 
2556 

2.449 
5.776 
11.82 
22.90 
44.18 
86.64 
196.1 
536.2 
2557 

2.745 
6.111 
12.1? 
23.31 
44.63 
89.12 
196.6 
336.7 
2537 

( 8 ) CC c a s e : 

5,980 
15.1? 
31.2? 
60.26 
115.1 
228.8 
50 0.9 
1357 
6413 

6.985 
16.45 
32.77 
61.90 
116.5 
230.7 
503.? 
133? 
6413 

7.680 
17.31 
33.76 
A3.O0 
118.1 
231.9 
504.3 
133? 
6416 

j e n l o a d s a r e 

a n d FS c a s e s . 

3.057 
4.403 
6.508 
10.01 
16.31 
28.92 
58.50 
1 50.1 
685.7 

3.125 
4.536 
12.66 
23.83 
45.18 
89.71 
1 97. 2 
537.4 
2558 

8.578 
13.40 
35.00 
64.38 
11 ? .6 
233.6 
306.1 
13 6 2 
6418 

5.368 
6.724 
6.7?5 
12.32 
18.69 
31.3? 
61.07 
152.8 
668.5 

4.333 
7.642 
14.08 
25.37 
46.65 
91.50 
199.1 
53?. 4 
2360 

11.44 
21 .73 
38.77 
66.33 
124.1 
238.3 
511.2 
1367 
6424 

21.18 
19.64 
20.63 
23.43 
29.3? 
41.76 
71.74 
163.7 
6??.? 

9.799 
13.44 
19.97 
31.65 
53.3o 
?8.63 
206.7 
347.4 
2566 

23.18 
36.01 
54.3? 
53.43 
142.3 
237.? 
331.8 
133? 
6447 

Notes: 
1 n = 0 always corresponds to the critical buckling mode. 
2 Strzelczyk and Wojciech [7] have also reported quite extensive data. 

compilation of pertinent literature together with numerical results 
for various types of isotropic and orthotropic plates. 
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Table 7 Influence of ve on the critical buckling load parameter (= pia2h/Dr) of polar orthotropic annular plates under uniform Inplane 
compressive forces along the inner edge (p0 = 0); D,)ID, = 0.35 

Case 

SF 
FS 

CF 

FC 

SC 

CS 

SS 

a / b 

0.1 
0.3 
0.5 

0.1 
0.3 
0.3 

0.1 
0.3 

.0.5 

0.1 
0.3 
0.5 

0.1 
0.3 
0.5 

0.1 
0.3 
0.5 

V-O.2 

0.45O 
0.593 
0.703 

0.707 
2.021 
6.062 

1.243 
4.332 
13.60 

4.311 
22.60 
31.92 

2.193 
11.63 
44.21 

1.580 
7.519 
2?. 76 

V D r 

0 . 3 

0.397 
0.522 
0.621 

0.608 
1.312 
5.694 

"1.301 
4.527 
14.06 

4.548 
22.76 
32.31 

2.024 
11.26 
43,52 

1.446 
7.277 
27.37 

=. 0 . 5 

0 . 4 

0.328 
0.425 
0.507 

0.49? 
1.593 
5.298 

1.332 
4.703 
14.50 

4.584 
22.91 
82.70 

1,844 
IO.08 
42.32 

1.302 
7.020 
26.9.6 

0 . 2 

1 . i 07 
1.312 
1,501 

i .338 
2.633 
6.736 

2.324 
5.615 
i 5.09 

6.044 
24.74 
84.45 

2.938 
12.56 
45.33 

2.293 
8.397 
23.79 

V D r 

• 0 .3 

1 y02S 
1,218 
1 ,39? 

1.219 
2.461 
6.390 

2.385 
5.313 
1 5.55 

6.036 
24.90 
84.90 

2.745 
12. i? 
4 4.63 

2.(37 
•p . ' 40 

23.3? 

= 1 . 0 

0 . 4 

0.?34 
1.102 
1.272 

1.09O 
2.22? 
5.93a 

2.43? 
5.997 
15.7? 

6.126 
25.06 
85.2? 

2.542 
11.30 
43.43 

1.970 
7.S63; 
27.97 

0 . 2 

2.763 
2.903 
3.134 

2.39? 
4.130 
8.240 

5.516 
3.397 
18.23 

9.637 
29.17 
89.73 

4.371 
14.50 
47.57 

3.908 
'iO.22 
30.33 

V D r 

0 . 3 

2.622 
2.771 
3.024 

2.732 
3.882 
7.829 

5.568 
8.7?3 
13.6? 

9.634 
29.34 
90.14 

4.333 
14.08 
46.85 

3.706 
?.?32 
30.46 

= 2 . 0 

0 . 4 

2.465 
2.673 
2.867 

2.355 
3.624 
7.408 

5.615 
8./7S 
19.13 

9.725 
29.51 
90.54 

4.086 
13.66 
46.12 

3.492 
9.631 
30.02 

Notes: 
1 n = 0; axisymmetric eigenloads are identical in SF and FS eases. 
2 ve has no effect on the value of (p;a%/D r) in the CC case. 

10 Yamaki, N., "Buckling of a Thin Annular Plate Under Uniform Com­
pression," ASME J O U R N A L O F A P P L I E D M E C H A N I C S , Vol. 25, 1958, pp. 

267-273. 
11 Vijayakumar, K., and Joga Rao, C. V., "Buckling of Polar Orthotropic 

Annular Plates," Journal of the Engineering Mechanics Division, Proceedings 
of the ASCE, Vol. 97, No. EM3,1971, pp. 701-710. 

12 Uthgenannt, E. B., and Brand, R. S., "Buckling of Polar Orthotropic 

Annular Plates," AIAA Journal, Vol. 8, No. 11,1970, pp. 2102-2104. 

13 Japan, G. R. C , Handbook of Structural Stability, Column Research 

Committee of Japan, 1971, Corona Publishing Company, Limited, Tokyo. 
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On the E r r o r Tha t Can Be 
Induced by an Ergodicity 
Assumption 

A. J. Scheurkogel,11. Elishakoff,2 and 
J. J. Kalker3 

I n t r o d u c t i o n 
Buckling of stochastically imperfect structures is governed by 

random nonlinear differential equations. The exact solution of these 
equations does not appear to be feasible and approximate methods 
are resorted to. In a number of papers, the assumption of ergodicity 
was used to obtain probabilistic characteristics of the solution. For 
the ergodic theorem one may consult, e.g., Lin [1] or Billingsley [2]; 
Amazigo [3] reviewed inter alia the probabilistic buckling problems, 
the solution of which is based on the ergodicity assumption. The 
question arises whether this assumption is correct. 

To our knowledge the only work which considers the validity of the 
ergodicity assumption in a context of structural mechanics is that of 
Bolotin [4, pp. 101-105]. He gave an example where the first three 
terms of the perturbation solution agreed with the solution resulting 
from the ergodicity assumption. 

Here we present an example akin to Bolotin's in which the exact 
solution is given and compared with results obtained by the ergodic 
approximation. It is found that 

1 The ergodicity assumption is correct at only one value of the 
governing parameter. 

2 The ergodicity assumption leads to a good approximation in a 
large part of the domain of definition of the governing parameter. 

3 In the remaining part the error may be very large. 

A structural mechanics example is now underway and will be pub­
lished elsewhere. 

1 Research Associate, Department of Mathematics, Delft University of 
Technology, Delft, The Netherlands. 

2 Associate Professor, Technion-I.I.T., Department of Aeronautical Engi­
neering, Haifa, Israel. 

3 Professor, Department of Mathematics, Delft University of Technology, 
Delft, The Netherlands. 

Manuscript received by ASME Applied Mechanics Division, July, 1980; final 
revision, December, 1980. 

Formulation 
Consider the random differential equation: 

— + — = (4-pa 2 -pfe 2 ) 1 / 2 ; £ > 0 , 0 < p < 4 
dt2 £2 

with initial conditions 

x(0) = ̂ a + ^2(4 - pa2 - pb2)1'2 

JC'(0) = b 

(1) 

(2) 

(3) 

£ 2 = lim - CTx2(t)dt, £ > 0 
T ^ » T Jo 

(4) 

and p is a governing parameter. 
The random variables o and b are jointly uniformly distributed on 

the unit circle o2 + b2 < 1. 
We are interested in -E[x(t)] and E[x2(t)] where E[...] denotes 

mathematical expectation. 

A p p r o x i m a t e So lu t ion B a s e d on the Ergod ic i ty 
A s s u m p t i o n 

If the solution x(t) is assumed to be mean-square ergodic, the 
mean-square value follows directly from (2) and (4): 

£2 = E[x2(t)\ = E[x2(0)] = E[£a + £2(4 - pa2 - pb2)1'2]2 

= U 2 + ( 4 - | p ) £ 4 (5) 

hence 

3 
¥ = E[xHt)] (6) 

2 ( 8 - p ) 

Taking the expectation of equations (l)-(3) with this value of £, we 
find after solving (or E[x{t)]: 

3 
E[x(t)] - E[4 - pa2 - pb2] 211/2 

2 ( 8 - p ) 

Introducing the random variable 

z =a2 + b2, 

uniformly distributed on the interval (0,1), we finally obtain 

3 

(7) 

(8) 

E[x(t)] 
2 ( 8 - p ) 

3 

2 ( 8 - p ) 

E[i-pz] 1/2 

3 r1 

( ( 4 - p z ) 1 / 2 d z 
- p) J o 

8 - (4 - p F 2 

p ( 8 - p ) 
0) 
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Exact Solution 
For each realization of the solution x(t), ij is independent of t. 

Consequently, the solution of equations (l)-(3) is 

x(t) = at, cos - + 6£ sin - + £2(4 - pa2 - pb2)1'2, (10) 

where the value of £ is obtained from substitution of (10) into (4) 

¥ 
1 - (a2 + fe2)/2 

4 - p ( a 2 + b2) 
(11) 

We immediately observe from equation (11) that £ depends in general 
on the particular realization of the random variables o and 6, which 
implies that x(t) is not mean-square ergodic for arbitrary p . However, 
x(t) is wide-sense stationary (i.e., £[x(t)} is constant and the auto­
correlation function E[x{t)x(t + r)] depends on the time lag T only 
but not on t itself [1]). To show this, we first note that a and b are 
interchangeable in the expression (11) for £ and, moreover, that £ is 
an even function of both o and b. Next, we substitute equation (11) 
into equation (10) and take the expectation. The first and second 
terms do not contribute as they are odd functions of o and b, respec­
tively. The mathematical expectation is, therefore, 

E[x(t)]=E 
l - ( a 2 + 62)/2 i l - z / 2 

( 4 - p a 2 - p 6 2 ) 1 / 2 '\ Jo (4- pz) 1/2 
dz 

•• — [12p - 16 - (5p - 8)(4 
3p2 -P)1 / 21, (12) 

independent of t, which establishes the first property of wide-sense 
stationarity. In order to establish the second property, we form the 
product: 

T 2t + T 
x(t)x(t + T) = \ (a2 + 62)£2 cos - + i(a2 - 62)£2 cos — — 

£ £ 
+ afc£2 sin + a£3(4 - pa2 - pb2)1/2 cos - + cos —-

£ \ £ £ 
+ b£3(4 - pa2 - pb2)1'2 (sin - + sin ^—-J 

+ £ 4 ( 4 - p a 2 - p & 2 ) (13) 

with £ as per equation (11). Taking the expectation, we find by 
employing symmetry arguments that only the first and last terms 
contribute to the autocorrelation function. Taking into account 
equation (8), we are left with 

E[x(t)x(t + T)\ 

= E 
I 4 — pz 

4 — pz 

1/2 

T + -

1 - -

4 — pz 

;J 

(14) 

which is a function of T only. 
The second moment of x(t) is calculated from (14) as 

f l - z/21 
E[x2(t)] = E 

_ J_ 
_ 2 p 

1 -

pzj 

2(p 2) 

11 - z/2 

4 — pz 

•Ji-J 

dz 

(15) 

In accordance with equation (11), the necessary condition for mean-
square ergodicity is t h a t p = 2, since otherwise J would depend on the 
particular realization of a and b. From equation (15) we have for p 
= 2, that E[x2(t)] = \. On the other hand, from equations (4) and (11) 
we have 

iim i r 
T - » T Jo 

x2(t)dt (16) 

so that £2 = E[x2(t)]. All this implies the mean-square ergodicity of 
x{t) iff p = 2. 

Interestingly for p = 0 the solution based on the ergodicity as­
sumption also coincides with the exact solution, although for this 

U. ' 

0.6 

0.5 

0.4 

E[s<t)] 

approximate ^a""*"" 

^ ^ s s ^ X e n a c t 

-r 

i 

*1 
exact / 

~ > ^ 
\approximate 

P 
i 

0 1 2 3 I* 

Fig. 1 Mathematical expectation as a function of p 

0.5 

0.4 

0.3 

0.2 

0.1 

E[x'(t)] 

-

-

i 

t»/ 

A 
exact / \ 

^ ^ « ^ \ approximate 

P 
i 

Fig. 2 Mean-square value as a function of p; at p : 

and approximate solutions coincide 
0 and p = 2, the exact 

particular value of p the process is not ergodic in the mean-square 
sense. In this case the wrong assumption leads to the correct result. 

The mathematical expectation£[^(t)] and the mean-square value 
E[x2(t)] are shown in Figs. 1 and 2, respectively. It is remarkable that 
both the exact and approximate solutions are very close in the range 
0 < p < 2, coinciding at the ends of this interval. The percentage error 
relative to the exact value induced by the ergodicity assumption, is 
of the order of —0.5 percent in this range. 

The foregoing error increases rapidly with p and reaches its maxi­
mum value a t p = 4 . For the mathematical expectation, this error is 
25 percent, whereas for the mean-square value the error approaches 
100 percent: the exact mean-square value E[x2(t)\ tends to infinity, 
while the approximate one remains finite. 

R e f e r e n c e s 
1 Lin, Y. K., Probabilistic Theory of Structural Dynamics, McGraw-Hill, 

New York, 1967. 
2 Billingsley, P., Ergodic Theory and Information, Wiley, 1965. 
3 Amazigo, J. C, "Buckling of Stochastically Imperfect Structures," 
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Note on a Paper by Liu on the 
Scattering of Water Waves by a 
Pair of Semi-Infinite Barriers 

Fig. 1 Coordinate system and breakwater configuration 

A. D. Rawlins1 

Recently, a problem, whose solution was well known in exact form, 
has been analyzed by Liu (Scattering of Water Waves by a Pair of 
Semi-Infinite Barriers, ASME JOURNAL OF APPLIED MECHANICS, 

Vol. 42, 1975, p. 777), by the method of matched asymptotic ex­
pansions. From the known exact solution a simple expression is 
obtained for the transmission coefficient. The exact expression for 
the transmission coefficient when expanded for low frequency in­
cident waves differs from Liu's result, and therefore casts doubt on 
Liu's analysis and physical conclusions. 

A problem, whose solution was well known in exact form, has re­
cently been tackled by the method of matched asymptotic expansions. 
The work, to which we are referring, is by Liu [1]. The problem is that 
of diffraction of a plane water wave by a pair of rigid semi-infinite 
barriers. This problem has been solved exactly for all values of inci­
dent wave frequencies by a number of authors, in particular its solu­
tion was available in Noble's book on the Wiener-Hopf technique [2, 
Section 3.2, Page 100]. 

Mathematically, the problem that is required to be solved is to 
determine \p(x, y, t) = <j>(x,y)e~'wt such that 

dx2 dx2 0 = 0, 

dy 
0, y = ±o> x < 0 . 

Also grad <j> should have no more than an integrable singularity near 
the two sharp edges (0, ±a) ; and the radiation condition is imposed 
which requires that the only energy which is "incoming" at infinity 
is that of the incident wave. Referring to Fig. 1, a given wave 0; (x,y) 
- e-ik(x cos a+y sin a) ; s in c ident on the barriers. Consequently dif­
fraction takes place at the edges and a wave Te ~lkx is transmitted into 
the region between the barriers. The object of Liu's work was to cal­
culate the transmission coefficient T for the low frequency situation 
ka « 1. He derived the result to 0[(ka)2] and concluded from his 
expression that the transmission coefficient at low frequency was 
independent of the angle of incident a. It is easy to show that this is 
only true for the terms of order less that 0[(ka)], and more specifically 
Liu's result for T is incorrect. 

From Noble [2, p. 105], the exact expression for the transmission 
coefficient for all incident wave frequencies is given by 

sin (ka sin a) 

\L+(k cos a)L-(k)\ ka sin a 

\L+(k cos a ) | = 

\L-(k)\ = eka'2. 

sin (ka sin a) 

Hence 

m = 
|sin(fca sin a) 

ka sin a 

ka sin a 

1/2 

1/2 
„— (fea/2) cos a 

e -<fta/2)(i-cos a); o<ka<ir (1) 

This latter expression is valid (and simple enough to calculate) for 
all 0 < ka < it. In order to compare our result with that of Liu we ex­
pand the right-hand side of (1) for small ka giving 

m • '"(!) 
1 - ka sin2 - + 0[(ka)2] (2) 

A result quite different to Liu's. It will also be seen from (2) that the 
transmission coefficient does depend on a for terms of order (ka) and 
greater. 

R e f e r e n c e s 
1 Liu, P.L.-F., "Scattering of Water Waves by a Pair of Semi-Infinite 

Barriers," ASME JOURNAL OF APPLIED MECHANICS, Vol. 42, 1975, pp. 
777-779. 

2 Noble, B., The Wiener-Hopf Technique, Pergamon, London, 1958. 

According to Noble [2, p. 127, ex 3.3], if 0 < ka < w, 

Magnetohydrodynamic 
Boundary Layer on a Wedge 

B. Nageswara Rao1 and M. L. Mittal1 

With increasing prospects for using magnetohydrodynamic (MHD) 
principle in electric power generation, there is a renewed interest in 
the study of MHD boundary-layer phenomena. In these devices, a 
partially ionized gas is used as the working medium, which is made 
to flow in a diverging channel. Thus the study of the phenomena of 
boundary layers on a wedge-type wall plays an important role in the 
design and analysis of a MHD power generator. Wilcox [1] has studied 
the MHD boundary-layer phenomena on a wedge using similarity 
principle. To localize the electromagnetic effects within the limits of 
the boundary layer, the variation of conductivity with velocity dis­
tribution is considered in his analysis. Since the Hall and the ionslip 
currents are important, while using the partially ionized gas as the 
working medium, this analysis is not directly applicable in the study 
of boundary-layer phenomena in MHD power generator. 

In the present analysis, the effects of the Hall and the ionslip cur-

1 The Mathematics Department, Brunei University, Uxbridge, Middlesex, 
UB8 3PH, England. 

Manuscript received by ASME Applied Mechanics Division, June, 1980. 

1 Department of Mathematics, Indian Institute of Technology, Powai, 
Bombay 400 076 India. 

Manuscript received by ASME Applied Mechanics Division, May, 1980; final 
revision, December, 1980. 
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Recently, a problem, whose solution was well known in exact form, 
has been analyzed by Liu (Scattering of Water Waves by a Pair of 
Semi-Infinite Barriers, ASME JOURNAL OF APPLIED MECHANICS, 

Vol. 42, 1975, p. 777), by the method of matched asymptotic ex­
pansions. From the known exact solution a simple expression is 
obtained for the transmission coefficient. The exact expression for 
the transmission coefficient when expanded for low frequency in­
cident waves differs from Liu's result, and therefore casts doubt on 
Liu's analysis and physical conclusions. 

A problem, whose solution was well known in exact form, has re­
cently been tackled by the method of matched asymptotic expansions. 
The work, to which we are referring, is by Liu [1]. The problem is that 
of diffraction of a plane water wave by a pair of rigid semi-infinite 
barriers. This problem has been solved exactly for all values of inci­
dent wave frequencies by a number of authors, in particular its solu­
tion was available in Noble's book on the Wiener-Hopf technique [2, 
Section 3.2, Page 100]. 

Mathematically, the problem that is required to be solved is to 
determine \p(x, y, t) = <j>(x,y)e~'wt such that 

dx2 dx2 0 = 0, 

dy 
0, y = ±o> x < 0 . 

Also grad <j> should have no more than an integrable singularity near 
the two sharp edges (0, ±a) ; and the radiation condition is imposed 
which requires that the only energy which is "incoming" at infinity 
is that of the incident wave. Referring to Fig. 1, a given wave 0; (x,y) 
- e-ik(x cos a+y sin a) ; s in c ident on the barriers. Consequently dif­
fraction takes place at the edges and a wave Te ~lkx is transmitted into 
the region between the barriers. The object of Liu's work was to cal­
culate the transmission coefficient T for the low frequency situation 
ka « 1. He derived the result to 0[(ka)2] and concluded from his 
expression that the transmission coefficient at low frequency was 
independent of the angle of incident a. It is easy to show that this is 
only true for the terms of order less that 0[(ka)], and more specifically 
Liu's result for T is incorrect. 

From Noble [2, p. 105], the exact expression for the transmission 
coefficient for all incident wave frequencies is given by 

sin (ka sin a) 

\L+(k cos a)L-(k)\ ka sin a 

\L+(k cos a ) | = 

\L-(k)\ = eka'2. 
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Hence 
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1/2 
„— (fea/2) cos a 

e -<fta/2)(i-cos a); o<ka<ir (1) 

This latter expression is valid (and simple enough to calculate) for 
all 0 < ka < it. In order to compare our result with that of Liu we ex­
pand the right-hand side of (1) for small ka giving 

m • '"(!) 
1 - ka sin2 - + 0[(ka)2] (2) 

A result quite different to Liu's. It will also be seen from (2) that the 
transmission coefficient does depend on a for terms of order (ka) and 
greater. 
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Magnetohydrodynamic 
Boundary Layer on a Wedge 

B. Nageswara Rao1 and M. L. Mittal1 

With increasing prospects for using magnetohydrodynamic (MHD) 
principle in electric power generation, there is a renewed interest in 
the study of MHD boundary-layer phenomena. In these devices, a 
partially ionized gas is used as the working medium, which is made 
to flow in a diverging channel. Thus the study of the phenomena of 
boundary layers on a wedge-type wall plays an important role in the 
design and analysis of a MHD power generator. Wilcox [1] has studied 
the MHD boundary-layer phenomena on a wedge using similarity 
principle. To localize the electromagnetic effects within the limits of 
the boundary layer, the variation of conductivity with velocity dis­
tribution is considered in his analysis. Since the Hall and the ionslip 
currents are important, while using the partially ionized gas as the 
working medium, this analysis is not directly applicable in the study 
of boundary-layer phenomena in MHD power generator. 

In the present analysis, the effects of the Hall and the ionslip cur-
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Fig. 3 Separation profiles for different values of load parameter, K 

results show that the skin-friction parameter /"(0) increases, and the 
displacement integral h and the momentum integral I2 decrease with 
the pressure gradient parameter 8. In the absence of K, the parameter 
/"(0) decreases and the values of I\ and I2 increase with the interaction 
parameter / . But the values of /"(0), I\, and 1% increase with / in the 
presence of K. For separation of flow, the magnitudes of the pressure 
gradient parameter |/3| decreases and values of I\ increase with / for 
different values of if. 

For the case K = 0 and 8e ^ 0, it is observed that the values of /"(0) 
decrease and the values of I\ and I2 increase with I. With the inclusion 
of ionslip currents, the values of /"(0) further decrease while the values 
of l\ and 12 increase with I. For the separation of flow, | B | decreases 
with the Hall and the ionslip currents also. 

For thecaseK = 0.5, it is found that the values of f"(0),li, and h 
increase with I and further increase with the inclusion of ionslip 
currents. For the separation of flow, the behavior of the parameter 
|/31 is similar as in the absence of K. 

It is important to note from Table 3 about the negative values of 
the momentum integral I2 for the separation of flow. It is observed 
that the mometum transport is larger in the boundary layer than in 
the equivalent inviscid flow. This is accounted for by the large ob­
served velocity overshoots in the boundary layer (see Fig. 3). 
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Solution of Navier's Equation in 
Rotational Curvilinear 
Coordinates 

B. S. Berger1 and D. M. Curtis2 

Numerical study of the exterior problem for elastic bodies has re­
ceived considerable attention [1-5]. The satisfaction of boundary 
conditions at infinity is an important problem for the static, transient, 
and steady-state cases which has been approximately satisfied by a 
variety of means. These include the introduction of a viscous 
boundary [2], a semianalytic energy transmitting boundary [1, 3], and 
a technique based on the properties of the transmission of D'Alembert 
forces [4]. The boundary element technique has been shown to be 
effective in the solution of exterior problems for the static and 
steady-state cases. 

However, as pointed out by Brebbia in [9], equations involving the 
time variable are usually hyperbolic (or parabolic) in type and as such 
are unsuitable for solution by the boundary element technique, the 
Laplace or Fourier transformed equations, however, are in many cases 
elliptic. The numerical inversion of the Fourier and Laplace trans­
forms involved in this approach, while possible, present serious 
computational problems [10]. As has been previously shown for the 
exterior problem for cylindrical bodies [6, 7], the following demon­
strates that methods of solution based on coordinate transformation 
can readily satisfy boundary conditions at infinity for the steady-state, 
static, and transient cases and accommodate differing surface 
geometries for exterior bodies of revolution. 

In the following, the Navier equations are expressed in orthogonal 
rotational curvilinear coordinates. The angular variable, X3, is sup­
pressed through a Fourier or finite-difference expansion. Finite-dif­
ference equations are derived for the case of symmetric loading and 
solved numerically for static problems for which exact solutions may 
be derived. Comparisons between exact and approximate solutions 
show excellent agreement. While the formulation given here is suffi­
cient for the static and transient cases, satisfaction of the radiation 
conditions, at infinity, associated with the steady-state case requires 
the use of the Lame potentials. This case is omitted here, but is given 
for cylindrical geometry in [7]. 

The vector form of the equations of motion of a linearly elastic, 
homogeneous, isotropic solid is given by 

(X + 2/it)Ve - ^ tVx(Vxu) + pb = pU (1) 

where X and p. are the Lame constants, u the displacement vector, p 
the mass density, and b the body force vector [8]. Denote the coordi­
nates of a point in a circular cylindrical coordinate system by X;, i = 
1, 3; Fig. 1. Define the rotational coordinate system xi by x\ = xi(Xi, 
X2), X2 = *2(Xi, X2), and x3 = X3 where x\ and x2 are defined over a 
rectangular domain ai < xi < a2, 81 < X2 ̂  62- The components of 
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. / 

Fig. 1 

the metric tensor, gij, associated with the x; coordinate system are 
given by gi;- = Xn , ;X„j ,gu = gu(xi, x2), g22 = g22(xi, x2), g3a = Xi2, 
gia = gai = 0, g23 = g32 = 0 where ( ),,• = d( )/dx; and repeated indices 
are summed. If the Xi coordinate system is assumed to be orthogonal, 
then in addition to the foregoing, gi2 = g2i = 0 or generally g;y = 0, i 
^ j . Expressing (1) in the xi coordinate system, assuming orthogo­
nality, gives 

(X + 2M)A,I - MVgll/g22g33)((Vg33<D),2 

- Vi22 C,3) + pbi = pVgTi u (2) 

(X + 2fl)A,2 - P-Wg22/g!S3gu)(Vg~uBi3 

. ~ (Vg~3aD),i) + pb2 = pyfg~2~2 0 (3) 

(X + 2fl)Ai3 - tlWgaa/gug22)((Vg~22~ C),l 

- ( V i u B),2) + pbs = pVg33 * (4) 

where 

A = (l/Vg)((Vg22g33 "),1 + (Vgllg33 U),2 + Vgllg22 «",3), 

B = (l/Vg22?33)((V^33 ">),2 ~ Vg~22 Ul3), 

C = ( l /Vg33gll)(Vil l" ,3 - (\/i33"0,l). 

-D = (l/Vgllg22((\/g22f),l - ( V i l l «),2), 

the physical components of displacements u ( l ), are denoted by 
u*1' = u, « ( 2 ) = 0, and u ( 3 ) = w. 

For the unsymmetric case the independent variable X3, in (2)-(4) 
may be suppressed through a Fourier expansion of u, v, and w in X3. 
Equations (2)-(4) then determine the coefficients in the expansion. 
Equations (2)-(4) simplify for the symmetric case since u = u(x\, x2), 
v = v{xi, x2), w = 0 and may be expressed in finite-difference form, 
over the rectangular x\, x2 domain, by replacing spatial derivatives 
with central differences and the temporal derivatives with backward 
differences. The spatial difference form, assuming symmetrical dis­
placements, is then given by 

A(5)u;+ij + A(3)uu + A(l)ui-ij + A(4)uiJ+i + A(2)uiJ-1 

+ A(14)u i+1J + A(13)vij + A(9)viJ+1 + A ( 8 K ; - i + A(12)u,-_ij 

+ A(U)ui+1J+1 + A(10)y;+i, ;-i + A(6)u ; - U _i 

+ A(7)vi-hj+i + pbt = py/gTi utj (5) 

fl(14)u,+i,; + B(lS)uij + B(U)ui-ij + B(6)u;+ u + i 

+ B(5) Ui+1j-i + BiDm-u-i + B(2)Ui-1J+1 + B(4)uiJ+1 

+ B(3)uij-i + B(10)vij+i + B(9)vij + B(8)u;,;-i + B(U)vi+1J 

+ B(7)vi-ij + pb2 = pv^22 vij (6) 

where the variable coefficients, A(I) and B(I), are functions of the 
metric tensor, gn, and material properties. Expressions for A (/) and 
B(I) are given in [11]. 

Displacement and stress boundary conditions will be given over 
disjoint sets of points on the surface of the body. Since the Navier 
equations were solved in the *,• coordinate system, it is necessary to 
express the physical components of displacement, UM, in the circular 
cylindrical coordinate system, X;, in terms of base vectors associated 
with the xt coordinate system. This may be accomplished through 
tensor transformation rules [6,11]. 

The efficient numerical construction of coordinate transformations 
for a variety of shapes is of particular importance. A comprehensive 
study is given in [11]. 

Numerical studies were carried out to check the performance of 
these transformation methods for unbounded problems. The nu­
merical solutions are compared with exact solutions. The values of 
material constants are as follows: v = 0.3, E = 2.07-1011, n = 
7.9615-1010, and X = 1.1942-1011 in mks units. A conformal transfor­
mation 

Xi = L a„*i<2"-3> cos (3 - 2n)*2 (?) 
n = l 

X2= L an*i<2n-3>sin(3-2n)jt2 (8) 

was used in all computations [6, 7,11]. In cylindrical coordinates a 
solution to Navier's equation is given by Ui = —((X + p.)lp)Ji{X.\) exp 
(-X2) and U2 = -((X + p)lp) Jo(Xi) exp (-X2). Tensor transformation 
laws imply that u '1 ' = ((dXi/dxO-Ui + (dX2/d*i)-£/2)/Vgi7 and u (2) 

= ((dXi/dx2)-£/i + (dX2/d*2)-t/2)/Vg22- The displacements given 
by u (1) and u(2) were applied over the surface of a hemispherical cavity, 
with Xi = 1 utilizing the corresponding values of Xi and X2, and over 
the surface of the surrounding plane, X2 = 0. For this geometry the 
coefficients in transformations (7) and (8) are a i = 1 and an = 0 for 
n > 1. Fig. 2 shows a plot of the exact solution for u and the difference 
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Fig. 2 

Fig. 3 

between the calculated and exact values of u. It is seen that the region 
of maximum error corresponds to small values of x\ and therefore 
large values of Xi. As x\ -*• 0, assuming a uniform step size in x\, the 
corresponding step size in Xi becomes infinite. Fig. 3 shows a plot of 
the exact solution for u and the difference between the calculated and 

The Influence of Random 
Longitudinal Vibration on 
Channel and Pipe Flows of a 
Slightly Non-Newtonian Liquid 

N. Phan-Thien1 

1 Introduction 
It has been observed by Mena, et al. [1], that when a non-Newtonian 

liquid flows through a circular pipe under a constant pressure gradi­
ent, the volumetric output is increased with respect to its Newtonian 
value if the pipe is subjected to a longitudinal sinusoidal vibration. 
Their experimental investigation pointed to the following conclu­
sions: 

1 The fluid has to be shear-thinning in order to exhibit a positive 
flow-rate enhancement. 

2 This is an inertia phenomenon, i.e., as the vibrational Reynolds 
number tends to zero, the flow enhancement also tends to zero, the 
fluid elasticity plays only secondary role here. 

3 The flow enhancement increases with increasing frequency of 
fluctuations. At low frequency a>, this dependence is quadratic in 
co. 

All of the abovementioned features were predicted by Kazakia and 
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exact values of u for the case of the unindented plane, X2 = 0, 
subjected to displacements given by u (1) and u (2). The mapping is 
given by (7) and (8) with a\ = 1/2, a2 = 1/2, an = 0 for n > 2. Two re­
gions of local maximum error exist, one corresponding to x\ = 0 as 
before and another near x\ = 1, x-i = IT. Coordinate lines in the 
physical plane are very closely spaced and convoluted in the neigh­
borhood oixi = 1,X2 = ir resulting in a loss of accuracy. 
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Rivlin [2] who assumed a slightly non-Newtonian fluid which obeys 
the following constitutive law: 

TE = 2?/D + er, 6 « 1, (1) 

where 2-nD and er are the fluid Newtonian and non-Newtonian extra 
stress tensors, respectively. 

It is apparent from (1), that, in a flow field where the velocity is a 
perturbation about the Newtonian velocity, a knowledge of the 
Newtonian solution suffices to determine the non-Newtonian effects 
up to terms of order 0(e). Proceeding in this vein, Kazakia and Rivlin 
[2] were able to show that the mean flow rate in a channel of width 2h 
is given by 

3V V4 \5 \Ph2J I 

(2fo V + 1) sinh (2V) - (2fr V - 1) sin (2/t/t) 

2hu[cosh(2hjit) + cos(2h^)] 

n2 = poo/2V (2) 

whereas in the case of pipe flow (a is the pipe radius) we have 

(Q) = e ' 1 + 36 M— A , 
87/ 48?)4 \ \Pa2j I 

a/t[ber2 (an) + bei2 (an)] (A + 1) = a2/u2[ber (an) ber' (an) 

+ bei (an) bei' (an)] + 2[ber (an) bei' (an) - bei (an) ber' (an)], 

n = puln (3) 

In both cases p is the density of the liquid, P, the constant pressure 
drop, ber (x) and bei (x) are the Kelvin functions of zeroth order and 
the fluid velocity at the boundaries (y = ±h or r = a) is given by V sin 
cot. 
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Rivlin [2] who assumed a slightly non-Newtonian fluid which obeys 
the following constitutive law: 

TE = 2?/D + er, 6 « 1, (1) 

where 2-nD and er are the fluid Newtonian and non-Newtonian extra 
stress tensors, respectively. 

It is apparent from (1), that, in a flow field where the velocity is a 
perturbation about the Newtonian velocity, a knowledge of the 
Newtonian solution suffices to determine the non-Newtonian effects 
up to terms of order 0(e). Proceeding in this vein, Kazakia and Rivlin 
[2] were able to show that the mean flow rate in a channel of width 2h 
is given by 

3V V4 \5 \Ph2J I 

(2fo V + 1) sinh (2V) - (2fr V - 1) sin (2/t/t) 

2hu[cosh(2hjit) + cos(2h^)] 
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whereas in the case of pipe flow (a is the pipe radius) we have 
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+ bei (an) bei' (an)] + 2[ber (an) bei' (an) - bei (an) ber' (an)], 

n = puln (3) 

In both cases p is the density of the liquid, P, the constant pressure 
drop, ber (x) and bei (x) are the Kelvin functions of zeroth order and 
the fluid velocity at the boundaries (y = ±h or r = a) is given by V sin 
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In deriving (2) and (3) the non-Newtonian shear stress is assumed 
to be 

S = r)k + r)k + i)K3 (4) 

where r), r), rj are constants and a is the shear rate. 
In view of the potential applications of this phenomenon and that 

deterministic vibrations seldom occur in practice, it is attempted here 
to generalize Kazakia and Rivlin's [2] results to cover the random 
vibration case. 

2 T w o - D i m e n s i o n a l F l o w 
We consider here the channel flow of an incompressible, slightly 

non-Newtonian fluid which obeys (1) under the action of a constant 
pressure drop P. The channel walls are located at y = ±h and are 
subjected to random vibration. With the no-slip boundary condition, 
we have 

Note that the lower limit of the integrals appearing in (10)-(11) has 
been replaced by — <*> since we are interested in the long time behavior 
of the solution here. 

The first-order solution is governed by 

d2U! dS 0 

where 

dui . .... 

dt dy2 dy 

ui(±h) = 0, 

; S(K0). 

(13) 

u = Vn(t) on y = ±h, (5) 

where u is the x -component velocity, V is a reference velocity, and 
n(t) is a random function of time which has zero mean. The governing 
equation for u is 

If one only looks for long-time behavior of the solution then (13) 
can be averaged to yield 

<«i> = -<So>/l 

from which the mean increase in the volumetric output is given by 

'h (So) 
Qi 

r» <SQ) 
J-h rj 

ydy (14) 

du „ d2u dS 
P — = P + V—o + e ~ ~ . 

dt dy2 dy 

where S = T12 is the non-Newtonian shear stress. 
We seek a perturbation solution of the form 

u = UQ + tu\ + . . . 

(6) 

(7) 

which is identical to the expression given by Kazakia and Rivlin 

[2]. 
Following Kazakia and Rivlin [2], we adopt the constitutive law (4) 

which gives 

P3h4rj 12 
h = - c •+3 

V 
yyyvw 

* i r a w h* mW (15) 

After solving (5)-(7) for u, the mean volumetric throughput is given 

by 

where 

4,mn = (2n + l ) 2 (2m + l ) 2 

/ l „ 2 

<Q> =Qo + Qi 

y (K0)dy -e I y{Ki)dy, 
•h J-h 

: ( l - 5 m J + ? — ) 
7r2(m + n + l)2 j 

(8) 

where KJ = diij/dy are the shear rates and we have used the fact that 
(n(t)) = 0. Here and elsewhere in the paper <•) denotes an ensemble 
average. 

The zeroth-order solution is the Newtonian one which obeys 

du0 d2u0 

dt dy2 

u0 (±h, t) = Vn(t) 

By taking the Laplace transform of (9) and noting that [3] 

L - 1 /cosh (yVF)\ _ I d hiaA 

[cosh (hy/P)l hdy l\2,h h2) 

(9) 

7r2(m - n)2 

X f ' C e-«»(t-t')-«m(t-t') (n(t') n(t")) dt'dt" (16) 
^ / TO \J—00 

Note that, since rj < 0 and 0 m n > 0, (15) shows that there should be 
an increase in the flow rate. 

Also, as Kazakia and Rivlin [2] have pointed out, there are two 
contributions to the flow enhancement. The first is due to the shear 
thinning and the second is due to inertia; see (15). 

A simplification of (15) and (16) is possible if we assume that n (t) 
is a stationary random function of time. In this case n(t) can be rep­
resented by the following Fourier-Stieltjes integral (spectral repre­
sentation of n(t) [4]) 

(17) 

: _ £ (_1 ) "+1 (2n + l ) e - (2n+l)Vj /4/ .2 
h2n=0 

X COS 
2n + l 

••xy > 

where L~x \F(p)\ is the inverse Laplace transform of F(p) and 8i{-\ •) 
is the theta function, we have 

P virV » I2n + 1 v 
uo = - (h2 - J ! ) + - E <-l)»(2n + 1) cos — — - * \ 

2rj ft2 „=o \ 2 h 

n(t) = f ° eM dZ(\), i2 = -l 

where dZ(\) is a random function of \ which satisfies 

<dZ(A)> = 0 (18) 

(dZ(\j)dZ(\k)) = 5;fe Q(\j) d\j, (no sum) (19) 

where the overbar denotes a complex conjugate and Q(X) is the 
spectral power of n(t), viz 

Q(\)=J- r 
2-n- J -

_ 1 r" 

~ 2ir J -

(n(t + s)n(t)) ds 

!R(s)ds (20) 

X f e - " " " - i ' ' n ( t ' ) d t / 

Py vw2V 
KO = 

V 2h3 „=o 
E ( - l )" (2f i - l - l ) 2 s in 

. (2n + l y' 
in IT — 

\ 2 hi 

X f e-«->lt-t">n(t')dt', 

where v = i)lp is the kinematic viscosity and 

an = (2n + l ) 2 7T2 v/Ah2 

(10) 

(11) 

(12) 

A direct substitution of (17) into (10) yields, after some manipu­
lations, 

uo = — (h2-y2) + V 
2ij s: 

cosh 

cosh (V?*) 
1 dZ(\) (21) 

Proceeding as before, we obtain the mean increase in the flow rate 
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2P3h5 P 

— r + 6 

5?/4 

M" W T 
h2 + —| s inh I U2 • 

~~ r sin 
X/ 

2X, 

cosh 
2X, \ / /2X, \ 

n + cos U / — h i 
v ) \ V v } 

fi(X) d\ (22) 

D e n o t i n g 

a n d 

A = 

we have 

fi2 = \/2v, (23) 

(2fi2h2 + 1) s inh (2/ift) - ( 2 h V - 1) sin (2/ih) 

2fih[cosh(2fih) + cos(2fih)] 

P3h4n[2 . , , / r c . V 

1, (24) 

d u 0 r, , V & d u 0 

p = P H ; 
d t r d r dr 

u0(a,t) = Vn(t) (32) 

By t ak ing t h e finite H a n d e l t r an s f o r m of o rder zero [5] 

Qi = -e^-~\-+12 — f ° ° A ( X ) f i ( X ) d X . (25) 
t \5 \Ph2) Jo I 

For s inusoida l v ib ra t ion where n(t) = cos a>t (or sin coi), t h e spec t ra l 

power is 

fi(X) = \ [5(\ + u) + 5(X - a))] 

a n d Kazak i a and Rivl in ' s resul ts , equa t ion (2), a re recovered. 

F o r low-frequency v ibra t ions , fi(X) is ma in ly concen t ra t ed a t X ~ 
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J»» hA /»» h4 

A(X)£2(X)dX X2Q(X)dX = — - { r i 2 ( t ) ) + E (26) 
o 5y2 Jo 10i>2 

where « ( t ) = dn/dt a n d £ is an error t e r m of order 

olC™ X4fi(X)dXj. 

In this case, the mean increase in the flow ra te is directly proport ional 

t o t h e m e a n squa re of t h e p ipe accelerat ion: 

# l / ( r ) ] = CrJQ(Pir)f(r)dr, 
Jo 

where pta is a roo t of t h e ze ro th -o rder Bessel funct ion Jo(x), we ob­

ta in 

u 0 = — ( a 2 - r 2 ) + 2Y. — — 
4TJ i a Ji(Pt \a) J-

-*PiHt-nn(t>)dt', 

(33) 

where J\(x) = — J'o(x) is t h e f i rs t -order Bessel funct ion. Again t h e 

lower l imit of t h e integral appear ing in (33) has been replaced by — °> 

since we are in te res ted in t h e long- t ime behavior here . 

T h u s t h e N e w t o n i a n shear r a t e is given by 

Pr „„r<>Pi2Ji(Pir) 
Ko = 2V T, . 

27) t a J-APia) J-

— C e-'PM-'") n(t')dt' (34) 
a) J-" 

N o w t h e f i rs t -order so lu t ion is governed by 

d « i JJ d d u i 1 d 
p = r + (rSo). 

dt r d r d r r dr 

Qi 
2P3fe5i) 

5?)4 
l + 3 | y | (n2)\. 

ui(a,t) = 0, (35) 

(27) where 

A n o t h e r s implif icat ion to (25) is possible if Q(\) is ma in ly con­

t r i b u t e d by a spike a t X = a> [the " n a t u r a l " frequency of n(t)]. In th is 

case 

psh5y [2 

So = S(«o). 

Again, if long-time behavior of the solution is sought after t h e n we can 

average (35) which yields 

V 
4 lo"+6lS? 

X A 0 + — A " 0 (n2) + - A " 0 (n2) + E (28) 

(K1) = -(S0)/v 

T h u s t h e m e a n increase in t h e flow ra t e is given by 

•« (So) 
Qi 

he re we have used t h e s h o r t h a n d no ta t i on 

d2A(X) 

Jo r\ 
r2 dr 

(36) 

(37) 

A(<o), A 0 " 
dX2 u=o. 

and £ is an error t e r m of o rder 0 I j (X — co)4 0(X) dXl. 

3 P i p e F l o w 

Next , we consider t h e p ipe flow p r o b l e m where t h e governing 

equa t ions for t h e axial velocity u a re 

which is ident ica l to Kazak ia a n d Rivl in ' s [2] resul t . 

Adop t ing t h e cons t i tu t ive low (4) a n d express ing J i ( P ; r ) J i ( P y r ) 

as a convergent series in t e r m s of t h e hypergeomet r i c funct ion F (a, 

/3; 7 ; §), we finally ob ta in 

irP3a6?/ 

48T?4 P o 2 ' 
(38) 

where 

v2a2Pi3Pj3 - ( - 1 ) * 

du r? d du 1 d , _,, 

d t r dr d r r d r 

u(a,t) = Vn(t). 

J i (P. -a) J i ( P j a ) Ar0fe!(/e + 1)! (fe + 3) 

(29) 

(30) 
-W-« £ 

Again, S = r r z is t h e n o n - N e w t o n i a n shear s t ress and we seek for a 

pe r tu rba t ion solution of t h e form (7). Knowing t h e axial velocity, t h e 

m e a n volumet r ic flow ra t e is given by 

IX pflit-t')-vPjHt-t") <„ ( t / ) „ ( ( * ) ) dt> dt» (39) 

<Q> = Qo + Qi 

r 2
 (KO) dr — ew I r 2 </(i) d r , 

o »/o 

where K;- = duj/dr a re t h e shear ra tes . 

T h e ze ro th -o rde r so lu t ion is governed by 

A simplification of these unwieldy expressions is possible if we assume 

t h a t n(t) is a s t a t i ona ry r a n d o m funct ion of t ime which obeys (17 ) -

(20). In th i s case a d i rec t subs t i t u t i on of (17) in to (33) yields 

(31) uo = — (a2 - r 2 ) + V 
4TJ 

I ber (fir) + i bei (fir) 

ber (fia) + i be i (fia) 
e i x ' d Z ( X ) , i 2 = - l , (40) 
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where ber (x), bei (x) are the Kelvin functions of zeroth order and 

\/v (41) 

Alternatively we can assume that n(t) is a stationary random 
function from the outset and look for solution of the form 

- P i 2 
uo = —(c r -

\r\ 
r2) + x: <l>(r,X)eixtdZ(X). (42) 

A direct substitution of (42) into (32) will reveal that </>(/•,X) takes the 
form indicated in (40). 

Proceeding as before, it is easy to show that the mean increase in 
the flow rate is given by 

i) \48i)4 

X f ° dr C 
Jo Jo 
irP3a6rj 

dxber^r) + b e i ^ ) r 3 R ( x ) 

o ber2 (jua) + bei2(^a) 

1 + 144 nv 2 r-
Pa2 J o 

A(X)12(X)dX (43) 
48?/4 

where A(X) is given by 

a(x[ber2 (a/x) + bei2(a/n)] (A + 1) 

= aV2[ber (afi) ber' (a/x) + bei (an) bei' (ayu)] 

+ 2[ber {a/x) bei' (a/*) - bei (a/it) ber' (a/t)] (44) 

If re(i) is sinusoidal with frequency ej, then Kazakia and Rivlin's 
[2] results, equation (3), are recovered. 

Again, the two approximations mentioned in Section 2 are recorded 
here. 

First, for low-frequency vibrations, Q(\) is mainly concentrated 
at X ~ 0 from which we have 

Q rPW1 + 3 / £ 
48rj4 I \P 

where E is an error term of order 0 (x: 
({h^+E) 

X4 fi(X) dX 

(45) 

Finally, if n(t) has a dominant "natural" frequency a> in the sense 
discussed in Section 2, then 

Q i ~ - e -1 1 + 72 „, 
48?/4 I iPa2/ 

f j)V\2 

A0 + yA"0 

X <ra2> + - A " 0 < « 2 > + £ ' (46) 

where we have used the shorthand notation 

d2A(X) 
A0 = A(co), A ' V 

dX2 

and E is an error term of order 0 J> 0))4fi(X)dX. 

In summarizing, we have solved the Mena flow problem [1] for a 
slightly non-Newtonian liquid where the longitudinal vibration is an 
arbitrary random function of time. Any deterministic vibration which 
satisfies Dirichlet's conditions so that it can be represented by a 
Fourier series is a special case of this. If the fluid is markedly non-
Newtonian, then an alternative approach to this problem is to consider 
a perturbation about the "vibrational" Reynolds number, Rv = aV/v 
~ 0. The data of Mena, et al. [1], seem to satisfy this requirement: R 
~ 0.1 - 0.5. This was considered elsewhere [6], 
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On the Space of Stress 
Invariants 

V. K. Stokes1 

The representation of stress through its three invariants Ix, h, and 
h has been examined. It has been shown that all possible states of 
stress are mapped into a connected region of the space of stress in­
variants that is bounded by two surfaces which meet in a cusp on a 
curve which corresponds to states of isotropic stress. All other states 
of stress for which two principal stresses are equal, lie on this surface. 
The It axis corresponds to one-dimensional states of stress. Two-
dimensional stresses are represented by a connected region of the 
I1-I2 plane. The negative half of the h axis corresponds to pure 
shear. The positive half of the I2 axis, and the I3 axis, do not corre­
spond to any states of stress. The representation of yield surfaces 
in this space has also been considered. 

I n t r o d u c t i o n 
In one representation the state of symmetric stress at a point in a 

continuum is indicated by a point in the space of principal stresses, 
in which the three principal stresses a\, a% and 03 are the rectangular 
Cartesian coordinates of a point a = (o\, 02, 03)- There is a certain lack 
of uniqueness in this representation. For, corresponding to a state of 
stress in which the principal stresses are <xi, 02, and 0-3, the associated 
principal directions forming a right-handed system, there are, in 
general, six distinct points in principal stress space, namely, <J\ = (o"i, 

0"2, 03), "2 = (0-2, C3, 0"l), <T3 = (0"3> C\, 0~2), 04 = (ffl, 0"3, "2), C5 = (0-3. 
d2, ffi) and o-6 = (02, °~i, "si-

In some applications the ordering of the principal stresses is not 
important and each principal stress has the same weightage for the 
same magnitude. In such situations it is appropriate to use symmetric 
functions of the principal stresses, whose values would be the same 
for ffi, <r2, 03, <T4, Ob, and ere- The simplest and most important sym­
metric functions are the principal invariants of the stress tensor. 

P r e l i m i n a r y D e f i n i t i o n s 
For a given symmetric stress tensor T the principal stresses a are 

the roots of the characteristic equation 

0-3 - I10-2 + I2a - h = 0, (1) 

Where I\, h, and i^, the three principal invariants of stress, are given 
by 

h = tr T = ci + o-2 + ff3 

h = h (tr2 T - tr T2) = otfz + 0-20-3 + ff3ffi (2) 

^3 = det T = ffio-20-3 

where o\, 02, and <T3 are the three principal stresses. Furthermore, for 
symmetric T, 
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where ber (x), bei (x) are the Kelvin functions of zeroth order and 

\/v (41) 

Alternatively we can assume that n(t) is a stationary random 
function from the outset and look for solution of the form 
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If re(i) is sinusoidal with frequency ej, then Kazakia and Rivlin's 
[2] results, equation (3), are recovered. 

Again, the two approximations mentioned in Section 2 are recorded 
here. 

First, for low-frequency vibrations, Q(\) is mainly concentrated 
at X ~ 0 from which we have 
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discussed in Section 2, then 
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where we have used the shorthand notation 

d2A(X) 
A0 = A(co), A ' V 
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and E is an error term of order 0 J> 0))4fi(X)dX. 

In summarizing, we have solved the Mena flow problem [1] for a 
slightly non-Newtonian liquid where the longitudinal vibration is an 
arbitrary random function of time. Any deterministic vibration which 
satisfies Dirichlet's conditions so that it can be represented by a 
Fourier series is a special case of this. If the fluid is markedly non-
Newtonian, then an alternative approach to this problem is to consider 
a perturbation about the "vibrational" Reynolds number, Rv = aV/v 
~ 0. The data of Mena, et al. [1], seem to satisfy this requirement: R 
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Invariants 
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The representation of stress through its three invariants Ix, h, and 
h has been examined. It has been shown that all possible states of 
stress are mapped into a connected region of the space of stress in­
variants that is bounded by two surfaces which meet in a cusp on a 
curve which corresponds to states of isotropic stress. All other states 
of stress for which two principal stresses are equal, lie on this surface. 
The It axis corresponds to one-dimensional states of stress. Two-
dimensional stresses are represented by a connected region of the 
I1-I2 plane. The negative half of the h axis corresponds to pure 
shear. The positive half of the I2 axis, and the I3 axis, do not corre­
spond to any states of stress. The representation of yield surfaces 
in this space has also been considered. 
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In one representation the state of symmetric stress at a point in a 

continuum is indicated by a point in the space of principal stresses, 
in which the three principal stresses a\, a% and 03 are the rectangular 
Cartesian coordinates of a point a = (o\, 02, 03)- There is a certain lack 
of uniqueness in this representation. For, corresponding to a state of 
stress in which the principal stresses are <xi, 02, and 0-3, the associated 
principal directions forming a right-handed system, there are, in 
general, six distinct points in principal stress space, namely, <J\ = (o"i, 

0"2, 03), "2 = (0-2, C3, 0"l), <T3 = (0"3> C\, 0~2), 04 = (ffl, 0"3, "2), C5 = (0-3. 
d2, ffi) and o-6 = (02, °~i, "si-

In some applications the ordering of the principal stresses is not 
important and each principal stress has the same weightage for the 
same magnitude. In such situations it is appropriate to use symmetric 
functions of the principal stresses, whose values would be the same 
for ffi, <r2, 03, <T4, Ob, and ere- The simplest and most important sym­
metric functions are the principal invariants of the stress tensor. 
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For a given symmetric stress tensor T the principal stresses a are 

the roots of the characteristic equation 

0-3 - I10-2 + I2a - h = 0, (1) 
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BRIEF NOTES 

i\h 

Fig. 1 Perspective view of the region F > 0 for the range: I /, I < , 50, 11,\ 
< 500, and |/3| < 1000 

F(h, h, h) = hHh2 - 4/2) - 2773
2 + 2hh(9I2 - 27x

2) (3) 

satisfies F(I\, 72, 73) > 0. When F = 0 either two or all three roots of 
the characteristic equation are equal. The three real roots are distinct 
when F > 0, and in this case there is only one set of mutually orthog­
onal principal directions. 

A stress distribution is one, two, or three-dimensional if only one, 
only two or all three of the principal stresses are, respectively, nonzero. 
This gives rise to the following geometrical interpretation for the in­
variants of stress. A necessary and sufficient condition for a stress 
distribution to be three-dimensional is that the third invariant of 
stress be nonzero. A stress distribution is two-dimensional if and only 
if the third invariant is zero and the second invariant is nonzero. A 
stress distribution is one-dimensional if and only if the second and 
third invariants are zero, and the first invariant is nonzero. Finally, 
a stress distribution is identically zero if and only if all the three in­
variants are zero. 

Space of Stress Invariants 
The main purpose of this paper is to investigate the representation 

of symmetric stress through its three invariants 7i, 72, and -Z3. By 
definition, the space of stress invariants is a rectangular Cartesian 
space in which the coordinates of a point are the invariants ii , 1% and 
h; so that a typical point has the coordinates I = (7i, 72, 73). Whereas 
each state of stress, represented in principal stress space a = (a\, <T2, 
03), gives rise to a corresponding point I = (7i, 72, I3) in the space of 
stress invariants, the converse is not necessarily true. First of all, there 
are points I = (7i, 72, h) to which do not correspond any points in stress 
space. In fact the regions of l-space which correspond to points in 
c-space are precisely those in which F(I\, 72, 73) > 0. Second, it must 
be remembered that the mapping a ~* I is not one-to-one. For exam­
ple, as mentioned earlier, the six points o"i, 0"2, 03, 04, ffs, and oe in 
ff-space correspond to one point in l-space. 

First consider the coordinate axes 7i, 72, and 73. It follows from the 
characteristic equation, in equation (1), that (i) 72 = 0,73 = 0 implies 
a = (Ih 0,0); (ii) I3 = 0, h = 0 implies a = ((-72)!/

2, (-72)1/2,0); and 
(Hi) h = 0, 72 = 0 implies a = (73

1/3, hm exp (2^/3), 73
1/3 exp 

(-27r£/3)). Thus the I\ axis represents one-dimensional states of 
stress, such that its positive and negative portions correspond, re­
spectively, to uniaxial tension and uniaxial compression. Since a point 

Fig. 2 Perspective view of the region F > 0 for the range; 11,1 < 50, I / , I 
< 500, and |/3| < 1000 

on the 72 axis corresponds to the principal stresses (a, —a, 0) where 
a = (-72)1/2, only the negative half of the 72 axis corresponds to real 
states of stress, and represents states of pure shear. Finally, it is evi­
dent that points on the 73 axis, except for 73 = 0—which corresponds 
to a zero state of stress, do not represent any real states of stress. 

Next consider the coordinate planes. The region of the 7i-72 plane 
which corresponds to real stresses is determined, from equation (3), 
by F(h, 72, 0) = 72

2(72
2 - 472) > 0. The boundaries of this region, 

which must correspond to repeated roots of the characteristic equa­
tion, are given: (i) by72 = 0,0—which is the 7i axis, and (ii) by the 
parabola 7i2 = 472. In fact the 7i axis represents the one-dimensional 
stress distribution a = (I\, 0,0), the repeated roots being 0 and 0. With 
73 = 0 and 7i2 = 472, the roots of the characteristic equation are (a, 
a, 0) where a = ±(72)

1/2. Thus the right half of the parabola7i2 = 472, 
for which a > 0, corresponds to states of two-dimensional isotropic 
compression. Thus, except for the interior of the parabola 7i2 = 472, 
the 7i-72 plane represents two-dimensional states of stress. The re­
gions of this plane which correspond to real stresses are then deter­
mined, from equation (3), by 472

3 + 27732 < 0, the boundaries of which 
are given by the curves 472

3 + 27732 = 0. Finally, the regions of the 
73-7i plane which correspond to real stresses, are determined by the 
condition 73(2773

2 + 47i3) < 0, and therefore lie between the curve 
2773

2 + 47t
3 = 0 and the line 73 = 0. 

The region 7̂  > 0 in l-space determines points that correspond to 
real states of stress. It follows from equation (3) that F(—Ii, 72,73) = 
T'Vi, 72, —73). Because of this, the surface 7̂  = 0 need only be deter­
mined in the region: 7i > 0, — °° < 72 < °° and — <» < 73 < °°. 

A feel for the surface 7̂  = 0 and the region, 7̂  > 0; which corresponds 
to real states of stress, can be had from perspective views shown in 
Figs. 1 and 2 in which the values of I lie in the ranges: —50 < 7i < 50, 
-500 < 72 < 500 and -1000 < 73 < 1000. These perspective views are 
made up of contours of 7i and 73. The surface 7*" = 0 corresponds to 
states of stress of the form a = (a, a, p) in which at least two of the 
principal stresses are equal. It consists of an upper and a lower sheet 
that meet in a cusp along the curve COD, which represents the iso­
tropic state of stress a = (a, a, a). For all points on this surface, other 
than those on COD, a ^ p. Only the upper sheet of the surface F = 
0 is visible in Fig. 1. Points on OE correspond to stresses of the form 
(<r, a, —2a) with a < 0. Points on the parabola OL correspond to a = 
(a, tr, 0) with a < 0. Also, points on the I\ axis, OA, correspond to a 
= (a, 0,0). A view of both sheets of F = 0 meeting in a cusp along COD 
is shown in Fig. 2. In this view both branches KO and OL, of the pa­
rabola 7i2 = 472, which correspond to states of stress a = (a, tr, 0) with 
a > 0 and a < 0, respectively, are visible. Also, both branches OE and 
OF of the curve 472

3 + 2773
2 = 0, which correspond to stresses of the 

form a = (a, a, —2<r) with a < 0 and a > 0, respectively, can be seen 
to meet in a cusp at 0. 

Next consider the surface 73 = 7i72. It turns out that equation (1) 
then has the roots a = I\, (-72)1/2 and -(-72)1 / 2 . Thus all points on 
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Fig. 3 von Mises' and Tresca's yield loci in the A, -/2 plane for two-dimensional 
stress distributions 

the surface 73 = 7]72, 72 — 0, correspond to the state of stress a = (a, 
-a,p) where p = h and a = (-J2)1 /2- The negative half of the 1\ axis, 
which must lie on this surface, corresponds to pure shear a = (<r, 
-o-.O). 

Yie ld S u r f a c e s 

Two important yield criteria are those due to von Mises and Tresca. 
For von Mises' yield criterion, the yield surface in ff-space is defined 
by (cri - o-2)

2 + (02 - 0-3)2 + (0-3 - c i ) 2 = 2o-0
2 = &k2 where o-0 is the 

yield stress in tension and k that in pure shear. In terms of invariants, 
this yield surface is /M(7I , h, h) = 0, where JM = h2 - 372 - ffo

2. Yield 
occurs if / M > 0. 

In terms of principal stresses, the yield surface for Tresca's criterion 
is given by 1m - o-2| = ffo, I <r2 - 0-31 = o-0, and 10-3 - <n| = 00, which, 
upon using a representation given in reference [1], reduces to fc(Ii, 
h, h) = 0, where fT(h, h, h) = F(h, 72, h) ~ aoHh2 ~ 372 - o-0

2)2. 
Thus fia and fr are related through 

fT=F- atfV (4) 

In l-space, the yield surface for von Mises' criterion is then the 
parabolic right cylinder whose cross section in the 7i-72 plane is the 
parabola h2 = 372 + Co2 = 3(72 + k2), and whose generators are par­
allel to the 73 axis. Thus all those points in l-space, that correspond 
to real stresses, which lie inside and on this parabolic cylinder, cor­
respond to unyielded states of stress. 

The yield surface for Tresca's criterion is not so simple. In order 
to remove the dependence of the yield surface /(7i,72 , 73) = 0 on the 
yield stress <r0> introduce the nondimensional quantities <?,- = ajao, 
i = 1,2,3. Also, let a bar over a function denote that it is the same 
function of <?; that the unbarred function is of o-,-, i.e., Tr(7i, 0% <r3) = 
IrCSi, <T2,?3), etc. Then JM = It

2 - 3?2 - 1 and fT =F-f%. 

von Mises' yield surface is then the parabolic right cylinder ]M = 
0 the vertex of whose base in the 7 r 7 2 plane is located at the point (0, 
-1 /3) . Unyielded states of stress are represented by those points in 
l-space which lie in the region determined by F > 0 and ]M i 0. The 
surface F = 0 is the same as F = 0 but with a drastic change of 
scale. 

For two-dimensional stress distributions, for which 73 must equal 
zero, von Mises' criterion determines the yield locus in the 7 r 7 2 plane 
as the parabola 7X

2 = 372 + 1, which is marked BAD'EF in Fig. 3. 
For the two-dimensional case, the yield locus in the 7i-72 plane for 

Tresca's criterion is given byfT(Ii, 72, 0) = 0. Now 

JTQU 72,0) = 72
2(7!2 - 472) - (7i2 - 372 - l ) 2 

= (7X
2 - 472 - l)(72 + l + 7i)(72 + l - 7i). 

Unyielded two-dimensional states of stress are then represented by 
points in the 7i-/2 plane which are inside and on the region bounded 
by the straight lines 72 + 1 + Ji = 0 and 72 + 1 - 7i = 0, and the pa­
rabola h2 = 4J2 + 1. For purposes of comparison with the yield locus 
for von Mises' criterion, the boundary of this region has been shown 
in Fig. 3 by the dotted curve BADEF. 

C o n c l u d i n g R e m a r k s 

In the space of stress invariants, one-dimensional states of stress 
are represented by points on the h axis, and two-dimensional stress 
distributions are represented by points in the h-h plane which lie 
on and outside the parabola 7x2 = 472. Thus, in the 7 r 7 2 plane, the 
value of 72 relative to 7i is a measure of the two-dimensionality of the 
stress distribution; so that points that are further away from the I i 
axis correspond to increasingly two-dimensional states of stress. 
Similarly the value of 73 relative to 7i is a measure of how three-
dimensional a particular stress distribution is. 

Regions of l-space which correspond to real stresses in o--space are 
determined by F(7i, 72,73) > 0. The yield surfaces corresponding to 
von Mises' and Tresca's yield criteria are given, respectively, by /M(7i, 
72,73) = 0 and ju ih, 72,73) = 0. It is rather surprising that F, fM, and 
fr are related, as indicated in equation (4). 

Further details regarding the space of stress invariants, including 
contours of the surface F = 0 and additional perspective views, are 
given in reference [2]. 
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I n t r o d u c t i o n 

In this Note we determine an exact solution for the finite elastic-
plastic field in a pressurized hollow cylinder rotating about its axis 
at a constant angular speed. The material is assumed to be incom­
pressible and elastic-plastic. The plane-strain problem for a pres­
surized hollow cylinder has been studied by Durban [1], while that 
for a rotating cylinder composed of a nonlinearly elastic material can 
be found in Green and Zerna [2]. 

F o r m u l a t i o n 

Suppose that the region occupied by a body in its undeformed 
configuration is a hollow right circular cylinder of internal and ex­
ternal radii a and b, respectively. The body is presumed to be com­
posed of an incompressible, isotropic material. 

The cylinder is subjected to an internal pressure p while being 
rotated about its axis with constant speed OJ relative to some (inertial) 
frame of reference. Since we are considering the quasi-static change 
of the applied pressure and the angular speed, we allow the pressure 
p and the speed a) to depend smoothly, and monotonically, on a pa­
rameter X(>0): 
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BRIEF NOTES 

co = co(X), co(0) = 0, co'(X) > 0, 

p = p ( X ) , p ( 0 ) = 0 ,p ' (X)>0 . (1) 

Throughout this paper we will use a frame of reference relative 
to which the tube is stationary. We may, therefore, with no ambiguity, 
use X as a "t ime" parameter. 

In view of incompressibility, the plane, axially symmetric defor­
mation of the cylinder corresponding to varying X, (a quasi-static 
motion), is described by 

r = (R2 + AW)1'2, 6 = i , z = £; A(0) = 0. (2) 

Here (r, 8, z) are the "current" cylindrical coordinates of the point 
which in the undeformed configuration, (X = 0), was located at (R, 
ip, £). The nature of the loading suggests that we assume A(X), which 
is as yet undetermined, to be non-negative. We find from (2) that the 
only nonvanishing components of the Eulerian strain rate D—the 
symmetric part of the velocity gradient tensor—are 

Drr = -A/2r2, D00 = A/2r2, (A = dA(\)/d\) (3) 

The spin-tensor Q—the antisymmetric part of the velocity gradient 
tensor—vanishes identically: $2 = 0. 

In view of the isotropy of the material considered and the purely 
radial nature of the deformation, we may assume that the only non-
vanishing components of the Cauchy (true) stress a are oy, oj, and az. 
If we further suppose that the stress a is axially symmetric, a = <r(r, 
X), the equations of equilibrium reduce to 

doy/dr + (oy - a,)/r + pa2r = 0 (4) 

The last term in (4) is the inertial force and p is the (constant) mass 
density. We will assume that the undeformed configuration corre­
sponding to X = 0 is free of stress. 

Integrating (4) with respect to the deformed coordinates and using 
incompressibility and the boundary conditions, we get 

J»r(6) 
(ae - o>) dr/r (5) 

r(a) 

where p is the pressure at the (undeformed) inner boundary a. Hence 
the inertial effects involved in a steadily rotating cylinder are equiv­
alent to an "internal pressure" pco2(62 — o2)/2 for any incompressible 
material. 

S o l u t i o n 
Turning to the constitutive relations of the material, we will suppose 

that these are the classical elastic-plastic relations (in a form appro­
priate for finite deformations), viz. 

D = 3S/2E + [3Aep(<re)/2o-e]S. (6) 

Here, S = a — \ (tr a) 1 is the deviator of the Cauchy stress and ae is 
the equivalent stress: ae=\ (tr S2)1/2. The Jaumann (corotational) 
rate of the Cauchy stress deviator is denoted by S, so that S = S - fl 
• S + S • il. A is a loading coefficient with A = 1 during loading and A 
= 0 during unloading. The Young's modulus is E. A superposed dot 
denotes differentiation with respect to X with the (undeformed) ref­
erence position held fixed. Finally, ep(<re), the so-called equivalent 
plastic strain, is a given function of the equivalent stress ae; ep = 
tp(ae), fp(0) = 0, fp'(ffe) > 0 for ae > 0. In particular, according to the 
Ramberg-Osgood description, ep(ae) = K(aJE)n where K and n are 
material properties (constants). 

In the present context, since the spin-tensor fi vanishes, we have 
that S = S. Expressing (6) in terms of its cylindrical components leads 
to three nontrivial scalar equations. The third of these (the one as­
sociated with the z -direction), and the fact that the undeformed 
configuration (X = 0) is stress-free (so that Sz (r, 0) = 0) suggests that 
we take Sz(r, X) = 0. This in turn implies that az = (ay + an) 12. 
Therefore, we may write the equivalent stress oy, as 

oy = m (ae - oy), m = sgn (ae ~ ">)• (7) 

As X increases monotonically, the pressure p(X) and speed co(X) also 
increase continuously. This suggests that we tentatively assume, 
subject to subsequent verification, that when X increases the tube is 
being loaded at each point. Accordingly, we set A = 1 in (6) and in­
tegrate the only nonvanishing equation in (6) with respect to X. 
Keeping in mind thatj4(X) = 0 in the unstressed configuration (X = 
0), this leads to 

ae/E + ep(ae) = m/y/3 In ((R2 + A(\))/R2). (8) 

Since ae, ep, and A are non-negative, it follows that m = + 1 . This in 
turn, because of (7), shows that ae > ay. Observe from (8) and the 
properties of ep(ae) noted previously that we may, with no loss of 
generality, assume from hereon that ae > 0 at each point in the 
tube. 

It is convenient to define a function h(ae) for <je > 0 by 

h(ae) = exp (V3 (aJE + ep (ae))\. (9) 

We note that h(ae) > 1, h'(ae) > 0 for ae > 0 and that h(ae) — <» as 
cre -» oo. Equations (8), (9), and (2) with m = +1 lead to 

r2 = Ah(<je)/[h(ae)-l], R2 = A/[h(ae) - 1] (10) 

when ae > 0. Let aa and ab be the values of the equivalent stress at 
the inner and outer boundary, respectively, 

ae = aa at R = a,<je = <rb at R = b; (r2 = R2 + A). (11) 

It then follows from the second of (10) that 

In view of (9), it is readily shown that the first of (10) can be 
uniquely solved for ae = oe (r, A). This gives us the equivalent stress 
ae once A has been determined. 

It is convenient to change the independent variable to oe by writing 
or = o>(<re, A), where r 2 = Ah(ae)/[h(ae) - 1]. Rewriting the equi­
librium equation (4) in terms of oy enables us to integrate it, which, 
because of (10), (11) and the boundary condition on the inner surface 
leads to 

ar = -p- C"f(V)dr,-£^(R2-a2). (13) 
*Jaa 2 

Here we have set 

f(ae) = aeh'(ae)/^h(ae)[h(ae)-l], ae > 0. (14) 

Therefore, once A is determined, cre = ae(r, A) and equations (11) and 
(13) give the stress o>. This in turn, because of (7), determines the 
hoop stress ae-

In order to determine A, we insure that oy as given by (13) conforms 
to the stress-free condition on the outer boundary. This gives 

p + £ ^ ! ( 6 2 _ a 2 ) = C""f(v)dr, (15) 

in view of (11). Given the pressure p and the speed o>, (12) and (15) 
constitute two equations for the two unknown quantities aa, Ob-
Presuming that aa and &b can be determined from them, we can then 
use (10) and (11) to find A (= a2[h(aa) — 1]). This completely deter­
mines the stresses and deformation. 

What remains therefore is the solution of equations (12) and (15) 
for aa and Ob- If we confine our attention to the Ramberg-Osgood 
description of an elastic-plastic material, it can be demonstrated that 
(12) and (15) can be solved for aa, Ob provided the left-hand side of 
(15), p + pco2(62 — a2)/2, does not exceed some critical value Pmax-
Equation (15) for the special case co = 0 is the result obtained by 
Durban [1]. For any incompressible material, the left-hand side of (15) 
always holds since only the incompressibility condition was used to 
integrate (4) to give (15). 

R e s u l t s 
The graph of the total effective pressure, p + pco2(62 - a2)/2, versus 
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Stability of a Heavy Column 
With an End Load 
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Fig. 2 Critical curves; maximum pressure versus critical speed 

the displacement at the inner radius, u(a), is shown in Fig. 1 for dif­
ferent values of b/a. The numerical results were calculated for Alu­
minum 2014T6 based on the Ramberg-Osgood model. Consistent with 
the observation made in the previous section, this figure shows that 
the effective pressure cannot be increased beyond a certain value. 
Note that when this value is approached the displacement increases 
substantially with relatively little change in the effective pressure. 

The critical curve is the straight line in the (co2, p)—plane which 
bounds the admissible values of the pressure and the angular speed. 
This line is shown in Fig. 2 for different values of the ratio b/a. 

An explicit description of this "critical curve" can be obtained in 
the special case of a thin-walled tube. If the thickness t = b — a is 
small compared to a, we can expand <ra, at, about their mean value 
do by assuming that <x0 — at « <ro. The various equations may then 
be appropriately approximated. For a thickness ratio of b/a = 1.2, the 
thin-wall approximation gives for P m a x a value which agrees with the 
numerical result based on the exact solution to within four significant 
figures. Finally, it can be shown that the solution derived in this Note 
corresponds to loading everywhere in the body (provided the total 
effective pressure is less than Pmax). 
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Introduction 
The stability of a vertical column, one end embedded in a rigid 

foundation, is very important in structural engineering. Euler [1] first 
found the critical buckling end loads for a massless column. The heavy 
column without an end load was investigated by Greenhill [2] who 
succeeded in obtaining the critical density for the primary (least 
stable) mode. The combined effect of column density and end load 
was studied by Grishcoff [3], who obtained part of the stability 
boundary for the primary mode. In this Note we shall also study the 
stability due to the combined effect. We shall (a) complete the sta­
bility boundary for the primary mode by extending to the case when 
the column is hanging from the foundation and (6) investigate the 
higher modes of buckling. 

F o r m u l a t i o n 
We assume the column is slender enough such that the local cur­

vature is proportional to the local moment. Fig. 1 shows the coordinate 
system. A local moment balance gives 

EI 
ds'2 -[F + p(L-s')] sin 6 (1) 

where F is the downward end load, p is the density, L is the length, 
and EI is the flexural rigidity of the column, s' is the arc length, and 
6 is the local angle of inclination. Let s denote s' normalized by L. 
Equation (1) can be expressed as 

d20 
— =-[a + P(l-s)]smd (2) 

where a = FL2/EI and /? = pL3/EI are nondimensional parameters 
representing the relative importance of end load and density to the 
flexural rigidity respectively, a and (3 are both positive in Fig. 1(a). 
Negative a means the direction of the force is away from the fixed end. 
Negative j3 can be realized in the case of a hanging column (Fig. 1(b)), 
or when the upright column is immersed in a higher-density me­
dium. 

The boundary conditions are 

dd 
0(0) = 0, — (1) = 0 

Stab i l i ty 
Equation (2) can be linearized to give the stability equation 

(3) 
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the displacement at the inner radius, u(a), is shown in Fig. 1 for dif­
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bility boundary for the primary mode by extending to the case when 
the column is hanging from the foundation and (6) investigate the 
higher modes of buckling. 
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representing the relative importance of end load and density to the 
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Negative a means the direction of the force is away from the fixed end. 
Negative j3 can be realized in the case of a hanging column (Fig. 1(b)), 
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Fig. 1 Buckling of a heavy column; (a) a > 0, 0 > 0 and (ft) a > 0, 
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Fig, 2 The stability boundaries for the first three modes 

/-l/3(fl)«/-2/3(f2) ~ /l/3(fl)«/2/3(f2) = 0. (11) 

For (3 > -a > 0, 

Jr-l/3(fl)/2/3(f2) + Jri/3(fl)/-2/3(f2) = 0 (12) 

For given a, equations (10)-(12) are solved numerically for /3. Fig. 2 
shows the complete stability boundaries. Our results agree well with 
Grishcoff in the range he investigated: 25 > /3 > 0, — 7 < a < TT2/4. 

D i s c u s s i o n 

As far as we know negative (3 has never been studied before. Our 
analysis show that the stability for a > 0, /3 < 0 is not a mere reflection 
of a < 0,13 > 0. This is also illustrated in Fig. 2. In general, the stability 
curves are so nonlinear that any global straight-line approximation 
is meaningless. Below each curve, the column is stable with respect 
to the particular mode. The column is absolutely stable under the 
primary stability curve. 

The a intercepts of the curves in Fig. 3 agree with the normalized 
Euler buckling loads 7r2/4, 97r2/4, 257r2/4. The /3 intercepts are at 
7.83735, 55.9872, 148.512. Our values are more accurate than those 
of Greenhill and Grishcoff who use infinite series to obtain the values 
of 7.95 and 7.85, respectively, for the primary mode. 
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The Vibrating Beam With 
Nonhomogeneous Boundary 
Conditions 

d20 
— - - [ a + 0(l-«)]0 

We introduce a new variable 

r s l - s + - I0| 1/3 

Equation (4) becomes 

d20 

dr2 
= -(sign (3)r0 

The boundary conditions are 

A t r = ( l + ^ ] | / 3 | 1 / 3 ^ r 1 , 0 = 0 

A t r - - | | 8 | W 3 r 2 > - = 0 
a dr 

(4) 

(5) 

(6) 

(7) 

(8) 

The solution to equation (6) can be expressed in terms of Airy func­
tions 

8 = ClA,-(-(sign P)r) + c2B;(-(sign /?)r) (9) 

The condition for nontrivial solutions may be obtained from equations 
(7)-(9). By choosing the proper branches in the related Bessel func­
tions, we obtain the following cases: 

For a > -j8 > 0 or a > 0, /S > 0, or -a > /J > 0, 

J-1M1W-2M2) + JI/MI)JM(& = 0 

where ft = l ^ r ^ , f2 = | | r2 |3 /2 . For - ,8 > a > 0, 

(10) 

C. R. Edstrom1 

In Mindlin and Goodman [1] a procedure is described for extending 
the method of separation of variables to obtain solutions of linear 
partial differential equations with nonhomogeneous boundary con­
ditions. This procedure utilizes a change of dependent variable to 
produce homogeneous boundary conditions. Moreover, if the partial 
differential equation is originally homogeneous, the equation in the 
new dependent variable becomes nonhomogeneous and the existence 
of a set of orthogonal functions must be assumed. However, if a 
property chosen change of dependent variable is made, a homoge­
neous linear partial differential equation will remain homogeneous 
as well as have homogeneous boundary conditions, but the initial 
conditions will be nonhomogeneous. Thus the assumption of the ex­
istence of a set of orthogonal functions is not necessary [2]. Also, if a 
linear partial differential equation is nonhomogeneous, a properly 
chosen change of dependent variable will reduce the equation to a 
homogeneous equation as well as produce homogeneous boundary 
conditions and nonhomogeneous initial conditions. In order to find 
a proper change of dependent variable, a system of ordinary differ­
ential equations with two point boundary conditions must have a 
solution. However, when the change of dependent variable can be 
established, the resulting problem can be easily solved. 
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BRIEF NOTES 

As an illustration of this method, consider the following example. 
The boundary-value problem 

« ! j n n + yu = 0, a is a constant, (1) 

withy(0,S) = y(w,t) = yxx(0,t) =y(xfl) = yt{x,Q) = 0andyxx(ir,t) = 
4Air sin at, A is a constant, would describe a beam of length w, ini­
tially at rest with no initial velocity, with one simply supported end 
and with a time-dependent bending moment at the other end. Make 
the change of dependent variable 

y(x,t) = Y(x,t) + F(x) sin at + aG(x)t cos at. (2) 

This form for the change of dependent variable was selected because 
of the form of the nonhomogeneous boundary condition associated 
with equation (1). Substituting y(x,t) from equation (2) into equation 
(1), we have 

a*Yxxxx + Ytt = 0 (3) 

with 

7(0,4) = Y(Tr,t) = Yxx(Q,t) = Yxx(ir,t) = 0 (4) 

itF(x) and G(x) satisfy the system 

F""(x)-F(x) = 2G(x) 

G""(x) - G(x) = 0 

subject to the two-point boundary conditions 

F(0) = F(ir) = F"{0) = G(0) = G(TT) = G"(0) = G"(TT) = 0 

and F"(T) = 4ATT. 

A solution of this system of ordinary differential equations is 

F(x) = 2Ax cos x — 5A sin x + -

G(x) = AA sinx 

2Air sinhx 

sinh IT 

(5) 

Thus substituting F(x) and G(x) from equation (5) into equation (2), 
we have 

Y(x,0) = 0 and Yt(x,0) = a A sin x - 2x cos * 

(6) 

(7) 

y(x,t) = Y(x,t) + 2Ax cos x sin at + A(Aat cos at 

2Air sinh x sin at 
— 5 sin a t ) sin x H — 

sinh TV 

The initial conditions for the function Y(x,t) become 

2-ir sinh x\ 

sinh 7T j 

Applying the method of separation of variables to equation (3) with 
homogeneous boundary conditions (4) and nonhomogeneous initial 
conditions (7), the solution of this new problem is 

Y(x,t) = 8A E - ^ ~ r sin anH sin nx. (8) 
n=2n(n4- 1) 

Substituting Y(x,t) from equation (8) into equation (6), we have the 
solution of the original problem. Also from equation (6) we observe 
that y(x,t) is unbounded as t -* <=. Thus the time-dependent bending 
moment produces resonance. Actually, there are infinitely many 
time-dependent bending moments which will produce resonance. 
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Similarity Solutions to the Non-
isothermal, Two-Dimensional 
Squeezing Flow of a Viscous 
Fluid 

N. Phan-Thien1 

1 I n t r o d u c t i o n 
Recently, Cantwell [1] has shown that the two-dimensional un­

steady flow of a viscous fluid admits the following 10-parameter Lie 
group of transformations, written in an infinitesimal manner [2], 

x =x + ei(x,y,t,\j/) + 0(t2), 

y = y + ep(x, y, t, \p) + O (e2), 

t = f + e f ( x , y , t , ^ ) + 0(e 2 ) , (l) 

^ = ^ + «7)(x,y,t,l/') + 0(£2), 

where x, y, t are space-time coordinates, \p is the stream function and 
£, p, f, ?? are given by [1] 

£ = ax + by + cty + fi(t) + d, 

p = -bx + ay — ctx + f2(t) + e, 

$=2at + h, 

r, = |c (x 2 + y2) - f2(t)x + fi{t) y + s(t) + p , 

(2) 
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where the dot denotes a time derivative. This group has seven explicit 
parameters, a,b,c,d,e,h, a n d p and three implicit parameters con­
tained in fi(t), /2(f), and s(t). 

In this Note, we extend (1) to cover the nonisothermal case and il­
lustrate the technique with the squeezing flow problem where either 
the temperature or the heat flux boundary condition is specified on 
the plate. 

2 I n v a r i a n t G r o u p 
The nonisothermal flow of an incompressible Newtonian fluid can 

be adequately described by 

V2V( + </v V 2 \k - ^ V tyy = v Vi/< (3) 

Tt + i/yTx-TpxTy=Dv2T, (4) 

where V' is the stream function, T the absolute temperature, and D 
is the thermal diffusivity of the liquid, with a kinematic viscosity v. 
Throughout the Note, the subscript denotes a partial derivative with 
respect to the subscript. 

Consider a one-parameter (e) Lie group of space-time transfor­
mations [2], written in an infinitesimal manner, 

x =x + eHx,y,t) + 0(e2), 

y =y + cp(x, y,t) + 0(c2), 

i = t + t$(x,y,t) + 0(ei), (5) 

\P = f + ev(x,y,t,\ls,T) + 0(e2), 

T = T+eTr(x,y,t,xP,T) + Oie\ 

where x, y, t, \p, f are the new variables. 
Equations (3)-(4) are said to be invariant under (6) if they remain 

unchanged in the new coordinates (x, y, i, fy, f), viz., 

v2h+h^2h ~ hv2fo = "v4& (6) 
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x =x + eHx,y,t) + 0(e2), 

y =y + cp(x, y,t) + 0(c2), 

i = t + t$(x,y,t) + 0(ei), (5) 

\P = f + ev(x,y,t,\ls,T) + 0(e2), 

T = T+eTr(x,y,t,xP,T) + Oie\ 

where x, y, t, \p, f are the new variables. 
Equations (3)-(4) are said to be invariant under (6) if they remain 

unchanged in the new coordinates (x, y, i, fy, f), viz., 

v2h+h^2h ~ hv2fo = "v4& (6) 
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Ti+foTt-faT^DvtT, V = d 2 / d x 2 + d 2 / d y 2 (7) 

The mathematics of invariance are well presented in the monograph 
of Bluman and Cole [2], and it can be shown that up to an error terms 
of 0(e2), (6) and (7) lead to (the so-called invariant surface conditions 
W). 

£ = ax + by + cty + / i( t) + d 

p = bx + ay — ctx + f2(t) + e 

t=2at + h (8) 

7) = Jc(x 2 + y2) - Ut)x + h(t)y + s(t) + p 

•K = 2aT + q 

This represents an 11-parameters group of transformations; eight are 
explicit (o, b, c, d, e, h,p, q) and three implicitly contained in fi(t), 
f2(t), and s(t). 

For any function F that remains invariant under (8), it must satisfy 
the invariant surface condition [2] 

£FX + pFy + fF( + vFf + TTFT = 0 

which can be solved by the characteristics method 

dx_ _ dy_ _ dt_ _ <hp_ _ dT_ _ dF_ 

£ P f V * 0 

Similarity variables can be generated by (9). To illustrate its appli­

cation, we take up the squeezing flow next. 

3 S q u e e z i n g F l o w 
The problem of squeezing a viscous fluid between two parallel 

plates occurs in the unsteady loading of bearings; however, its solution 
using the full Navier-Stokes equations is still unknown and existing 
analyses invariably assume the quasi-static and lubrication approx­
imation. Thus similarity solutions to this problem are welcome from 
a numerical analysis point of view. To this end Wang [3] noted that 
if the approach velocity of the plates is proportional to (1 — at)-1'2, 
where a is a constant, then a similarity solution is possible. This was 
confirmed in Phan-Thien [4] using Cantwell's [1] similarity group. 
We consider here the nonisothermal squeezing flow where the 
boundary conditions are 

On the upper plate where y = H(t), the velocities must satisfy 

u(y = mt)) = 0; o(y = H(t)) = H(t) (10) 

For the temperature field, we may choose either to prescribe the 
temperature (Case a), 

T(y = H(t)) = Tx(t) (11) 

or to prescribe the heat flux (Case b), 

Ty(y = H(J)) = -Q(t), (12) 

where Ti{t), Q(t) are some known functions of time. 
Only symmetrical flow fields are considered; thus 

v(y = 0) = 0 = Ty(y = 0) (13) 

Now we select a subgroup of (8) that also preserves the boundary 
conditions (10)-(13). 

Invariance of the boundary curve y = H(t) requires that y = H(t) 
which implies 

p = fl(t)f, at y = H(t), 

that is, 

-bx + aK(t) - ctx + f2(t) + e = (2at + h) H(t) 

This is satisfied identically if b = c = 0 and 

k(t).= H(t)(2at + h)-aH(t)-e (14) 

Next, the invariance of (10) implies 

CUy = H(t)) = 0, v(y = H(t)) = H(t) (15) 

which leads to f\ = 0 or that f\(t) = constant. Similarly, the invariance 
of y = 0 requires t h a t / 2 = e. Thus, from (14), 

(2at + h) H(t) - aH({) = 0 

or that 

' H(t) = x{2at + h)1'2, H ( t ) = s ( 2 o t + fe)-1/2. (16) 

where ;•, s are some constants. 
Next, the invariance of Ty(y = 0) = 0 is satisifed automatically. For 

Case (o), the invariance of (11) requires 

T(y = H(t)) = Ti(t) 

which leads to 

2aTi(t) + q = Tx{t) (2at + h) 

or 

T1(t) = m(2at + h)+n, (17) 

where m, n are some constants. 
Finally, for Case (6) we require that (12) in invariant, viz., 

Tjfy = H(t)) = ~Q(i) 

which implies 

(2at + R) Q + aQ = 0, 

or 

Q(t) = k(2at + h)1'2, (18) 

where k is a constant. 
Therefore if the approach velocity is given by (16) and the pre­

scribed temperature (or temperature gradient) is given by (17) (or 
(18)) then the plane nonisothermal squeezing flow admits similarity 
solutions described by the following characteristics (cf. (9)): 

dx dy dt d\l/ dT 
— = — = = ^ — = (19) 
ax ay 2at + h s(t) + p 2aT + q 

The first two equalities yield the similarity variable 

£1 = x(2at + h)-1'2, £2 = y(2at + h)-1'2 (20) 

from which the stream function and the temperature is given by 

^= rts_p±idt, + <j)(^^ (21) 
Jo 2at' + h 

T = (2at + h) d ( | b fc), (22) 
where 4> and 6 can be found by substituting (21)-(22) back in (3)-
(4). 

4 A S i m i l a r i t y So lu t ion at Smal l "Reynolds" and 
" P e c l e t " N u m b e r 

To construct a similarity solution, we assume the gap thickness to 
be 

2H(t) = 2o(l - at)1'2 (23) 

Note that (23) is equivalent to (16) and 2a is the initial gap thickness. 
We only discuss Case (a) where 

Ti(t) = T0( l - at) (24) 

which is equivalent to (17); To is the initial plate temperature. 
Similarity variables are (cf. (20)) 

£1 = - (1 - at)'1'2, £2 = - (1 - at)-1'2 (25) 
a a 

A similarity solution can be constructed when s(t) + p = 0 and 

0(£i, £2) = - i o2a£1/(£2), Oi.Hu £2) = 0(£2) (26) 
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which yields for the velocity field 

ax 
u • 

2(1 - at) 

a 

f'(h), (27) 

(28) 
2 ( l - a t ) 1 / 2 

This is the similarity solution presented by Wang [3]. 
The structure of this solution is obvious: it does not permit material 

planes to experience any "buckling" during subsequent deforma­
tions. 

Assuming (27)-(28), the temperature field is given by 

T = To(l - at)0(fe), (29) 

where /(&) and 0(£2) are given through (cf. (3)-(4)). 

&'" + 3/" + f'f" ~ ff" = i /"", (30) 
H 

£8'-f0'-20 = -6" (31) 

In (30)-(31) R and P are the Reynolds and Peclet numbers defined 
by 

R = — , P = — , 
2c 2D 

(32) 

and the boundary conditions on / and 6 are 

/(O)=/"(O) = O=/ ' (1) = 0'(O) 

/(I) = 0(1) = 1 (33) 

When R ~ P « 1 the solutions take the form 

Application of the Reissner 
Method to a Timoshenko Beam 

J. S. Rao,1 S. V. Kuikarni,2 and K. B. 
Subrahmanyam3 

The Reissner and the potential energy methods have been applied 
to a Timoshenko beam vibrating in flexure. Frequency equations are 
developed using shape functions for bending moment, shearing force, 
deflection, and slope in series form through the Ritz process. Natural 
frequencies and mode shapes are obtained and comparison is made 
between the results of the two approaches from which it is observed 
that the Reissner method indicates a quicker convergence and gives 
better mode shapes. 

N o m e n c l a t u r e 
A = area of cross section of beam at any section 
E,G — Young's modulus, modulus of rigidity 
Ixx — second moment of area about principal axis 
L = length of beam 
M, V = bending moment, shearing force 
p = circular frequency 
t = time 
*x>yy = coordinate axes through the centroid 
y ,<f> = dynamic deflection and slope of the beam in yz- plane 
z = coordinate distance measured from the fixed end 
Z = z/L 
p = mass density of the material of the beam 
' = dash represents differentiation with respect to z 

f = fo + Rfi + R2f2 + 0(R3), 

6 = do + Pd + P2h + 0(Pa,R3, R2P, RP2) 

where 

fo- ' - i & s + - & , 0o = i. 

/: 

and 

280 

i = l - h 2 , 

1 

(34) 

(35) 

(36) 

(37) 

fc-5ik> +=« '~* ' + 
18017 

1386 
&* + 

72 

47489 

9240 

70 

Q, 

60 
• 2£2

6 + 15£2
4 - 60£2

2 + 47 . (38) 

The zeroth-order solution is the Stokes flow in which the temper­
ature is uniform throughout. Up to terms of 0(P), the temperature 
is not influenced by the velocity field and is quadratic in £2. The in­
fluence of the velocity field on the temperature can be felt at the O (P2) 
level via the term ftfii'. At moderate Reynolds and Peclet numbers 
(R, P ~ 0(1)), there will be boundary layers near the plates and a 
matching method must be used to find a solution to (30)-(31). 

R e f e r e n c e s 
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I n t r o d u c t i o n 
The objectives of the present Note are to apply the Reissner prin­

ciple [1-3] to the simplest idealization of a turbomachine blade—a 
Timoshenko beam vibrating in flexure and to compare the results with 
those obtained from the classical potential energy method. 

To this end, the shape functions for bending moment, shearing 
force, deflection, and slope are developed in the series form. Making 
use of these in the Reissner and the potential energy functionals, the 
respective frequency equations are obtained through the Ritz process 
and the convergence rates of the two approaches are studied for a 
Timoshenko beam of given parameters. 

A n a l y s i s 
The Reissner and the total potential energy functionals for a uni­

form symmetric Timoshenko beam, without body forces and surface 
tractions, are, respectively [1]: 

J o 

M 2 

2EI, 
L 

V2 

2KGA 
+ M<t>' - V(y' - <f>) dz 

H = i £ [EIXX(0')2 + KGA(y' - mdz 

The kinetic energy of the beam vibrating in the yz-plane is 

T = l C [plxxi'2 + pAy2]dz 
Jo 

The dynamic Reissner functional L R and the Lagrangian Ln can be 
formulated in the usual way by letting 

.(1) 

(2) 

(3) 
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which yields for the velocity field 

ax 
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(28) 
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This is the similarity solution presented by Wang [3]. 
The structure of this solution is obvious: it does not permit material 

planes to experience any "buckling" during subsequent deforma­
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In (30)-(31) R and P are the Reynolds and Peclet numbers defined 
by 

R = — , P = — , 
2c 2D 

(32) 

and the boundary conditions on / and 6 are 
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use of these in the Reissner and the potential energy functionals, the 
respective frequency equations are obtained through the Ritz process 
and the convergence rates of the two approaches are studied for a 
Timoshenko beam of given parameters. 
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The Reissner and the total potential energy functionals for a uni­

form symmetric Timoshenko beam, without body forces and surface 
tractions, are, respectively [1]: 
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LR = T - IR 

It can be seen that LR is a functional of the form 

LR = /W,V,yy,y ,0 ,0 ' ,0 ,z , i ) 

(4) 

(5) 

(6) 

where z and t are independent variables. Application to equation (6) 
of the standard procedure of calculus or variations [4] leads to the 
stress-strain relations, equations of motion and boundary conditions 
which agree with those derived by Carnegie [5]. 

The time averaged Reissner and potential energy functionals for 
flexural vibration of a Timoshenko beam are given by 

-ri L \pp2h. pp2A 
y2 + 

M2 

2EIX: 
• + -

V2 

2KGA 

+ M<j>'-V(y' - <t>) dz (7) 

Ln = 1 C [ f tP 2W 2 + PP2Ay2 - EIXM')2 - KGA(y' - 0)2]dz 
Jo 

The shape functions are assumed in series form as 

y = L {AiZi + Ai+iZ*"} 

i 

i 

M = E mi - zy + c,-+i(i - 2)i+1) 
i 

v = ziDi(i-zy + Di+1(.i-zy+1} 
i 

which satisfy the boundary conditions 

y = 0 = 0 at Z = 0 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
M=V = 0 at Z = \ 

The arbitrary constants A;+i and S i + i are eliminated from the con­
ditions 

(y' - 0) = 4>' = 0 at Z = 1 (14) 

and Ci+i and D;+i from the conditions 

M' = V; V = 0 for all values of Z. (15) 

Substituting the resulting shape functions in equations (7) and (8), 
performing the necessary calculus and applying the Ritz process for 
minimization of LR and L* with respect to Ai,... D;, we get the familiar 
eigenvalue problems of the form 

A + p2B' = 0 (16) 
where A and B are symmetric square matrices 

The eigenvalues and mode shapes of the two problems as defined 
by equation (10) are obtained from a computer program developed 
in Fortran language and run on a TDC-316 computer for a beam with 
the following data: 

L = 3.62 in. (9.1948 cm) A = 0.128 sq. in. (0.8258 cm2) 

E = 30 X 106 lb/in.2 (206.85) GPa) G = 12 X 106 lb/in.2 (82.74G Pa) 

Ixx = 0.001388 in.4 (0.05777 cm4), p = 0.283 lb/in.8 (0.00783 kg/cm3) 

K = 10(1 + i/)/(12 + 11;/) 

where v is Poisson's ratio. 

R e s u l t s a n d D i s c u s s i o n 
Table 1 gives a comparison of the results obtained here with those 

of Sutherland and Goodman [6]. 

Table 1 Frequency ratio 
frequency corrected for shear and rotary inertia 

classical uncorrected frequency 

Number of 
terms in Reissner method Potential energy method 
solution I Mode II Mode III Mode I Mode II Mode III Mode 

1 1.028 
2 0.992 
3 0.992 
4 0.992 
5 0.992 
6 — 

Frequency 0.99 
ratio from 
reference [6] 

. 
1.082 
0.951 
0.951 
0.950 

— 
0.95 

— 
1.126 
0.902 
0.897 

— 
0.89 

2.261 
1.002 
0.992 
0.992 
0.992 
0.992 

1.827 
0.967 
0.995 
0.951 
0.951 

— 
1.557 
0.924 
0.909 
0.899 

T a b l e 2 N o d a l locat ions: f r a c t i o n of l e n g t h f rom f ixed 
e n d 

Nodal location 
Mode 

number 
Reissner 
method 

Potential 
energy method 

Exact 
solution [7] 

II 
III 

0.783 
0.500 
0.868 

0.783 
0.493 
0.875 

0.783 
0.504 
0.868 

It can be seen that the frequency ratio decreases as the number of 
terms in the assumed solutions increase. The frequency ratios for the 
first two modes obtained from the Reissner method with a three-term 
solution show convergence to three significant figures while the po­
tential energy method indicates a five-term solution for a similar ac­
curacy. While it has been observed that the mode shapes obtained by 
both of these methods are close to the exact ones, the nodal locations 
given by the Reissner method, Table 2, are seen to be closer to the 
exact ones [7j. 

From the results presented, the Reissner method appears to indi­
cate a quicker convergence and gives better mode shapes than the 
classical potential energy method. 
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Instability of a Damped Rotor 
Partially Filled With an Inviscid 
Liquid 

S. L. Hendricks1 

This Brief Note proves that a simple pin-pin rotor that is partially 
filled with an inviscid liquid is inherently unstable when an external 
damper is added to the rotor. 

B a c k g r o u n d 
During experiments performed on a rotor partially filled with liq­

uid, Kollman [1] discovered a wide range of rotor spin speeds for which 
the system was unstable. Kuipers [2], Wolfe [3], and Hendricks and 
Morton [4] have analyzed the Kollmann experiment. All three in­
vestigators were able to calculate stability limits for an undamped 
rotor partially filled with an inviscid liquid. 

Kuipers [2] and Hendricks [4] added an external damper to the 
rotor and noted that the system became unstable for all spin 
frequencies and all nonzero damping factors that were calculated. 
Neither author offered a proof of this fact. 

T h e o r y 
The stability characteristics of a damped rotor partially filled with 

an inviscid fluid are controlled by the characteristic equation [4]. 

(T + M)So4 + 2(iC7 + A[7- l ]So3 

+ (A2[y - 5 - 4ju] + 2iCA[y - 2] - y)S0
2 + 2A(1 - 3iCA 

- 2[1 + iAA2)S0 + A2(l - 2iCA - A2[l + jit]) = 0 (1) 

where 

y = [1 + (b/a)2]/[l - (bio.)"1] = nondimensional fill param­
eter 

p. = wpa2L/m = nondimensional fluid density 
C = C/2mo)o = nondimensional damping factor 
A = fi/a>o = nondimensional spin frequency 

So = eigenvalue which determines both frequency and sta­
bility 

and 

a = radius of the rotor 
b = radius of the fluid free surface 
p = fluid density 
L = rotor height 
C = damper coefficient 
m = mass of the rotor 
Q = rotor spin frequency 
wo = dry rotor critical frequency 

To investigate the stability of equation (1), the following con­
stants are formed: 

(where Ak and Bk are zero if k > 4 and A2r is of the 2rth order) be 
positive. (See Porter [5]). These conditions are known as the gener­
alized Hurwitz inequalities. 

After much algebra, 

V2 = 2Cy(y + p.) 
V4 = 4C2(7 -I- p) (7 3 + 3A2py2 + A2py - 4AV) 
V6 = 8A4Csp(y - 1)(7 + 1)(7 + jt)(572 + [20 - A2p]y + A2p + 16) 
V8 = -16A1 0CV2(Y + p)(y - 1)2(7 + l ) 3 

Since Vs < 0 for all damping factors (C), all spin speeds (A), all fill 
parameters (7), and all fluid densities (p.), it follows that the original 
system is completely unstable. When C = 0 all of the determinants 
are identically zero, a condition that is characteristic of undamped 
systems. 

C o nc l us i o n 
When an external damper is added to a rotor containing an inviscid 

fluid, the resulting system has been shown to be unstable over all spin 
speeds and all nonzero damping factors. 

This result although true is unrealistic because rotors have been 
shown to run stably while containing liquid [1, 3]. The discrepancy 
lies not in the mathematics but in the physics. If the theory includes 
dissipation due to an external damper, then it must also include dis­
sipation due to the viscosity of the entrapped fluid [4], 
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Effects of a Circular Hole on 
States of Uniform Twisting and 
Shearing in Shallow Spherical 
Shells 

J. E. Reissner1 

A0 = 0 
Ai = - 2C7 
A2 = 2AC (7 -
A3 = 6A2C 
A 4 = - 2A3C 

Bo 
S i -

- 2) B2 --

s3 = 
B4-

= 7 + M 
= - 2 A ( 7 - 1) 
= A2(7 — 4/x — 5) — 7 
= - 2 A ( l - 2 A 2 [ l + /i]) 
= A 2 ( l - A 2 [ l + /x]) 

The necessary and sufficient conditions for stability are that th 
determinants 

v 2 r = 

Ao 
So 
0 
0 

Ai 
S i 
Ao 
Bo 

•• A2r_i 
•• B2r-i 

• • A 2 r - 2 

• • B 2 r _ 2 

(r = 1, 2, 3,4) 
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I n t r o d u c t i o n 
It is the purpose of what follows to complement recent results by 

E. Reissner on the subject of this Note [1,2] in such a way as to have 
values of stress-concentration factors in the entire range of parameter 
values, in place of the results in [1,2] which are valid for small and for 
large values only. 

Given the discussion of the physical aspects of the two problems 
and of the relevant general analytical developments in [1, 2] we begin 
by restating the results which are the starting point of the work of this 
Note in the following manner. 

T r a n s v e r s e T w i s t i n g [1] 
The values of membrane and bending stress-concentration factors 

1 Department of Physical Science, Pembroke State University, Pembroke, 
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Table 2 Stress-concentration factors for membrane shear 

u 
0 

0. 1 

0. 3 

0 . 5 

0 . 8 

1.0 

2 . 0 

3 . 0 

4 . 0 

5 . 0 

6 . 0 

7 . 0 

8 . 0 

9 . 0 

10.0 

15.0 

20.0 

25,0 

50. 0 

100.0 

200.0 

400.0 

V 

N 

0 

0. 0396 

0. 247 

0.558 

1.166 

1.655 

5.068 

10.127 

16.87 

25. 33 

35.50 

47.40 

61.03 

76.38 

93.46 

204.8 

359. 5 

557.4 

2, 197 
8,722 

34,764 

138,810 

= 0 

A l 

55.43 

70. 15 

86.61 

194.9 

346.4 

541. 3 

2, 165 

8,660 

34,641 

138,564 

\ 
V = 

N 

0 

0.0385 

0. 254 

0.598 

1.312 

1.909 

6. 317 

13. 113 

22.32 

33.97 

48.05 

64.57 

83.54 

104. 95 

128.81 

284.8 

502. 1 

780.5 

3,091 

12,305 

49,106 

196,191 

1/3 

A l 

44. 09 

60.01 

78.38 

99.20 

122. 47 

275.6 

489.9 

765. 5 

3,06 2 

12, 247 

48,990 

195,959 

v = 

N 

0 

0.0380 

0.261 

0.631 

1.425 

2.104 

7.263 

15. 37 4 

26.46 

40.52 

57.58 

77.63 

100.68 

126.72 

155.76 

345.9 

611. 1 

951.3 

3,777 

15,054 

60,106 

240,213 

1/2 

A l 

13.500 

24.00 

37.50 

54.00 

73.50 

96.00 

121.50 

150.00 

337.5 

600.0 

937.5 

3,750 

15,000 

60,000 

240, 000 

V = 0 

N 

* 
4.0158 

4. 140 

4.376 

4.908 

5. 362 

8.545 

12.964 

18.47 

25.02 

32.60 

41. 18 

50.78 

61. 38 

7 2.98 

146.0 

244. 1 

367. 2 

1,358 

5,214 

20,426 

80,850 

k m 
v = l / 3 

N 

4 

4.0157 

4.137 

4.367 

4.880 

5.316 

8.391 

12.690 

18.08 

24.50 

31.95 

40.42 

49.89 

60.37 

71.86 

144.3 

241.8 

364. 3 

1, 352 

5,202 

20, 402 

80,803 

v= 1/2 

N 

4 

4.0156 

4.136 

4.363 

4.867 

5.296 

8.321 

12.562 

17.89 

24,26 

31.65 

40.05 

49.47 

59.89 

71.31 

143.5 

240.7 
362.9 

1.349 

5.196 

20,391 

80,779 

A. 

112. 5 

200.0 

312.5 

1, 250 

5,000 

20, 000 

80,000 

check, as they must, the correctness of the limiting results for ft = 0 
and, as it was hoped that they would, the correctness of the asymptotic 
results for sufficiently large values of ii. As expected, the meaning 
of "sufficiently large" is different for the problem of twisting where 
two-term asymptotic formulas had been obtained, and for the problem 
of membrane shear where one-term asymptotic formulas only had 
been derived. Evidently, in the latter case the asymptotic results come 
close to the results obtained by solving the 4 by 4 system numerically 
only when 50 < fi. In the former case the two-term asymptotic for­
mulas are quite close to the numerical results in the larger range 10 
< ii. In summary, it is possible to say that the present evaluation, 
insofar as the problem of transverse twisting is concerned, adds little 
to the information of technical interest which had previously been 
obtained in [1]. On the other hand, insofar as the problem of mem­
brane shear is concerned the present calculations add considerably 
to qualitative and quantitative insights of technical interest to the 
preliminary quantitative results which were obtained in [2]. 

Description of Numerical Procedure 
Tabulated values of zero-order Kelvin functions for n < 100 are 

available in Nosova [3] and Abramowitz and Stegun [4], together with 
recursion relations for the computation of the second-order functions 
and their derivatives. Computer subroutines for the zero-order 
functions are also available [5]. For larger values of /x, a simple 

closed-form asymptotic expression provides these functions accurate 
to the fifth significant figure or better. At these values of the argu­
ments, the magnitude of the functions is of the order of exp (—jx/yfi), 
leading to values of the determinant of the 4 by 4 system which are 
close enough to zero to cause underflow difficulties. In these cases, 
the Kelvin functions and derivatives appearing in the system may be 
rescaled by any common factor, leading to a determinant modified 
by multiplication by the square of the scaling factor and to solutions 
C3 and C4 modified by division by this factor. The use of these solu­
tions, together with the rescaled Kelvin functions, in equations (1) 
and (3) then provides values for the stress-concentration factors that 
are independent of the scale factor. 
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Optimal Isolation of a Single-
Degree-of-Freedom System 
With Quadratic-Velocity 
Damping1 

T. L. Alley2 

The response of a mass isolated by a linear spring and a quadratic-
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velocity damper subjected to a step-and-decay velocity input at the 
base is found in closed form. This solution leads immediately to the 
optimal isolation system for this input. The parameters of the op­
timal isolation system are given by a simple formula. 

Brief Note 
Consider a single-degree-of-freedom oscillator initially at rest and 

subjected to a specific input motion at the base. Define x as the inertial 
motion of the mass, y as the intertial motion of the base, and z as the 
relative displacement 

•x-y. (1) 

A common optimization criterion for the design of the isolation system 
is to require that the peak inertial acceleration of the mass be limited 
and that the peak relative displacement between the mass and the 
base be minimized. 
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Now consider a specific form of the input motion as 

y = 0; t < 0 (2a) 

y(t) = V-at; t > 0 (2b) 

y(t = 0) = 0 (2c) 

where V and a are positive and the time of interest is less than Via. 
If a is zero then this is the common velocity-step problem. For zero 
initial conditions of the mass and a general isolation force h(z, z) the 
system to be solved is 

z = h(z, z) + ma = h'(z, z) 

2(0) = 0 

z(0) = - V 

(3a) 

(36) 

(3c) 

Note that h' differs from h by only a constant. The time of interest 
will be further restricted to the interval [0, T] where T satisfies 

z(T) = 0 

for the first time. Also consider the functional 

J=\z(T)\ 

(4) 

(5) 

which depends on h' and is the extremal of z. If J is minimized subject 
to the condition that 

\h'(z,z)\ <H0 (6) 

where Ho is a constant then it has been shown by Troitskii [1], Kar-
nopp and Trikha [2] and elsewhere that this optimal isolation is given 
by 

h'(z,z) = -HOBign(z(0)) (7) 

over,the interval [0, T], After T the relative displacement can be 
brought to zero in any manner as long as z(T) and Ho are not ex­
ceeded. Note that the optimal isolator generates a constant force such 
that the mass acceleration equals the limiting acceleration up to the 
time of peak relative displacement but that the form or mechanization 
of this optimal isolator is unknown. 

Let us now construct an isolation system composed of a linear 
spring and a quadratic velocity damper. Hydraulic dampers exhibit 
such behavior and are in widespread use. Equation (3a) now be­
comes 

mz + czlzl + kz = ma (8) 

where c and k are positive constants. Because we are interested only 
in the motion up to peak relative displacement there may be 
written 

\z\ = |* ~y\ = - z 

because z is negative. The system to be considered is now 

mz — cz2 + kz = ma (9a) 

z(0) = -V (96) 

z(0) = 0. (9c) 

The order of equation (9a) may be reduced from two to one, time 
eliminated, and the equation made linear by the transformation 

ds dz dt d ldz\ 
— = 2 H =2z' 
dz dt dz dt \dt 

The system to be solved is now 

1 ds c k 
- sH— z = a 
2 dz m m 

s(0) = V2. 

(10a) 

(106) 

(11a) 

(116) 

The solution of system (11) is 

mk 
s = \V 

2c2 

ma 
+ — | e iczli 

k mk 
' + - z + — - • 

c 2c2 
ma 

c 
But from equations (1), (106), and (12) there may be written 

c / „ mk ma o2czfm _i_ , . 
2c 

(12) 

(13) 
m \ ZC- c 

and the inertial acceleration is expressed as function of z, rather than 
t, for our problem. 

Suppose now that we select k and c such that 

mk 
V2-

ma 
- + — = 0 

2c2 c 
(14) 

in equation (13). This would yield a case of constant acceleration 
which characterizes the optimal isolation system. The optimal ac­
celeration will now be denoted as xo and is 

xo-
lk 

2c 

From equations (1), (26), and (15) there follows: 

lk 
• x -y 

2c 
•t-V. 

(15) 

(16) 

Note that at z = —R, or peak relative deflection, there must be 
z = 0 and from equation (16) this occurs at 

•2VC-. 
k 

(17) 

Integrating equation (16) once more and evaluating the result at T 
yields 

R = V2-. 
k 

For this solution to be valid requires 

a 

lk 
a < - -

2c 

which implies that i'o is positive from equation (15). 
Equation (19) may be recast in the form 

IV 2 

(18) 

a <-
2 R 

(19) 

(20) 

using equation (18). This is more convenient for optimization. 
Because the optimal isolation system for the general problem de­

scribed by equations (3)-(6) resulted in a constant mass acceleration 
equal to the limit over [0, T] it is asserted that this optimal result may 
be achieved by the isolation system selected in equation (8). That is, 
for the optimization conditions of 

min J = min \z(T)\ 

subject to \h'(z,z)\<Ho 

no better minimum can be achieved than that resulting from the linear 
spring and quadratic velocity damper system. 

After first verifying that condition (20) holds, the optimal accel­
eration and isolation parameters may be found by performing the 
following calculations derived from those just given. 

xo 
• IY1 
2 R 

u m •• «o = — xo R 

(21) 

(22) 

and 
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>V2 
(23) 

where the subscripts denote optimal values. 
In comparison with equation (21), for the special case of a con­

stant-velocity input, a linear undamped system yields 

Xo (undamped) = V2/R 

and a linear, viscously damped system yields 

io(viscous) = 0.5204(V"2/fl) 

Thus the performance of the quadratic-velocity isolation system is 
much better than an undamped system and slightly better than the 
viscous system. 
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I Torsion of Pretwisted Beams 
Due to Axial Loading1 

Aviv Rosen.2 The coupling between extension and torsion of 
pretwisted beams was examined in a supplement to a report [1] 
published several years ago entitled "Re-Examination of the Com­
monly Used Equations of Motion of Pretwisted Rotor Blades." This 
coupling appears in the commonly used equations of motion of pre­
twisted rotor blades which were derived in the classical work of 
Houbolt and Brooks [2]. The following two results were pointed out 
in this supplement: 

1 If it is assumed that the previous derivation is correct, then this 
phenomenon is negligible within the accuracy of the theory. 

2 It was shown by a rigorous derivation that the terms associated 
with the tension-torsion coupling effect due to pretwist are not only 
negligible but are, in fact, incorrect. The reason for the appearance 
of these incorrect terms was the fact that, while the derivation leading 
to their appearance is done by using a nonorthogonal system of 
coordinates, the appropriate theory for such a system was not ap­
plied. 

These results raised strong objections from those who used this 
theory [2] in the past, including Dr. Hodges. I was, therefore, pleased 
to see in the subject paper that he now agrees with the aforementioned 
results. He also claims that nowadays some rotor blades are built out 
of composite materials so that equivalent G/E-values may be much 
less than unity. Therefore, in these cases, the untwisting of the blade, 
due to tension, may be more significant than for regular blades. As 
a result the author presents a derivation similar to the one which was 
presented in reference [1], including warping. He concludes that there 
is an untwisting of the beam due to axial loading which is caused by 
the influence of pretwist on the warping contributions. 

In the derivation of the supplement [1] warping was not included. 
As pointed out, this was done because the basic derivation of Houbolt 
and Brooks did not include warping and the intention was to do the 
derivation [1] along the same lines. Even so, the mutual relation be­
tween warping and pretwist was pointed out, but as indicated [1] in 
the case of usual rotor blades, the neglect of that influence of warping 
and pretwist was fully justified. Furthermore, it was clearly indicated 
that the inclusion of warping and determination of its influence on 
the derivation can be observed following a similar procedure. In fact, 
the subject paper is a result of following the path which was marked 
in reference [1]. This path was also followed by the author of [1] 
showing the influence of warping and pretwist on the torsional rigidity 
of beams [3]. The foregoing description is given here to provide a 
background on [1] and the subject paper. In concluding this part of 
my discussion, I would like to state that I believe that the subject 
paper has an important contribution in establishing the under-

1 By D. H. Hodges, and published in the June, 1980, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 47, pp. 393-397. 

2 Senior Lecturer, Department of Aeronautical Engineering, Teehnion— 
Israel Institute of Technology, Haifa, Israel. 

standing of the behavior of pretwisted beams for which the author 
should be given credit. 

Up to this point the discussion was general, but the following three 
specific points associated with the subject paper, will be pointed 
out: 

1 As stated by the author, his derivation becomes important in 
the case of blades which are built out of composite materials. The cases 
of interest are those where, because of the presence of longitudinal 
fibers, the longitudinal stiffness of the blade is much higher than its 
torsional rigidity. This causes a classical example of an anisotropic 
beam, where strong fibers are immersed in a weak matrix. These fibers 
are twisted with respect to the beam axis and therefore one is faced 
with a complicated problem of anisotropic nonorthogonal system. 
Equation (20), of the supplement [1] is appropriate for these cases. 
Instead the author restricts his derivation to pure isotropic cases 
(equations (15) and (16)), and in order to take into account the nature 
of the composite blades he introduces the concept of equivalent G/E. 
An indication that this concept may not be correct at all is given by 
the following example: Consider a circular beam which is composed 
of an extremely weak matrix together with strong fibers which are 
uniformly twisted inside the matrix. Since the "equivalent isotropic 
beam" is circular there is no warping. Therefore, according to the 
subject paper's results there will not be any untwisting due to axial 
forces, no matter what the ratio G/E is. On the other hand, from 
simple physical reasoning, it is clear that this beam will exhibit un­
twisting due to axial tension. In this special case one also expects an 
addition to the torsional rigidity due to the fibers. This contribution, 
which may be significant above certain values of pretwist, is not 
predicted by the equivalent G/E theory. Therefore, unless the author 
will present concrete proof, the usefulness of the concept of equivalent 
G/E to describe the behavior of rotor blades made of composit ma­
terials, may be very limited. 

2 The author neglected the influence that pretwist may have on 
the torsional rigidity of beams. He states that this contribution is 
negligible for slender beams. Unfortunately, this statement is inac­
curate. A careful examination of the results of previous research [3,4], 
which also confirms physical reasoning, reveals that this contribution 
depends on the initial twist and the geometry of the cross section only, 
and is not influenced by the slenderness of the beam. An indication 
that there is a mistake in the author's derivation is obtained from the 
fact that the numerator of the left side of equation (33) has the di­
mension of (1/length2) while all the other terms in the equation are 
dimensionless. 

In a recent paper [5] a theory describing the nonlinear torsion and 
extension of initially twisted beams under the action of axial load and 
twisting moment, was derived. Comparison [5] of theoretical and 
experimental results showed very good agreement. It is beyond the 
scope of this discussion to be descriptive of that work and so only its 
results (equation (12) and reference [5]) when applied to the same 
example which appears in the subject paper, are presented in Fig. 
1. 

The cross section of the beam is elliptical with principal axes 2a and 
2b, while (T/EA) = 0.005 and G/E = 0.025. If the contributions of 
pretwist, together with other nonlinear contributions to the torsional 
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0 0.2 0.4 b / Q 0.6 tt8 

Fig. 1 Torsion per unit pretwist of a slender beam with elliptical cross sec­
tion 

rigidity of the beam are retained, it is found that in contrast to 
equation (34) of the subject paper, <p'/6' is a function of (d'a). In Fig. 
1 the value of ft'Id' for different values of pretwist (d'a) are presented. 
The shadowed area indicates a region where the accuracy of the theory 
is in doubt [5]. The curve for (d'a) = 0 is identical to the curve pre­
sented in Fig. 2 of the subject paper. Comparison between the two 
figures indicates that the results of the subject paper are misleading. 
The torsion per unit pretwist of a slender beam with elliptical cross 
section is not a function of (b/a) only, as stated, but in addition de­
pends on the magnitude of the pretwist. Using equation (34) of the 
subject paper may also cause large errors in many other cases. 

3 It was shown in previous derivations [1] that using an orthogonal 
system of coordinates instead of the nonorthogonal twisted system 
of coordinates, yields the same results but reduces the work consid­
erably. These conclusions were also confirmed in later works [3,5]. Due 
to the tedious derivation of the subject paper which uses the nonor­
thogonal system, it is worthwhile mentioning again the advantages 
of using an orthogonal system of coordinates whenever possible. 
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Author's Closure 

While I appreciate Dr. Rosen's interest in the subject paper, I do 
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not agree with some of his statements. To begin, I would like to ad­
dress the two points from the supplement of [1] with which Dr. Rosen 
says I now agree. Both points concern the terms that couple tension 
and torsion in beam theory. These two terms account for the well-
known increase in torsion stiffness due to tension and a twisting 
moment due to tension proportional to pretwist. His first point is that 
the phenomenon is negligible within the accuracy of the theory of [2]. 
He argues this point in [1] on the basis of G/E values for a beam made 
of a single, homogeneous, isotropic material. Actually, I do not agree 
with this point now nor have I ever. A careful reading of the Intro­
duction to the subject paper will substantiate this for the reader's 
benefit. My "strong objections" in the beginning, mentioned by Dr. 
Rosen, still stand and they focus on the simplistic nature of his 
argument. Houbolt and Brooks [2] developed their theory using an 
isotropic representation for Hooke's law, but it is reasonable to assume 
that their theory was intended to be applied to composite blades. After 
all, how many rotor blades are built from a single homogeneous, iso­
tropic material? It is customarily assumed in such applications that 
equivalent beam properties can be obtained for use in the theory by 
evaluating certain integrals over the cross section, hence averaging 
the effects of different materials present in the cross section. Aver­
aging leads to effective values of G/E which may differ from those 
encountered in isotropic structures by one or more orders of magni­
tude. It is recognized that this process of averaging has its short­
comings, yet for some typical composite rotor blades it produces rather 
accurate results and will likely continue to be used until more rigorous 
theories are developed. It is not at all surprising, however, that it fails 
in Dr. Rosen's example of a circular cylindrical beam with pretwisted 
fibers. A more general constitutive law is obviously needed in that 
case. This example is not too important, however, since this example 
beam is not typical of rotor blade structures. The point is that the 
terms in question are not negligible for certain composite rotor blades, 
especially the flexbeam portion of bearingless rotor blades [3]. 
Moreover, the notion of an effective G/E value is not introduced in 
the subject paper as if it were a new and comprehensive concept. In­
stead, it is employed as an aid in gaining some physical insight from 
a simplified theory. The only conclusion that is drawn from it in the 
subject paper is simply that the terms in question may be more im­
portant than indicated in [1] in modeling certain composite blades. 
Thus it should be clear that I do not agree with the first result that 
Dr. Rosen cites from the supplement of [1]. 

The second result from the supplement of [1] with which Dr. Rosen 
says I now agree is that the tension-torsion coupling term due to 
pretwist derived in [2] is incorrect. Here, however, Dr. Rosen's dis­
cussion is inconsistent with the conclusions of [1]. It is not alleged in 
[1] that the coupling term in [2] is simply incorrect but, instead, it is 
clearly stated that the term proportional to pretwist that couples 
tension and torsion is nonexistent (Conclusion A, p. 39 [1]). I rejected 
that conclusion when [1] was published; I still reject it. The subject 
paper clearly establishes that the tension-torsion coupling due to 
pretwist does exist and that the term from [2], while not strictly cor­
rect, nevertheless produces results that are reasonably accurate, 
certainly more accurate than those of [1]. It is difficult for me to see 
how Dr. Rosen can say I now agree with the two results that he cites 
from [1]. 

Next, Dr. Rosen proceeds to extol the virtues of the analysis in [1]. 
There are other problems with [1], as discussed in [4], but I will confine 
my remarks here to the issue of tension-torsion coupling. A point 
stressed in [1] was that the authors had finally achieved their objec­
tive: derivation of a "consistent" set of equations without qualifica­
tion. No indication was given that further work was needed to clarify 
the terms in question. In the subject paper, I endeavored to clarify 
the issue of the tension-torsion terms because of what I perceived as 
a fundamental error in [1]. It is true as Rosen states that a "path" can 
be found in [1] if it is desired to incorporate the effects of warp. 
However, other paths can be found in the older references cited in the 
subject paper. Why should I acknowledge following a path that I did 
not follow—a path clearly inferior to those in the older references that 
I did follow? The idea of including warp in a pretwisted beam analysis 
did not originate with Dr. Rosen. Rosen, in fact, belabors the point 
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in [1] that neglecting warp is "completely justified" in rotor blades. 
Is this really the case? It is true, as shown in the subject paper, that 
the torsion moment term proportional to pretwist and tension van­
ishes for warp-free beams. The notion that rotor blades are warp-free 
is totally ill-conceived, however. Houbolt and Brooks [2] neglected 
warping rigidity but they maintained what they considered to be an 
appropriate slender-beam approximation of warp effects in that: (1) 
they utilized the Saint Venant torsion rigidity, which depends on 
warp; and (2) they invoked the Wagner hypothesis, where longitudinal 
stress is assumed to act normal to a warped surface, in calculating the 
twisting moments. What resulted was an approximation that is vir­
tually indistinguishable from the more accurate model developed in 
the subject paper, which includes warp. The differences are only 
significant for beams with warp-free or quasi warp-free cross sections. 
The subject paper shows that warping influences terms other than 
the torsion rigidity. In [1] the twisting moment was calculated by 
blindly following the Euler-Bernoulli hypothesis, where longitudinal 
stress is assumed to act normal to the plane of the cross section. The 
torsion rigidity had to be artificially modified in the "consistent" 
equations of [1] in order to match the known result of Saint Venant, 
which includes warping. The authors of [1] did not mention that other 
errors may have been created by their restrictive kinematics. As shown 
in the subject paper, even in a slender-beam approximation, warp does 
affect the tension-torsion coupling. The fundamental error in [1] was 
the assumption that since rotor blades are closed cross sections and 
thus have small warping rigidity, all warping could be removed from 
the kinematics. That this is false is well established in the literature 
and confirmed by the results of the subject paper. 

It should be noted that the subject paper is not really definitive nor 
was it intended to be. In the subject paper, the undeformed beam cross 
section is assumed to be plane. It seems more reasonable to assume 
that the undeformed surface of the cross section of a pretwisted beam 
should also be warped so that the surface is, at each point in the cross 
section, normal to the helical "fiber" that goes through that point. 
Then, stresses referred to this surface would be normal to the helix. 
The geometry of this warped surface may or may not closely resemble 
that described by the Saint Venant warp function. The question is 
what should this surface look like? Is there an exact solution from 
elasticity theory that is analogous to the Saint Venant result? Can a 
tractable small-strain constitutive law be found for geometric non­
linear analysis of pretwisted laminated composite beams with possible 
anisotropy? Is a laminated helicoidal shell theory that is somehow 
simplified to one-dimensional form possibly the answer? These 
questions and others form the basis for future research projects and 
it is hoped that this discussion will stimulate further interest. 

I now turn to the three specific items listed by Dr. Rosen in the 
latter part of the discussion. I have already addressed the first item, 
concerning equivalent G/E, and now I would like to address the sec­
ond and third of these items. Dr. Rosen claims in his second point that 
a dd/dx is a key parameter in this problem and that slenderness ratio 
a/L has no effect at all. Unfortunately, I failed to specify in the subject 
paper that from equation (33) on, all variables are dimensionless and 
thus ( )' = d( )/dx where x = x/L. Hence, a d8/dx becomes a/L dd/dx 
just as in the subject paper. It should be noted that a/L and dd/dx are 
independent quantities. That the magnitudes of both a/L and dd/dx 
are important is evident in equation (33) by virtue of which the va­
lidity of equation (34) is bounded. Equation (33) implies, for any fixed 
value of dd/dx, that the torsion per unit pretwist is independent of 
a/L dd/dx if a/L is sufficiently small. For example, consider rotor 
blades where, normally, dd/dx is no more than 0.8 rad even for highly 
twisted blades. The maximum cross-section dimension 2a is normally 
less than about 0.1L for a slender blade. Thus, for typical rotor blades, 
o dd/dx = a/L dd/dx £ 0.04 and the result is barely distinguishable 
from the a dd/dx = 0 curve in Fig. 1 of the discussion equivalent to 
Fig. 2 of the subject paper). Therefore, contrary to L' , .osen's com­
ments, the slenderness ratio a/L is a key parameter and obviously 
equation (34) in the subject paper is neither in error nor at all mis­
leading. 

Dr. Rosen's third item is that the use of orthogonal coordinates is 
preferable because there is considerably less work. Actually, this 

choice is largely a matter of personal preference and is highly 
problem-dependent. 

Finally, I would like to correct several typographical errors in the 
subject paper. The first term in the middle row of equation (9) should 
be d\p1/dy2. The third and fourth terms in the first row of equations 
(13) are Xa' + u'2/2 and the left-hand side of equation (34) should read 
d0'/d0'. 
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I Transient Response of a 
Finite Crack in a Strip With 
Stress-Free Edges1 

E. P. Chen.2 Professor Itou solved the same problem which was 
treated by the discusser. His justification for doing so was twofold: 

1 He used an alternate method to formulate the problem in the 
Laplace transform domain. 

2 He used a more refined Laplace inversion scheme and claimed 
a better numerical result than reported in [1]. 

The discusser would like to clarify these two points in this discus­
sion. 

The formulation and solution method used in [1] has been well 
established for solving mixed boundary-value problems e.g., [2, 3]. 
Alternative methods such as the singular integral equation method 
[4] and the method used by Sneddon and Srivastav [5] exist. However, 
the choice of these methods for a given problem mostly depends on 
the author's familiarity with them and there is no definite advantage 
by using one method over the other. Thus point one hardly justifies 
the republication of the same paper. As for the second point, Professor 
Itou used the same numerical Laplace inversion scheme as the dis­
cusser. Using the notation in Itou's paper, two parameters /? and S' 
and the number of terms to retain in an infinite sum, AT must be 
chosen. As Professor Itou stated in his paper ". . . However, there is 
no best way of selecting these values . . . " The values /3 = 0.0,8' = 0.2, 
and N = 5 were arrived in [1] by comparing the solution for a finite 
crack in an infinite medium and subjected to the action of impact 
loads with the exact solution by Thau and Lu [6] at earlier times. Itou 
used another scheme to determine these parameters which presum­
ably gave better results than those in [1]. However, the comparison 
between these results showed less than 10 percent difference at the 
worst. Owing to the approximate nature of the numerical scheme, the 
discusser considers his results in [1] being satisfactory. 

Another point involves the small disturbance at earlier times ob­
served in [1]. The discusser suggested that this may be caused by the 
wave interaction between the free surface and the crack. The discusser 
did not "insist" on this point as stated in Itou's paper. Observing from 
Itou's Fig. 2, the slope of the curves at earlier times also exhibit some 

1 By S. Itou, and published in the December, 1980, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 47, pp. 801-805. 

2 Member of Technical Staff, In-Situ Technologies Division, Sandia National 
Laboratories, Albuquerque, New Mex. 87185. 
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in [1] that neglecting warp is "completely justified" in rotor blades. 
Is this really the case? It is true, as shown in the subject paper, that 
the torsion moment term proportional to pretwist and tension van­
ishes for warp-free beams. The notion that rotor blades are warp-free 
is totally ill-conceived, however. Houbolt and Brooks [2] neglected 
warping rigidity but they maintained what they considered to be an 
appropriate slender-beam approximation of warp effects in that: (1) 
they utilized the Saint Venant torsion rigidity, which depends on 
warp; and (2) they invoked the Wagner hypothesis, where longitudinal 
stress is assumed to act normal to a warped surface, in calculating the 
twisting moments. What resulted was an approximation that is vir­
tually indistinguishable from the more accurate model developed in 
the subject paper, which includes warp. The differences are only 
significant for beams with warp-free or quasi warp-free cross sections. 
The subject paper shows that warping influences terms other than 
the torsion rigidity. In [1] the twisting moment was calculated by 
blindly following the Euler-Bernoulli hypothesis, where longitudinal 
stress is assumed to act normal to the plane of the cross section. The 
torsion rigidity had to be artificially modified in the "consistent" 
equations of [1] in order to match the known result of Saint Venant, 
which includes warping. The authors of [1] did not mention that other 
errors may have been created by their restrictive kinematics. As shown 
in the subject paper, even in a slender-beam approximation, warp does 
affect the tension-torsion coupling. The fundamental error in [1] was 
the assumption that since rotor blades are closed cross sections and 
thus have small warping rigidity, all warping could be removed from 
the kinematics. That this is false is well established in the literature 
and confirmed by the results of the subject paper. 

It should be noted that the subject paper is not really definitive nor 
was it intended to be. In the subject paper, the undeformed beam cross 
section is assumed to be plane. It seems more reasonable to assume 
that the undeformed surface of the cross section of a pretwisted beam 
should also be warped so that the surface is, at each point in the cross 
section, normal to the helical "fiber" that goes through that point. 
Then, stresses referred to this surface would be normal to the helix. 
The geometry of this warped surface may or may not closely resemble 
that described by the Saint Venant warp function. The question is 
what should this surface look like? Is there an exact solution from 
elasticity theory that is analogous to the Saint Venant result? Can a 
tractable small-strain constitutive law be found for geometric non­
linear analysis of pretwisted laminated composite beams with possible 
anisotropy? Is a laminated helicoidal shell theory that is somehow 
simplified to one-dimensional form possibly the answer? These 
questions and others form the basis for future research projects and 
it is hoped that this discussion will stimulate further interest. 

I now turn to the three specific items listed by Dr. Rosen in the 
latter part of the discussion. I have already addressed the first item, 
concerning equivalent G/E, and now I would like to address the sec­
ond and third of these items. Dr. Rosen claims in his second point that 
a dd/dx is a key parameter in this problem and that slenderness ratio 
a/L has no effect at all. Unfortunately, I failed to specify in the subject 
paper that from equation (33) on, all variables are dimensionless and 
thus ( )' = d( )/dx where x = x/L. Hence, a d8/dx becomes a/L dd/dx 
just as in the subject paper. It should be noted that a/L and dd/dx are 
independent quantities. That the magnitudes of both a/L and dd/dx 
are important is evident in equation (33) by virtue of which the va­
lidity of equation (34) is bounded. Equation (33) implies, for any fixed 
value of dd/dx, that the torsion per unit pretwist is independent of 
a/L dd/dx if a/L is sufficiently small. For example, consider rotor 
blades where, normally, dd/dx is no more than 0.8 rad even for highly 
twisted blades. The maximum cross-section dimension 2a is normally 
less than about 0.1L for a slender blade. Thus, for typical rotor blades, 
o dd/dx = a/L dd/dx £ 0.04 and the result is barely distinguishable 
from the a dd/dx = 0 curve in Fig. 1 of the discussion equivalent to 
Fig. 2 of the subject paper). Therefore, contrary to L' , .osen's com­
ments, the slenderness ratio a/L is a key parameter and obviously 
equation (34) in the subject paper is neither in error nor at all mis­
leading. 

Dr. Rosen's third item is that the use of orthogonal coordinates is 
preferable because there is considerably less work. Actually, this 

choice is largely a matter of personal preference and is highly 
problem-dependent. 

Finally, I would like to correct several typographical errors in the 
subject paper. The first term in the middle row of equation (9) should 
be d\p1/dy2. The third and fourth terms in the first row of equations 
(13) are Xa' + u'2/2 and the left-hand side of equation (34) should read 
d0'/d0'. 
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I Transient Response of a 
Finite Crack in a Strip With 
Stress-Free Edges1 

E. P. Chen.2 Professor Itou solved the same problem which was 
treated by the discusser. His justification for doing so was twofold: 

1 He used an alternate method to formulate the problem in the 
Laplace transform domain. 

2 He used a more refined Laplace inversion scheme and claimed 
a better numerical result than reported in [1]. 

The discusser would like to clarify these two points in this discus­
sion. 

The formulation and solution method used in [1] has been well 
established for solving mixed boundary-value problems e.g., [2, 3]. 
Alternative methods such as the singular integral equation method 
[4] and the method used by Sneddon and Srivastav [5] exist. However, 
the choice of these methods for a given problem mostly depends on 
the author's familiarity with them and there is no definite advantage 
by using one method over the other. Thus point one hardly justifies 
the republication of the same paper. As for the second point, Professor 
Itou used the same numerical Laplace inversion scheme as the dis­
cusser. Using the notation in Itou's paper, two parameters /? and S' 
and the number of terms to retain in an infinite sum, AT must be 
chosen. As Professor Itou stated in his paper ". . . However, there is 
no best way of selecting these values . . . " The values /3 = 0.0,8' = 0.2, 
and N = 5 were arrived in [1] by comparing the solution for a finite 
crack in an infinite medium and subjected to the action of impact 
loads with the exact solution by Thau and Lu [6] at earlier times. Itou 
used another scheme to determine these parameters which presum­
ably gave better results than those in [1]. However, the comparison 
between these results showed less than 10 percent difference at the 
worst. Owing to the approximate nature of the numerical scheme, the 
discusser considers his results in [1] being satisfactory. 

Another point involves the small disturbance at earlier times ob­
served in [1]. The discusser suggested that this may be caused by the 
wave interaction between the free surface and the crack. The discusser 
did not "insist" on this point as stated in Itou's paper. Observing from 
Itou's Fig. 2, the slope of the curves at earlier times also exhibit some 

1 By S. Itou, and published in the December, 1980, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 47, pp. 801-805. 
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fast transition. Because of the numerical nature of the solutions, the 
discusser does not think this point can be settled at this time. 
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Author's Closure 

1 The author's method for solving the dual integral equations is 
a very simplified one. The crack surface displacement is directly ex­
panded in a series which is automatically zero outside the crack. 
Therefore, the integral equations can be immediately solved by the 
Schmidt method. The quality of the solution is equivalent to those 
obtained in [1, 2, 4, 5]. This method is easily applicable for solving 
more difficult problems which concern rectangular-shaped crack(s) 
in an infinite elastic body or in a semispace [7-11]. It may be mean­
ingless to publish the paper if it is only to say that the same problem 
has been reworked. However, it can be considered that the publication 
of this paper is justified on the grounds that the application of such 
a simple method is successful in solving such a dynamic crack 
problem. 

2 The author agrees in principle with Dr. Chen's second point. 
The word "insist" which was used was improper and the author is 
sorry for this. The difference between the result in [6] and'that in [1] 
for a/h = 0.0 is not of importance from an engineering viewpoint, and 
at the same time, it is still desired to lessen such a difference, if it can 
be done, in spite of the numerical approach to the problem. 

R e f e r e n c e s 
7 Itou, S., "Dynamic Stress Concentration Around a Rectangular Crack 

in an Infinite Elastic Medium," Zeitschrift fur Angewandte Mathematik und 
Mechanik, Band 60,1980, pp. 317-322. 

8 Itou, S., "Dynamic Stress Concentration Around Two Rectangular 
Cracks in an Infinite Elastic Medium (in Japanese)," Transactions of the Japan 
Society of Mechanical Engineers, Vol. 46,1980, pp. 575-583. 

9 Itou, S., "Transient Analysis of Stress Waves Around a Rectangular 
Crack Under Impact Load," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
47,1980, pp. 958-959. 

10 Itou, S., "Dynamic Stress Concentration Around Four Rectangular 
Cracks in an Infinite Elastic Medium (in Japanese)," Transactions of the Japan 
Society of Mechanical Engineers, Vol. 47,1981, pp. 492-500. 

11 Itou, S., "Dynamic Stress-Intensity Factors Around a Rectangular Crack 
in a Half Space Under Impact Load," in contribution. 

On the Nonbuckling of a 
Circular Ring Under 
"Wrapping" Loading1 

A. Kornecki.2 The interesting result that circular rings under 

1 By T. J. Lardner, and published in the December, 1980, issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 47, p. 973. 

2 Visiting Professor, Department of Civil Engineering, University of Delaware, 
Newark, Del. 19711; on leave from Technion, Israel Institute of Technology, 
Haifa, Israel. 

wrapping-type loads will not buckle was noted among others by 
Feodosyev [1]. Independently, and exhaustive analysis of this problem 
in the framework of the nonlinear theory of elastic stability was made 
by Oery [2]. 

R e f e r e n c e s 
1 Feodosyev, V. I., Selected Problems in Strength of Materials (translated 

from Russian), published by "Mir," Moscow, 1966. 
2 Oery, H., "The Load Capacity of a Thin-Walled Circular Ring Under 

Wrapping Loading." (in German), PhD dissertation, published by Munich 
Technical University, 1976, 83 pages. 

A Nonlinear Theory of 
Viscoelasticity for 
Application to Elastomers1 

K. N. Morman.2 Dr. Christensen refers to his constitutive 
equation, equation (22C)3 as " . . . the form sought as the simplest, 
physically, meaningful generalization of the kinetic theory of rubber 
elasticity to model viscoelastic effects." The present author wishes 
to take issue with this statement and present arguments that the 
constitutive relation best suited to Dr. Christensen's statement is 

(Tij = -pdij + Xi,KXj,L gO&KL + J gl(t - T){dKMXL,kXN,k 

<>EMN (T) 
+ dLM^K.kXNk) " dt 

d r 
(1) 

where the relaxation modulus, giit) is to be distinguished fromgi(t) 
appearing in equation (22C). Equation (1) may be obtained from the 
finite linear viscoelasticity theory4 by neglecting all relaxation func­
tions except <pi(t) which involves the integral expression 

XI 0l(t ~ T ) [ B * C M T ) + Clik(r)Bkj]dT (2) 

where By = X;,K*J,K and C'j(r) = Xk,i(r)xkj, and by setting $i(i) = 
Ut). 

Dr. Christensen's requirement that "Under a sufficiently slow 
process, the viscoelasticity theory must reduce to the kinetic theory 
of rubber elast ici ty. . ." is easily satisfied by requiring 

?i(°°) = 0. (3) 

However, the present author does not believe that this requirement 
is sufficiently strong to justify truncation of the Rivlin/Green ex­
pansion represented by equation (3C) to obtain equation (22C) 

i.e., 

an --pSij + XijfXjj, gO^KL + f gl(t ~ T) 
Jo 

dEigArl 
dr 

(22C) 

A more rigorous requirement should have the viscoelasticity theory 
reduce to the kinetic theory of rubber elasticity in both the extremes 
of very rapid processes and sufficiently slow processes. That the latter 
requirement is readily satisfied by equation (1) is seen by considering 
the single-step stress relaxation process which yields: 

For Multiaxial Configurations 

Oil = -P^ii + X°KxlL"KLH(t) (4) 

1 By R. M. Christensen, and published in the December, 1980, issue of the 
ASME J O U R N A L O F A P P L I E D M E C H A N I C S , Vol. 47, No. 4, pp. 762-768. 

2 Supervisor, Ford Motor Co., Engineering Computer Center, 20000 Rotunda 
Drive, Dearborn, Mich. 48121. 

3 Equation or figure numbers followed by C refer to those in footnote one. 
4 Coleman B. D., and Noll, W., Rev. Mod. P/iys., Vol. 33,1961, p. 239; erratum, 

ibid, Vol. 36,1964, p. 1103. 
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fast transition. Because of the numerical nature of the solutions, the 
discusser does not think this point can be settled at this time. 

R e f e r e n c e s 
1 Chen, E. P., "Sudden Appearance of a Crack in a Stretched Finite Strip," 

ASME J O U R N A L O F A P P L I E D M E C H A N I C S , Vol. 45,1978, pp. 277-280. 
2 Sih, G. C , and Loeber, J. P., "Wave Propagation in an Elastic Solid With 

a Line of Discontinuity or Finite Crack," Quarterly of Applied Mathematics, 
Vol. 27,1969, pp. 193-213. 

3 Kassir, M. K., and Sih, G. C , Three-Dimensional Crack Problems, 
Noordhoff International Publishing, Leyden, The Netherlands, 1975. 

4 Erdogan, F., Gupta, G. D., and Cook, T. S., "Numerical Solution of Sin­
gular Integral Equations," Mechanics of Fracture, Vol. 1, ed., Sih, G. C , 
Noordhoff International Publishing, Leyden, The Netherlands, 1973, pp. 
368-425. 

5 Sneddon, I. N., and Srivastav, R. P., "The Stress Field in the Vicinity of 
a Griffith Crack in a Strip of Finite Width," International Journal of Engi­
neering Science, Vol. 9,1971, pp. 479-488. 

6 Thau, S. A., and Lu, T. H., "Transient Stress-Intensity Factors for a Finite 
Crack in an Elastic Solid Caused by a Dilatational Wave," International 
Journal of Solids and Structures, Vol. 7,1971, pp. 731-750. 

Author's Closure 

1 The author's method for solving the dual integral equations is 
a very simplified one. The crack surface displacement is directly ex­
panded in a series which is automatically zero outside the crack. 
Therefore, the integral equations can be immediately solved by the 
Schmidt method. The quality of the solution is equivalent to those 
obtained in [1, 2, 4, 5]. This method is easily applicable for solving 
more difficult problems which concern rectangular-shaped crack(s) 
in an infinite elastic body or in a semispace [7-11]. It may be mean­
ingless to publish the paper if it is only to say that the same problem 
has been reworked. However, it can be considered that the publication 
of this paper is justified on the grounds that the application of such 
a simple method is successful in solving such a dynamic crack 
problem. 

2 The author agrees in principle with Dr. Chen's second point. 
The word "insist" which was used was improper and the author is 
sorry for this. The difference between the result in [6] and'that in [1] 
for a/h = 0.0 is not of importance from an engineering viewpoint, and 
at the same time, it is still desired to lessen such a difference, if it can 
be done, in spite of the numerical approach to the problem. 

R e f e r e n c e s 
7 Itou, S., "Dynamic Stress Concentration Around a Rectangular Crack 

in an Infinite Elastic Medium," Zeitschrift fur Angewandte Mathematik und 
Mechanik, Band 60,1980, pp. 317-322. 

8 Itou, S., "Dynamic Stress Concentration Around Two Rectangular 
Cracks in an Infinite Elastic Medium (in Japanese)," Transactions of the Japan 
Society of Mechanical Engineers, Vol. 46,1980, pp. 575-583. 

9 Itou, S., "Transient Analysis of Stress Waves Around a Rectangular 
Crack Under Impact Load," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
47,1980, pp. 958-959. 

10 Itou, S., "Dynamic Stress Concentration Around Four Rectangular 
Cracks in an Infinite Elastic Medium (in Japanese)," Transactions of the Japan 
Society of Mechanical Engineers, Vol. 47,1981, pp. 492-500. 

11 Itou, S., "Dynamic Stress-Intensity Factors Around a Rectangular Crack 
in a Half Space Under Impact Load," in contribution. 

On the Nonbuckling of a 
Circular Ring Under 
"Wrapping" Loading1 

A. Kornecki.2 The interesting result that circular rings under 

1 By T. J. Lardner, and published in the December, 1980, issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 47, p. 973. 

2 Visiting Professor, Department of Civil Engineering, University of Delaware, 
Newark, Del. 19711; on leave from Technion, Israel Institute of Technology, 
Haifa, Israel. 

wrapping-type loads will not buckle was noted among others by 
Feodosyev [1]. Independently, and exhaustive analysis of this problem 
in the framework of the nonlinear theory of elastic stability was made 
by Oery [2]. 

R e f e r e n c e s 
1 Feodosyev, V. I., Selected Problems in Strength of Materials (translated 

from Russian), published by "Mir," Moscow, 1966. 
2 Oery, H., "The Load Capacity of a Thin-Walled Circular Ring Under 

Wrapping Loading." (in German), PhD dissertation, published by Munich 
Technical University, 1976, 83 pages. 

A Nonlinear Theory of 
Viscoelasticity for 
Application to Elastomers1 

K. N. Morman.2 Dr. Christensen refers to his constitutive 
equation, equation (22C)3 as " . . . the form sought as the simplest, 
physically, meaningful generalization of the kinetic theory of rubber 
elasticity to model viscoelastic effects." The present author wishes 
to take issue with this statement and present arguments that the 
constitutive relation best suited to Dr. Christensen's statement is 

(Tij = -pdij + Xi,KXj,L gO&KL + J gl(t - T){dKMXL,kXN,k 

<>EMN (T) 
+ dLM^K.kXNk) " dt 

d r 
(1) 

where the relaxation modulus, giit) is to be distinguished fromgi(t) 
appearing in equation (22C). Equation (1) may be obtained from the 
finite linear viscoelasticity theory4 by neglecting all relaxation func­
tions except <pi(t) which involves the integral expression 

XI 0l(t ~ T ) [ B * C M T ) + Clik(r)Bkj]dT (2) 

where By = X;,K*J,K and C'j(r) = Xk,i(r)xkj, and by setting $i(i) = 
Ut). 

Dr. Christensen's requirement that "Under a sufficiently slow 
process, the viscoelasticity theory must reduce to the kinetic theory 
of rubber elast ici ty. . ." is easily satisfied by requiring 

?i(°°) = 0. (3) 

However, the present author does not believe that this requirement 
is sufficiently strong to justify truncation of the Rivlin/Green ex­
pansion represented by equation (3C) to obtain equation (22C) 

i.e., 

an --pSij + XijfXjj, gO^KL + f gl(t ~ T) 
Jo 

dEigArl 
dr 

(22C) 

A more rigorous requirement should have the viscoelasticity theory 
reduce to the kinetic theory of rubber elasticity in both the extremes 
of very rapid processes and sufficiently slow processes. That the latter 
requirement is readily satisfied by equation (1) is seen by considering 
the single-step stress relaxation process which yields: 

For Multiaxial Configurations 

Oil = -P^ii + X°KxlL"KLH(t) (4) 

1 By R. M. Christensen, and published in the December, 1980, issue of the 
ASME J O U R N A L O F A P P L I E D M E C H A N I C S , Vol. 47, No. 4, pp. 762-768. 

2 Supervisor, Ford Motor Co., Engineering Computer Center, 20000 Rotunda 
Drive, Dearborn, Mich. 48121. 

3 Equation or figure numbers followed by C refer to those in footnote one. 
4 Coleman B. D., and Noll, W., Rev. Mod. P/iys., Vol. 33,1961, p. 239; erratum, 

ibid, Vol. 36,1964, p. 1103. 
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B.M. Fraeijs de Veubeke Memorial Volume of Selected Papers. 
Edited by M. Geradin. Published by Sijthoff & Noordhoff, The 
Netherlands. 1980. Pages xvii-752. Price $57.50. 

REVIEWED BY R. D. COOK1 

This volume of papers by Prof. Fraeijs de Veubeke was prepared 
by several of his colleagues. Of his some 80 varied publications, the 
following 17 are included: Influence of Internal Damping on Aircraft 
Resonance, Upper and Lower Bounds in Matrix Structural Analysis, 
Displacement and Equilibrium Models in the Finite Element 
Method, Variational Principles in Fluid Mechanics, Strain-Energy 
Bounds in Finite-Element Analysis by Slab Analogy, A Conforming 
Finite Element for Plate Bending, An Equilibrium Model for Plate 
Bending, The Theoretical Design Laws of Warping-Free Multicel­
lular Box Beams, The Dual Principles of Elastodynamics: Finite-
Element Applications, Nonlinear Shell Theory, Dual Analysis for 
Heat Conduction Problems by Finite Elements, A New Variational 
Principle for Finite-Elastic Displacements, Matrix Structural 
Analysis, Diffusive Equilibrium Models, Variational Principles and 
the Patch Test, Stress Function Approach, and The Dynamics of 
Flexible Bodies. 

The collection centers around the development of variational 
methods in continuum mechanics and their adaptation to finite-
element methods. The papers are all in English. They have been 
retyped from journals in camera-ready format. 

The appeal of the book is to those who study fundamentals and the 
theory of computational methods. The papers are clearly written and 
are original and significant contributions. 

in content; one encounters an impressive array of wave phenomena 
(Poincare, Kelvin, and Rossby waves), nearly frictionless flows (in the 
geostrophic approximation) controlled by boundary (Ekman) layers, 
and a wide variety of boundary layer/shear layer effects (including 
western intensification of currents such as the Gulf Stream). Baro-
clinic effects—those due to density variations—are added in the 
second half of the book which includes a substantial chapter on sta­
bility. The author derives the governing equations, discusses the 
relevant scaling assumptions, and educes models for each class of 
effects with care and skill. 

I particularly like the author's insistence on physical interpretations 
and explanations of equations and their solutions, and useful insights 
abound. Almost all of the theory is linear—although resonant wave 
interaction is considered and there are occasional glimpses of other 
nonlinear effects. Perhaps this is appropriate for a beginning series 
of courses, but believe it is necessary to discuss the limitations of linear 
theory more explicitly. 

The book is apparently intended to serve as a textbook for a series 
of graduate courses. It is unfortunate that the author elected not to 
include exercises. This is a significant detriment to its use as a text­
book. Nevertheless, the book is the first available introduction to a 
subject which, until now, has been scattered in the meteorological and 
oceanographical literature. Its systematic exposition by Professor 
Pedlosky, who has made important contributions to the development 
of geophysical fluid dynamics, will make the subject much more ac­
cessible to those trained in mechanics, and is heartily welcomed. 

Geophysical Fluid Dynamics. By J. Pedlosky. Springer-Verlag, New 
York, Heidelberg, Berlin. 1979. Pages xii-624, Price $39.80. 

REVIEWED BY S. LEIBOVICH2 

Geophysical fluid mechanics, the study of fluid motions occurring 
naturally in the earth's interior, oceans, and atmosphere, emerged as 
a distinct and vital subject in the 1960's. The span of the scales of 
interest to the field is vast, ranging from centimeters such as capillary 
waves, to those on a planetary scale. 

Professor Pedlosky's book rose from a five quarter series of courses 
at the University of Chicago, and covers the theory of those large-scale 
phenomena of importance to the oceans and atmosphere. These are 
motions characterized by, usually dominated by, the effects of coriolis 
acceleration, and ultimately driven by buoyancy created by differ­
ential heating. The physics is complex, and the book builds the theory 
by first describing the effects of rotation on a fluid of constant density. 
This part of the theory, to which half the book is devoted, is itself rich 

Methoden der analytischen Storungsrechnung und ihre An-
wendunge. By U. Kirchgraber and E. Stiefel. Vol. 44 of the series 
Leitfaden der angewandten Mathematik und Mechanik. B. G. 
Teubner. Stuttgart. 1978. pp. viii-294. 

REVIEWED BY W. S. LOUD3 

The method of averaging with systems of ordinary differential 
equations has many areas of application in mechanics. Because of this, 
the present book is a welcome addition to the literature on the subject. 
The book is written as a "handbook" on the method of averaging, and 
as such it succeeds very well. It is very definitely aimed at an appli­
cations-oriented audience, as is shown by two important features. 
Numerous, often complicated, examples are discussed in considerable 
detail. The necessary mathematical aspects are presented in a simple, 
clear, and insightful manner. Unless the German language is an in­
surmountable obstacle, this book should prove to be a very useful 
reference for perturbation techniques based on the method of aver­
aging. The reviewer is very pleased to have this book in his library. 

The book consists of an introduction and four chapters. The in­
troduction gives an overview of the contents along with several ex­
amples and a description of the method of averaging. 

1 University of Wisconsin, College of Engineering, Madison, Wise. 53706. 
2 Professor, Sibley School of Mech. & Aero. Engineering, Cornell University, 

Ithaca, N. Y. 14853. 

3 Professor, School of Mathematics, University of Minnesota, Minneapolis, 
Minn. 55455. 
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Chapter I is a necessary prerequisite to the rest of the book. It is a 
development of the method of averaging based on Lie series, and in­
troduces concepts and notations used throughout the remaining 
chapters. The presentation is extremely clear, and every step is il­
lustrated by examples. 

Chapter II is a discussion of several important applications, in­
cluding problems of gyroscopes, satellites, and the bifurcation of 
periodic solutions (Hopf bifurcation). The mechanical examples are 
carried out in great detail with very helpful explanations. A two-cell 
Turing model is studied to illustrate bifurcation. 

Chapter III is a further development of the general formal aspects 
of perturbation theory and the method of averaging. 

Chapter IV gives the mathematical foundation of the method of 
averaging. Error estimates are obtained for both a finite time interval 

Mechanical Properties at High Rates of Strain. 1979. Proceed­
ings of the Second Conference on the Mechanical Proper­
ties of Materials at High Rates of Strain. Held in Oxford, 
March 28-30, 1979. Edited by J. Harding. Conference Series 
Number 47, The Institute of Physics, Bristol and London. 1980. 
Pages ix-409. Price $90. 

REVIEWED BY L. E. MALVERN4 

This volume contains the four invited and 33 contributed papers 
presented at the conference. The book is divided into four chapters, 
each introduced by an invited lecture which gives some idea of the 
state of the art in the area without purporting to be a general survey. 
The volume as a whole gives a good account of developments since 
the first Oxford Conference in 1974. Space limitations preclude even 
listing all the authors or titles. Selections which follow reflect the 
reviewer's interest. 

Chapter 1 has two parts captioned "Testing techniques" and 
"Material Behaviour." The opening paper was to have been given by 
Dr. J. D. Campbell, late Reader in Engineering Science at Oxford and 
one of the principal organizers of the conferences, whose untimely 
death in the autumn of 1978 came as a great shock to his many friends 
and colleagues. J. Duffy gave the opening paper as the "J. D. Campbell 
Memorial Lecture: Testing Techniques and Material Behavior at 
High Rates of Strain." A tribute to Campbell's diverse contributions 
was followed by an excellent discussion of recent developments in the 
use of the Kolsky apparatus or split Hopkinson's bar, both in the 
compressional form introduced by Kolsky in 1949 and in the torsional 
bar form developed by Campbell and his associates. Special attention 
was given to jump tests in which a sudden change in strain rate is in­
troduced with the aim of separating instantaneous rate effects from 
rate-history effects. 

D. A. Gorham described a miniaturized modified Hopkinson bar 
capable of testing strong materials at rates up to 106 s - 1 . Other papers 
discussed biaxial testing and superimposed hydrostatic pressure. 
Material behavior papers included one on localization of plastic flow 
in tubes under dynamic torsion and one on an ultrasonic method of 
detecting dislocation behavior. Analytical and computational rep­
resentations were included in some papers, as well as experimental 
characterization in others. 

Chapter 2: "Wave Propagation Effects and Fracture" was intro­
duced by R. J. Clifton with a lucid account of disagreement between 
theory and experiment in two types of plate impacts. Most of the 
papers in this chapter were concerned with dynamic fracture, in­
cluding crack initiation, interference optical measurements of large 
deformations at the tip of a running crack in a glassy thermoplastic, 
and metallurgical aspects. 

Chapter 3: "Applications" was introduced by W. Johnson, who gave 
a dynamic survey of topics including demolition, machining, extru-

4 Professor of Engineering Sciences, University of Florida, Gainesville, Fla. 
32611; also Associate Editor, ASME JOURNAL OF APPLIED MECHANICS, Mem. 
ASME. 

and an infinite time interval. As applications domains of attraction 
of stable solutions, bifurcations, and an error estimate with Lajapunov 
functions are discussed. The concept of invariant manifolds is in­
troduced. The final section deals with invariant manifolds for Ham-
iltonian systems and the twist theorem. The authors have attempted 
to present this theory in a simple manner to permit the reader to 
perceive the ideas without unnecessary mathematical sophistica­
tion. 

At the end if each chapter there is a discussion with references to 
relevant literature both for further mathematical developments and 
for other applications. There is a bibliography of about 140 items. 

In conclusion, this is a well-conceived, clearly written book with a 
strong emphasis on applications. It should prove a useful addition to 
the reference library of anyone working in theoretical mechanics. 

sion, superplastic forming and metal powder compaction. Other ap­
plications papers discussed machining, extrusion, explosive forming, 
and explosive welding. 

The editor concluded that, since the previous conference, progress 
has been made on several fronts, including measurement techniques 
and experimental characterization of a wider class of materials, "while, 
in studies of more fundamental aspects of material behavior, exper­
iments involving sudden changes in strain rate are being increasingly 
used to develop constitutive equations involving internal state vari­
ables and to obtain a correlation between microscopic mechanisms 
and the macroscopic response." 

This book will be a valuable reference for researchers on dynamic 
mechanical properties. 

Structural Control. By H. H. E. Leipholz (editor). North-Holland 
SM Publications, Amsterdam and New York. 1980. Pages xv~ 
810. Price $87.75. 

REVIEWED BY T. T. SOONG5 

Structural Control is a collection of papers presented at the In­
ternational IUTAM Symposium on Structural Control held at the 
University of Waterloo in June, 1979. According to Leipholz, Chair­
man of the organization committee and Editor of this volume, the aim 
of the Symposium was to provide an opportunity for exchange of 
ideas, data, and information among workers in the following three 
groups. 

1 Researchers concerned with the fundamentals of control and 
optimization theory. 

2 Researchers and engineers involved in the application of control 
and optimization theory to industrial processes and aerospace 
structures. 

3 Researchers and engineers interested and active in the appli­
cation of control theory to large civil engineering structures. 

While the Symposium participants did represent a good mix of 
these three groups, the dominant theme was clearly civil engineering 
structural control. Indeed, out of 43 papers included in this book, the 
authors had civil engineering structures in mind in over 30 of them. 
And, in this respect, the organization committee and the editor are 
to be congratulated on providing a comprehensive overview of civil 
engineering structural control, an emerging and exciting area of re­
search, and an authoritative account of current work and, more im­
portant, current thinking on this research topic. 

By and large, research activities in civil engineering structural 
control are concerned with the possible use of control mechanisms 
for the purpose of reducing vibration levels in tall buildings, bridges, 

5 Professor of Civil Engineering, State University of New York at Buffalo, 
Buffalo, N.Y. 14214. 
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BOOK REVIEWS/ERRATA 

ERRATA 

Erratum on "Some Considerations on Thermal Shock Problem in 
a Plate," by Y. Takeuti and T. Furukawa, and published in the March, 
1981, issue of the AS ME JOURNAL OF ApPLIED MECHANICS, Vol. 
48, pp. 113-118. 

Table 1 should read 3.74 X 10-16 under the column heading "Mild 
steel," 2.16 X 10-14 under the column heading "Aluminum," and 5.95 
X 10-14 under the last column heading "Copper." 
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